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Predicting the fate of an interacting system in the limit where the electronic bandwidth is quenched is
often highly nontrivial. The complex interplay between interactions and quantum fluctuations driven by the
band geometry can drive competition between various ground states, such as charge density wave order and
superconductivity. In this work, we study an electronic model of topologically trivial flat bands with a
continuously tunable Fubini-Study metric in the presence of on-site attraction and nearest-neighbor
repulsion, using numerically exact quantum Monte Carlo simulations. By varying the electron filling and
the minimal spatial extent of the localized flat-band Wannier wave functions, we obtain a number of
intertwined orders. These include a phase with coexisting charge density wave order and superconductivity,
i.e., a supersolid. In spite of the nonperturbative nature of the problem, we identify an analytically tractable
limit associated with a “small” spatial extent of the Wannier functions and derive a low-energy effective
Hamiltonian that can well describe our numerical results. We also provide unambiguous evidence for the
violation of any putative lower bound on the zero-temperature superfluid stiffness in geometrically
nontrivial flat bands.
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Introduction.—Superconductivity in narrow-band sys-
tems has attracted enormous attention, triggered in part by
the discovery of two-dimensional moiré materials [1] and
the fundamental theoretical aspects that remain poorly
understood [2]. The limit of flat bands is particularly
interesting as a possible route to optimize the supercon-
ducting Tc (in the presence of an effective attraction),
because of the diverging density of states. In this situation,
it has been predicted that Tc is proportional to jUj, the
strength of the effective attractive interaction [3–5].
However, the lack of electronic dispersion also implies a
reduced superconducting phase stiffness, limiting Tc.
Moreover, a plethora of competing nonsuperconducting
phases may arise.
Topological flat bands, that do not admit an exponen-

tially localized basis in real space [6], have been pro-
posed to generate a nonzero phase stiffness within
Bardeen-Cooper-Schrieffer (BCS) mean-field theory [7].
Numerically exact determinant quantum Monte Carlo
(DQMC) [8] calculations have indeed provided an unam-
biguous and nonperturbative demonstration for Tc ∝ jUj
[9–12] for topological flat bands, where jUj denotes the
strength of an on-site attraction. Even for this simplified
problem, the normal state for temperature T > Tc exhibits
strong nearly degenerate density and pairing fluctuations
due to an emergent SU(2) symmetry [13], such that the
ground state is highly susceptible to competing orders.
Within BCS mean-field theory and for models satisfying
a set of restrictive conditions, lower bounds on the

zero-temperature phase stiffness have been proposed
[7,14–16], and shown to be governed by the integrated
Fubini-Study metric (up to an energy-scale set by the super-
conducting gap). Beyond mean-field theory, upper bounds
on the stiffness have also been proven [17–19].
This naturally leads to the following questions when

departing from the BCS paradigm: (i) What is the nature of
the competing phases and associated quantum phase
transitions that arise in flat bands as a function of various
microscopic tuning parameters? (ii) How does varying the
minimal spatial extent of the localized Wannier functions
tune the system between different orders? (iii) Is there a
theoretical limit in which this band competition can be
explored in a controlled fashion without resorting to
uncontrolled mean-field theory? (iv) Can infinitesimal
perturbations drive competing instabilities leading to sub-
stantial violations of proposed lower bounds on Tc?.
In this Letter, we study a concrete electronic Hamiltonian

for topologically trivial flat bands, where the minimal
spatial extent of the exponentially localizable Wannier
functions can be tuned continuously without affecting
the band dispersion. Using unbiased DQMC simulations,
we will demonstrate that such a model supports super-
conductivity with a wide fluctuation regime and obtain the
detailed dependence of Tc on the spatial extent of the
Wannier functions. Additionally, by varying the strength of
further-neighbor interactions, the electronic density, and the
spatial extent of the Wannier functions, we can drive
continuous phase transitions to charge density wave
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(CDW) and supersolid phases within the same flat-band
limit. Remarkably, we can use the spatial extent of the
Wannier functions as a “small” parameter to derive an
effective pseudospin Hamiltonian that helps explain the
intertwined superconductivity, CDW, and supersolid orders
in this flat-band model. Finally, the ability to tune con-
tinuously between various (non-) superconducting phases
allows us to violate any putative lower bound on Tc.
Model.—We define a two-orbital, spinful electronic

model with local interactions. The model, first introduced
in Ref. [20], is time-reversal symmetric, and resides on a
square two-dimensional lattice with two orbitals per site.
Wewill focus on densities in the vicinity of one electron per
unit cell, corresponding to quarter filling. The model
exhibits two pairs of perfectly flat bands at energies,
εk ¼ �t, where t sets the overall scale associated with
the microscopic hopping parameters. The energy gap
is Δgap ¼ 2t.
The noninteracting part of the Hamiltonian reads

H0 ¼ −t
X

k

ĉ†kðλx sin αk þ σzλy cos αk þ μλ0Þĉk;

αk ¼ ζðcos kxaþ cos kyaÞ: ð1Þ

Here, ĉ†k is a vector of operators ĉ†k;l;s which create
electrons with momentum k and spin s ¼ ↑;↓ in orbital
l ¼ 1, 2. The Pauli matrices σj¼0;x;y;z and λj¼0;x;y;z act on
the spin and orbital indices, respectively, and a ¼ jaxj is the
length of the primitive lattice vectors. Regardless of t, the
dimensionless parameter ζ controls the spatial extent of
the localized Wannier functions, ΦR0

ðrÞ∼ðiζÞjδxjþjδyjþ
Oðζjδxjþjδyjþ2Þ, where δ ¼ ðr −R0Þ=a; see Fig. 1(a). The
quantum geometric tensor, Gij, is simple—the imaginary
part (i.e., Berry curvature) vanishes everywhere in the BZ
while the real part (i.e., the Fubini-Study metric) is finite
and integrates to ζ2a2=2 [21]. Note that the metric depends
on how the orbitals are embedded in real space; here, both
orbitals are located at the center of the unit cell in the x-y
plane, respecting C4 rotation symmetry [22].
At a fractional filling of the lower band (εk ¼ −t), we

will study the effect of on-site attraction, U > 0, and
nearest-neighbor interaction, V,

Hint ¼ −
U
2

X

r;l

δn̂2r;l þ V
X

hr;r0i;l
δn̂r;l δn̂r0;l; ð2Þ

where δn̂r;l ¼
P

s ĉ
†
r;l;sĉr;l;s − 1 refers to the (shifted) den-

sity operator in orbital l at site r. The above model,
H ¼ H0 þHint, is free of the infamous sign problem as
long as U ≥ 4jVj. Before analyzing the model numerically,
we derive the effective Hamiltonian that illustrates the
competition between various ordering tendencies. This
analytical approach relies on a controlled expansion for

small ζ, but agrees qualitatively with the nonperturbative
results obtained using DQMC simulations.
Analytical results for small ζ.—We focus on the limit of

ζ ≪ 1 and T; V ≪ U ≪ Δgapð¼ 2tÞ, that allows us to pro-
ject the interaction to the lower “active” band. The localized
Wannier wave function of the lower band, centered aro-
und r ¼ R0, ΦR0;sðrÞ¼ð1= ffiffiffi

2
p

L2ÞPke
ikðR0−rÞeisλzαk=2×

ð1;−siÞ† [21], is depicted in Fig. 1(a). Upon introducing
new operators, ĉ†r;l;s ↦

P
r0 Φ�

r;sðr0; lÞd̂†r0;s, the projected
interaction Hamiltonian in the ζ ≪ 1 limit takes the form of
an effective XXZ model supplemented by other terms,

gHint ¼ −
Ueff

2

X

r

ð2η̂zrÞ2 þ
Uζ2

32

X

r

η̂zrð2B̂δ
r − B̂2δ

r Þ

−
X

hr;r0i
½J⊥ðη̂xr η̂xr0 þ η̂yr η̂

y
r0 Þ þ Jzη̂zrη̂

z
r0 �; ð3Þ

with pseudospin operators, η̂j¼0;x;y;z
r ≡ ðΨ†

rηjΨrÞ=2, where
Ψ†

r ¼ ðd̂†r;↑; d̂r;↓Þ and ηj are Pauli matrices. The parameters,

Ueff ¼ Uð2 − ζ2Þ=4, J⊥ ¼ ζ2U=4, and Jz ¼ ζ2U=4 − 2V.
For ζ ¼ 0, the sites decouple completely and

Φr;sðr0Þ ∝ δrr0 ; only the first term in Eq. (3) survives and
the ground state manifold is highly degenerate, consisting of
local Cooper pairswithout long-ranged phase coherence. The
projected Hamiltonian also contains interaction-mediated

(a) (b)

(c) (d)

FIG. 1. (a) The localized Wannier function, ΦR0
ðrÞ. The area

(color) of the disc is proportional to the amplitude (phase).
(b) The superconducting Tc increases with ζ2jUj (see also inset).
(c) The phase diagram for V ¼ 0.08. At n ¼ 1, the system is an
insulating CDW for T ≲ 0.075, and when doped, the excess
carriers lead to a supersolid. (d) The normalized superconducting
correlation length ξSC=L at T ¼ 0 across a CDW to super-
solid transition with increasing ζ, consistent with a (2þ 1)–
dimensional XY phase transition [ζc¼0.815, ζRG ¼ ðζ − ζcÞ=ζc]
for different system sizes, L.
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nearest-neighbor, B̂δ
r ¼

P
s;e1 ;e2
e1≠e2

d̂†rþe1;sd̂rþe2;s, and second

nearest-neighbor, B̂2δ
r ¼P

s;e1 ;e2
e1≠−e2

ðd̂†rþe1þe2;sd̂r;sþH:c:Þ, hop-
ping terms, with e1;2 ∈ f�ax;�ayg. In Fig. 1(a), we repres-
ent the pair hopping (J⊥) and nearest-neighbor density (Jz)
interactions by double-solid and wiggly lines, respectively.
The interaction-mediated hoppings B̂δ and B̂2δ are depicted
as solid and dashed lines, respectively. The interaction-
mediated hopping between nearest-neighbor sites at order
ζ vanishes due to chiral symmetry [21].
At finite ζ and V ¼ 0, gHint exhibits an emergent SU(2)

symmetry [13] and strong fluctuations in the degenerate
density and pairing response, without any long-range order
at finite temperature. This symmetry is broken by higher-
order terms in U=Δgap, leading to an anisotropy ΔJ ¼
J⊥ − Jz and a finite superconducting transition temperature
with Tc ∝ πJ⊥= logðπJ⊥=ΔJÞ, as shown in Fig. 1(b). The
anisotropy can also be tuned by turning on V; the ground
state is susceptible towards formation of an ordered CDW
at a commensurate filling when −jJ⊥j > Jz [Fig. 1(c)].
Doping away from the commensurate CDW at n ¼ 1
induces a density-mediated hopping and leads to a super-
solid phase with long-range superconducting phase coher-
ence [Fig. 1(c)]. Furthermore, at n ¼ 1, increasing ζ also
induces a continuous transition to a supersolid ground state,
consistent with the (2þ 1)-dimensional XY universality
class [Fig. 1(d), inset].
Numerical results.—We note that H0 contains hopping

matrix elements which decay in real space as tδ ∼ ζjδxjþjδyj.
We truncate the range of hopping in our implementation of
the DQMC computations using ALF [23,24], neglecting
terms with jδxj þ jδyj > 3, leading to nonzero bandwidth
W ∼Oðζ4Þ.
We first focus on the case of on-site interaction only

(V ¼ 0) at quarter filling (n ¼ 1). We are interested in two-
particle susceptibilities of local operators, Ô, i.e., χO ¼
L−2

R β
0 dτhÔðτÞÔðτ ¼ 0Þi with inverse temperature β ¼

ðkBTÞ−1 and imaginary time τ. For instance, for Ô≡ Sz, χSz
is the spin susceptibility. The results for χSz vs temperature
are shown in Fig. 2(a) for few different interaction strengths
and ζ ¼ 0.5 (dashed line) or ζ ¼ 0.75 (solid line). The data
obey nearly perfect scaling of the form χ ¼ fðT=UÞ=U. χSz
is peaked near T ∼ 0.2U and shows a dramatic suppression
for T ≲ 0.1U. The onset of such a “pseudogap” behavior
is already present in the ζ → 0 limit [purple curve in
Fig. 2(a)], where the gap ΔSz ¼ U=4.
In addition, we examine the pairing susceptibility, χΔ for

Ô≡ Δs ¼
P

r;lðcr;l;↑cr;l;↓ þ H:c:Þ, and the charge com-
pressibility, χN for Ô≡ N ¼ P

r;l;sðc†r;l;scr;l;s − nÞ. The
pairing and charge fluctuations are strongly enhanced with
decreasing temperature, signaling a near degeneracy
between the competing tendencies towards superconduc-
tivity and phase separation [13]; see Figs. 2(b) and 2(c).
However, upon approaching the superconducting Tc from

above, the pair susceptibility diverges (i.e., χ−1Δ → 0), while
the compressibility saturates to a finite value.
In two dimensions, the superconducting Tc can be

obtained using the criterion DsðT → T−
c Þ ¼ 2Tc=π [25],

where DsðTÞ ¼ −½Kx þ Λxxðq → 0Þ�=4 is the superfluid
stiffness; ΛxxðqÞ is the paramagnetic current-current cor-
relation function at zero Matsubara frequency, andKx is the
diamagnetic current correlator [26]. In Fig. 2(d), we show
the data for DsðTÞ for ðU; ζÞ ¼ ð1.0; 0.75Þ (solid line) and
ðU; ζÞ ¼ ð1.5; 0.5Þ (dashed line). To a reasonable approxi-
mation, Tc ∝ Uζ2, as shown in Fig. 1(b). This is expected
based on our discussion of the effective XXZ model in the
small ζ limit. A superconducting instability with Tc ∝ U
has been reported in earlier DQMC computations involving
topological flat bands [9,10], and more recently in topo-
logically trivial flat bands [12]. Our numerically exact
analysis of this nonperturbative regime and the comple-
mentary analytical results obtained using the XXZ pseu-
dospin Hamiltonian offer new insights into the role of a
tunable metric in flat-band superconductors.
We now include a repulsive nearest-neighbor density

interaction, V ¼ 0.08, and analyze the phase diagram for a
range of fillings near n ¼ 1 [Fig. 1(c)]. The main effect of
the repulsive interaction is to spontaneously break the
discrete translational symmetry and induce a CDWorder at
an ordering wave vector of ðπ; πÞ. We have extracted the
CDW correlation length [21,27], ξCDW, and the associated
transition temperature TCDW as a function of n for a range
of fillings near n ¼ 1 [Supplemental Material (SM), Sec. E
[21] ]; note that a fully insulating CDW is present only at
the commensurate filling n ¼ 1 [green vertical line in

(a) (b)

(c) (d)

FIG. 2. (a) Spin susceptibility, χSzðTÞ, for different U at fixed
ζ ¼ 0.75 (solid line) and ζ ¼ 0.5 (dashed line). The purple line,
ζ ¼ 0, represents the atomic limit with a spin gap of ΔSz ¼ U=4.
(b) Inverse pair susceptibility, χ−1Δ ðTÞ, and (c) compressibility,
χNðTÞ, as a function of temperature obtained for same values ofU
as in (a). (d) Exemplary data for superfluid stiffness, DsðTÞ, used
to extract the critical temperature, Tc. Results obtained for V ¼ 0.
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Fig. 1(c)]. Next, we address the fate of this insulating CDW
when doped with electrons or holes away from n ¼ 1.
Furthermore, we analyze Ds at low temperature,

T ¼ 0.008, as a function of particle density (SM, Sec. E
[21]). We identify Berezinskii-Kosterlitz-Thouless (BKT)
transitions towards superconducting order and find the
critical carrier densities nc ¼ 0.923� 0.006 and nc ¼
1.062� 0.008 for hole and electron doping, respectively.
Figure 1(c) summarizes nc for different temperatures. Tc
vanishes for n ¼ 1 and increases monotonically with
δn ¼ jn − 1j, suggesting that superconductivity arises
due to excess (“doped”) electrons or holes relative to the
ordered CDW insulator. Importantly, along with super-
conductivity, the CDW remains long-range ordered. Thus
the resulting phase is a supersolid, with a finite super-
conducting phase stiffness and a spontaneously broken
lattice translational symmetry. The lightly doped system
can effectively be described in terms of a dilute liquid of
interacting bosons with a superconducting Tc ∝ δn, up to
additional logarithmic corrections [28–30].
We also examine the single- and two-particle spectrum in

the different phases [21]. We compute Aðk;ωÞ ¼
−ImGðk;ωÞ=π from the imaginary time Green’s function,
Gðk; τÞ ¼ P

l;shck;l;sðτÞc†k;l;sð0Þi, and the pairing and den-
sity spectra via the maximum entropy method [31]. For
V ¼ 0, the resulting single- and two-particle spectra are
summarized in Figs. 3(a)–3(c). The single electron spec-
trum exhibits two nearly flat bands at ω ≈�0.25t, that are
well separated from a broader band at ω ≈ 2tð¼ ΔgapÞ. The
latter is clearly the higher energy flat band associated with
H0. The bands at ω ≈�0.25t originate from the low-
energy flat band of H0, that splits due to the Hubbard
interaction; specifically, the splitting energy is approxi-
mately ΔSz ¼ U=4, the gap associated with the ζ ¼ 0 limit.
The spectra of pairing and density excitations show linearly
dispersing, Goldstone-like modes near the Γ point. These

modes can be understood as arising from the approximate
SU(2) symmetry of the attractive Hubbard interaction
projected to the flat band [32].
For V ¼ 0.08, the single- and two-particle spectra are

summarized in Figs. 3(d)–3(f). The high-energy band at
ω ≈ 2tð¼ ΔgapÞ in Fig. 3(d) is nearly identical to the
previous case. However, the low-energy bands are signifi-
cantly more dispersive than in Fig. 3(a) due to the density-
assisted hopping terms (Fig. 1) of the projected
Hamiltonian. Note that adding a single electron to the
background of the CDW, on the one hand, costs an energyΔ
due to breaking a pair and creating a point defect in the
CDW; this accounts for the finite energy offset and, in the
small ζ limit, this energy is Δ̄ ¼ ðUeff=2Þ − 4Δ2

CDWJz [21].
On the other hand, the electron can delocalize and gain
kinetic energy due to the density-assisted hopping where the
effective width of the shifted band scales as Uζ2ΔCDW with
ΔCDW ≡ heirqCDW η̂zri and qCDW ¼ ðπ; πÞ. The dispersion
relation directly follows from the second term of Eq. (3)
and is depicted as dashed orange lines in Fig. 3(d).
The two-particle spectra show that the linearly dispersing

Goldstone mode near the Γ point is gapped for n ¼ 1 and
V ¼ 0.08, while the density spectrum [Fig. 3(f)] exhibits a
clear softening near the CDW ordering wave vector.
Increasing ζ while keeping all other parameters fixed,
we have extracted the single-particle and two-particle gaps,
Δp and Δpp, at T ¼ 0 near the Γ point [Figs. 3(g) and 3(h),
respectively]. For ζ < 0.7, Δp decreases with increasing ζ,
in agreement with the expectation Δp ¼ ðU=4Þ þ 2V −
ð7=8ÞUζ2 [21]. Δp assumes its minimal value at ζ ≈ 0.75.
Similarly, Δpp is largest for ζ ¼ 0 and decreases with
increasing ζ [Fig. 3(h)], vanishing for ζ > 0.815. It is
important to note that the onset of superconductivity at
ζc ¼ 0.815, as inferred from the behavior of ξSC=L
[Fig. 1(d)], is accompanied by a finite ΔCDW; the transition

(a) (b) (c) (g)

(d) (e) (f) (h)

FIG. 3. Excitation spectra in the superconducting phase (a)–(c), in the CDW phase (d)–(f) at T=t ¼ 0.02 [ζ ¼ 0.75], and excitation
energies relative to the ground state (g)–(h): (a) and (d) show electronic spectra featuring the flat and interaction-induced dispersive
bands (noninteracting bands in maroon). (b) and (e) show s-wave pair spectra. (c) and (f) show density spectra. (g) and (h) display the
single- and two-particle excitation energies, respectively, of the ground state at quarter filling with U ¼ 1 and V ¼ 0.08. The turquoise
fits depict the expectations from the density-assisted hopping (g) and 3D-XY universality (h).
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from CDW to supersolid order belongs in the (2þ 1)-
dimensional XY universality class. In the pseudospin
notation introduced in Eq. (3), the supersolid is represented
by a canted antiferromagnet, where the in-plane (XY) ferro-
magnetic components represent the SC while the out-of-
plane antiferromagnetic component represents the CDW.
Discussion.—Our work highlights phase competition in

flat bands with vanishing Berry curvature but nontrivial
Fubini-Study metric. By construction, these systems are
strongly correlated; in addition, due to the band geometry,
quantum fluctuations are important even in the perfectly
flat band limit. As a result, the phase diagram can be
difficult to predict a priori, without controlled calculations.
We have demonstrated this by a sign problem-free,

explicitly solvable model with a tunable quantum metric.
The model exhibits a cascade of quantum phases. The
interactions within the flat band lead to the formation of a
CDW phase, whose electronic excitations acquire a non-
trivial dispersion due to the band geometry. Increasing this
dispersion by tuning the quantum metric ultimately leads to
a further instability towards a supersolid phase.
We expect such cascades of different ordering tendencies

to arise also in realistic flat-band systems, such as those that
occur in two-dimensional van der Waals materials.
Additionally, there is a promising prospect to engineer
and directly simulate some elements of the models con-
sidered here in future cold-atoms based experiments.
Recent experiments using ultracold bosonic atoms have
identified supersolids in one [33–37] and two dimensions
[38,39]. Realizing supersolids in models of fermionic
ultracold atoms [40–42] remains an interesting open
challenge, but can potentially be realized using the setups
proposed here.
Furthermore, our work unambiguously demonstrates

that any proposed lower bound on the superfluid stiffness
in terms of single-particle properties of the flat band, such
as the quantum geometry, are strictly inapplicable beyond
BCS mean-field theory. In the presence of a large on-site
attraction and weak nearest-neighbor repulsion, where
application of the mean-field approximation will lead
one to conclude a superconducting ground state with a
nonzero superfluid stiffness, our exact computations show
that the stiffness can be made arbitrarily small and even
vanish, violating any putative bound.
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