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Usually, when coupling in a background gauge field, topological zero modes would yield an anomalous
current at the interface, culminating in the zero-mode anomaly inflow, which is ultimately conserved by
extra contributions from the topological bulk. However, the anomaly inflow mechanism for guiding
Floquet steady states is rarely explored in periodically driven systems. Here we synthesize a driven
topological-normal insulator heterostructure and propose a Floquet gauge anomaly inflow, associated with
the occurrence of arbitrary fractional charge. Through our photonic modeling, we experimentally observed
a Floquet gauge anomaly as the system was driven into anomalous topological phases. Prospectively, we
believe our findings could pave a novel avenue on exploring Floquet gauge anomalies in driven systems of
condensed matter, photonics, and ultracold atoms.
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Quantum anomaly is an anomalous current term that
arises when a classical symmetry is broken at a quantum-
mechanical level [1,2]. It provides a mechanism for sym-
metry breaking that differs from spontaneous and explicit
symmetry breaking [3]. Initially, this anomalous symmetry
breaking was discovered in the neutral pion decay process
by Alder [4] and Bell and Jackiw [5]. Later, a large number
of anomalies were revealed as pathological features of
quantum field theories (QFTs) [1]. As an example, when
chiral fermions interact with a background gauge field (e.g.,
electromagnetic field), they generate an anomalous current
that breaks the corresponding gauge symmetry, namely,
gauge anomalies. Since the mid 1980s, there exists a
comprehensive understanding of anomalies by means of
the Callan-Harvey mechanism [6–8], which demonstrates
that the cancellation of the zero-mode anomalies on defects
(e.g., domain walls, vortex) is achieved through an extra
current inflow from the bulk [see Fig. 1(a)]. Specifically, for
a quantum physical system in the low-energy limit, an
anomalymust bematched sincemassive degrees of freedom
at high energy scales are integrated out [9,10]. This anomaly
matching requirement can bring many nontrivial conse-
quences in seemingly different systems, such as zero modes
in topological insulators [11,12], massless excitations in
spin chains [13], and long-range entanglement in quantum
matter [14,15].
Nowadays, the occurrence of anomalies has been widely

verified in the development of condensed matter physics,
which contributed to the discovery of the quantum Hall

effect [16–18] and symmetry-protected topological phases
(SPT phases) [11,12]. For instance, SPT phases are a
material manifestation of the generalized ‘t Hooft anomaly
of global discrete symmetries [19], which differs from the
gauge anomaly of continuous symmetries. Recent advances
in understanding anomalies, including nontrivial edge
states on the boundaries of SPT phases [20] elucidate
the connection between anomalies and bulk-boundary
correspondence in topological materials. On the other

FIG. 1. Anomaly inflow on a domain wall in static and
periodically driven TI=NI heterostructures. (a) The domain wall
construction for zero-mode anomalies in the presence of a
background gauge field A. The topological excitation holds a ½
fractional charge. (b) The anomalous domain wall construction
for the π-mode anomaly. The anomalous topological excitation
holds a ½ fractional charge. (c) A generalized Floquet-gauge-
induced π-mode domain wall construction. The Floquet gauge
for the two sides is relatively shifted by T=f. The fractional
charge is Qπ ¼ 1=f.
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hand, SPT phases have been implemented in many peri-
odically driven systems [21,22], referred to as “anomalous
Floquet topological phases.” However, anomalies of
Floquet systems are rarely investigated, due to the ambi-
guity in defining the gauge fields for guiding Floquet
steady states [23,24]. In light of this, the present study seeks
to uncover a wide range of anomalies in driven systems that
can be applied to simulation platforms such as topological
photonics [25].
Recent implementation of artificial gauge fields in

photonic systems enables us to study the anomalous
behavior of Floquet topological modes [26]. For instance,
the artificial gauge field can be constructed by photonic
geometry or periodic modulation [24]. Inspired by the
realization of anomalous topological phases in periodically
modulated photonic lattices [27–29], we recently presented
a novel type of Floquet-engineered anomaly on a driven
domain wall, which we dubbed the “π-mode anomaly”
(with respect to the zero mode anomaly) [27,28].
In this Letter, we find that the π-mode anomaly arises

naturally when the Floquet gauge [30,31] is appropriately
tuned in our setting of driven topological-normal insulator
(TI=NI) heterostructures. The spatiotemporal configuration
of the Floquet gauge causes anomaly inflow and fractional
charges of arbitrary number. Our prediction and observa-
tion in photonic lattice unveil a new Callan-Harvey
mechanism in driven systems: the π-mode anomaly at
the driven interface can be matched by a newly reported
gauge anomaly inflow from the Floquet bulk, which offers
a new approach to drive gauge anomalies in the context of
Floquet engineering of photonic materials and condensed
matter.
Floquet TI=NI heterostructure.—To characterize the

emergence of a driven domain wall, we construct a
periodically driven TI=NI heterostructure. As shown in
Fig. 1(a), a static domain wall is formed when a topological
insulator interfaced with a normal insulator. The topologi-
cal excitations of this static heterostructure in the presence
of background gauge field (A) are well understood [7]. In
contrast, as shown in Fig. 1(b), a driven heterostructure
consists of two topologically distinct phases that periodi-
cally alternate. To specifically characterize the driven
TI=NI setup, we assume that the Hamiltonian relevant to
the left-hand side of the heterostructure is given by a
piecewise Floquet cycle,

HðLÞðtÞ ¼
(
HTI; t ∈ ð− T

4
; T
4
Þ;

HNI; t ∈ ðT
4
; 3T
4
Þ: ð1Þ

Likewise, the Hamiltonian of the right-hand side is
HðRÞðtÞ ¼ HðLÞðtþ T=2Þ, where the topological invariants
of the static SPT phase for the two instantaneous bulk
Hamiltonians HTI and HNI are topologically distinct,
νðHTIÞ ≠ νðHNIÞ. As the Atiyah-Singer index theory states
that the number of zero modes at the interface equals

the difference between the topological invariants [11,12],
for the static TI=NI setup we can predict that zero-mode
anomaly arises when coupling to a gauge field [Fig. 1(a)].
However, for the driven scenario, we have to extend the
definitions of topological invariants into periodically driven
systems [21].
Take the one-dimensional driven Su-Schrieffer-Heeger

(SSH) model as an example [32]. The bulk Hamiltonian
with the dimerized coupling profiles is given by HðL;RÞðtÞ¼P

N−1
i¼1 ½κ0þð−1Þiδκ1cosðωtþθðL;RÞÞ�c†i ciþ1þh:c:, where

c†i and ci are the creation and annihilation operators at
the site i, and N is the total number of lattice sites. The
second off-diagonal term represents the nearest-neighbor
hoppings, where κ0 is the constant coupling strength and
δκ1 is the periodically dimerized staggered coupling
strength, with ω ¼ 2π=T the driven frequency and θ the
initial phase. Notice that the sublattice symmetry of the SSH
model is still preserved. To explore the quasienergy gap
opening, the driven Hamiltonian is represented on a Floquet-
Bloch basis. Considering periodic boundary condition,
we transform the Hamiltonian HðL;RÞ into the momen-
tum space: HðL;RÞðk;tÞ¼fκ0−δκ1cosðωtþθðL;RÞÞþ½κ0þ
δκ1cosðωtþθðL;RÞÞ�cosðkÞgσ1þ½κ0þδκ1cosðωtþθðL;RÞÞ�×
sinðkÞσ2, where σ1, σ2, σ3 are Pauli matrices on the basis of
sublattices in a driven SSH model, and k is the momentum
index with the lattice constant a ¼ 1.
The arbitrary choice of the initial phase θ is associated

with the initial time t0, which is termed as Floquet gauge
[30,31,33]. To satisfy the driven condition in Eq. (1), we
pick the local gauge θðLÞ ¼ 0 for HðLÞ and θðRÞ ¼ π for
HðRÞ, respectively. Especially, the choice of Floquet gauge,
i.e., θ, or t0, determines the Floquet Hamiltonian [34,35],
given by,

HF½t0�≡ i
T
lnðT̂e−i

R
t0þT

t0
Hðt0Þdt0 Þ; ð2Þ

where HðtÞ ¼ Hðtþ TÞ. The Floquet gauge is periodic and
continuous in a Floquet cycle. Thus, the FloquetHamiltonians

of the two sides are related by, HðLÞ
F ½t0� ¼ HðRÞ

F ½t0 þ T=2�.
Adiabatic and high-frequency limits.—Before resolving

the quasienergy spectrum, we examine two limits. First, in
the adiabatic limit, we have the eigenvalue spectrum of the
instantaneous Hamiltonian HðtÞ ¼ HðLÞðtÞ þHðRÞðtÞ. In a
cycle of T, we see an instantaneous zero-energy band.
However, the zero-energy gap closes at two critical points
t ¼ T=4 and 3T=4, leading to a phase transition since the
staggered coupling instantly disappears. Consequently, the
instantaneous Hamiltonian is forced to be metallic, and
the zero-gap invariant is ill defined.
Second, in the high-frequency limit, an effective high-

frequency-approximated Hamiltonian [31], HðLÞ
eff ¼ HðRÞ

eff ,
can be obtained. Thus, the driven TI=NI interface vanishes
and there is no domain wall. We apply the Magnus
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expansion provided byHðL;RÞ
eff ¼ H0 þOð1=ωnÞ, where the

zero-order term H0 is identical to the trivial Hamiltonian
without dimerization. As a result, the high-frequency
approximation gives no topological protection.
Since the adiabatic and high-frequency limits are both

trivial, we investigate the intermediate resonant regime.
Figure 2(a) depicts the quasienergy spectrum obtained by
directly solving the Floquet HamiltonianHF½t0� (2) (see the
Supplemental Material [36], Sec. VII). From the quasie-
nergy spectrum, we find that a π-mode eigenstate survives
at a certain frequency range ðΔ=3Þ < ω < Δ. It indicates
that instead of opening a zero gap, a π gap is opened,
allowing nontrivial π-mode excitations to occur in our
driven scenario.
Three spectral characteristics are worth mentioning here.

(i) Using the quasienergy spectrum, we confirm that the
adiabatic and high-frequency regions are topologically
trivial, which is in accordancewith our approximate analysis
of two limits. (ii) The critical frequenciesΔ=3 andΔ can be
explained by a level crossing between quasienergy bands.
As shown in Fig. 2(b), the π gap is closed at ω ¼ ðΔ=3Þ
owing to the touching between the bands nþ 1 and n − 2,
and at ω ¼ Δ due to the touching between neighboring
bands n and nþ 1. (iii) The π-gap invariant νπ is given in
[37]. The gap invariants for the left- and right-handed
sides are equal, νπðHðLÞÞ ¼ νπðHðRÞÞ ¼ 1. Because of
jνπðHðLÞÞ − νπðHðRÞÞj ¼ 0, the naïve implementation of
the Atiyah-Singer theorem implies no domain walls.
Surprisingly, we obtain the Floquet π-mode domain wall
[Fig. 2(c)]. The Floquet domain walls in the adiabatic,
intermediate, and high-frequency regimes are presented in

Fig. S8 of the Supplemental Material [36]. Also, we notice
that the dynamics of the π-mode domain wall resemble the
zero-mode anomaly in a quantum Hall heterostructure, see
Fig. S10 [36].
Floquet gauge configuration.—To resolve the apparent

contradiction, we examine the Floquet gauge in detail.
Although the gap invariants of both sides are identical, the
π gaps are inextricably linked to the Floquet gauge choice.

The π gap can be denoted as the mass term mðRÞ
π ðt0Þ ¼

mðLÞ
π ðt0 þ T=2Þ in the continuous limit of the driven TI=NI

model, and we can find mðLÞ
π ðt0 þ T=2Þ ¼ −mðLÞ

π ðt0Þ at
θ ¼ π. Thus, the two bulk Hamiltonians of both sides
inherit the π-gap mass terms with opposite signs. As a
result, the π-mode domain wall must appear due to the
nonzero index jνπðHðLÞÞ − ½−νπðHðRÞÞ�j ¼ 2 [38].
To analyze this π-mode anomaly, we decompose

the evolution of the driven system into two processes
[35]: the stroboscopic evolution and the micromotion. The
evolution operator is thus decomposed as Uðt; t0Þ ¼
Vðt; t0Þe−iHF½t0�ðt−t0Þ, where the periodized evolution oper-
ator Vðt; t0Þ≡Uðt; t0ÞeiHF½t0�ðt−t0Þ contains the short time-
scale information in a cycle related to the Floquet
gauge. Now we define a gauge-independent Floquet
Hamiltonian,

HF½t0� ¼ V−1ðt; t0ÞHFVðt; t0Þ; ð3Þ

where the Hamiltonian HF ¼ HðtÞ − i∂t is gauge-free.
The periodized evolution operator specifies an initial value
of t0 that connects to the micromotion, acting as a gauge
field attached to the stroboscopic steady-state dynamics. To
be specific, we propose a local spatiotemporal configura-
tion on the choice of initial time: t0 ¼ t0ðx; tÞ. Here,
t0ðx; tÞ is the Floquet gauge field that can guide steady
states in a slowly varying way compared to the drive.
Floquet-gauge-induced current.—To evaluate the appe-

arance of the Floquet gauge anomaly, we use the kp
approximation to calculate the Floquet Hamiltonian by
truncating the Floquet state-space into two Floquet bands, n
and nþ 1 [see the middle subfigure in Fig. 2(b)],

HðπÞ
FD½t0� ¼

ω

2
I2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

�
ω

Δ

�
2

s �
κ0p −ieiωt0δκ1

ie−iωt0δκ1 −κ0p
�
;

ð4Þ

where p ¼ k� cos−1ðω=ΔÞ and Δ ¼ 4κ0. The local
Floquet gauges for both sides can be rephrased as θðLÞ ¼
ωt0 ðx < 0Þ, θðRÞ ¼ ωðt0 þ T=2Þðx > 0Þ. The corres-

ponding Floquet-Dirac Hamiltonian is given by HðπÞ
FD ¼

Vðt0ÞHðπÞ
FD½t0�V−1ðt0Þ ¼ ðω=2ÞI2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ðω=ΔÞ2

p
ðκ0pσ3þ

δκ1σ2Þ, with Vðt0Þ ¼ e−iωt0σ3=2. The π-gap mass term
mπ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðω=ΔÞ2

p
δκ1σ2 is then gauge independent.

FIG. 2. The quasienergy spectrum and the π-mode eigenstate
evolution from Floquet-Bloch theorem. (a) The emergence
of the π-mode domain wall in the quasienergy spectrum.
(b) The “open-close-open” mechanism of the topological π
gap in quasi-energy-momentum space. At the driven frequencies
ω=Δ ¼ 1=3,1, the π gap is closed nontrivially, with Δ being the
bandwidth. (c) The quasienergy evolution of the π-mode eigen-
state at the interface.
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By applying (3) to the mass terms of both sides, we can
obtain

mðLÞ
π ¼ V−1ðt0ÞmπVðt0Þ ¼ −mðRÞ

π ; ð5Þ

with mðL;RÞ
π ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðω=ΔÞ2

p
δκ1σ2. Consequently, it

reveals that the left-handed and the right-handed mass terms
have opposite signs, suggesting the appearance of a gauge
anomaly on the driven interface [7,38]. Alternatively, to
demonstrate the anomaly associated with the local Floquet
gauge t0ðx; tÞ [Fig. 2(c)], we apply the Goldstone-Wilczek
approach [8] to determine the current of Floquet-Dirac
Hamiltonian [Eq. (4)]

hjμi ¼ 1

2π
ϵμν∂ν½ωt0ðx; tÞ�; ð6Þ

with the notations μ; ν ¼ 0, 1, ϵμν is an antisymmetry tensor,
where ϵ01 ¼ 1 in 1þ 1 spacetime.
Fractional charge.—For our setup in Fig. 1(b), the total

quantum number is

Qπ ¼
ω

2π

Z
∂xt0ðxÞdx¼

ω

2π
½t0ðþ∞Þ− t0ð−∞Þ� ¼ 1

2
: ð7Þ

The resulting fractional quantum number Qπ ¼ 1=2 is
similar to the fractional charge proposed by Jackiw and
Rebbi [8,16,32,39]. Moreover, the driven fractional charge
can be arbitrary, Qπ ¼ 1=f, as the Floquet gauge of both
sides can be relatively twisted by t0 → t0 þ ðT=fÞ, as
shown in Fig. 1(c). We note that the formation of arbitrary
fractional charges can be demonstrated by driving a local
domain wall with a configuration of Floquet gauge field.
However, the physics of fractional charge is elusive because
one cannot directly detect the fractional charge by local
excitation due to its global topological nature.
Figure 3 depicts the confinement of driven domain walls

with respect to different fractional charges. When the
fractional charge (1=f) decreases, the confinement weak-
ens, indicating that the topological protection becomes
more fragile. Thus, a smaller fractional charge is more
difficult to excite. The driven TI=NI setup demonstrates
that the period drive may readily create arbitrary fractional
charges, which may be interesting for exploration in
simulation platforms such as cold atoms.
Floquet gauge anomaly inflow.—Assuming that the

Floquet gauge varies both spatially and temporally, the
Goldstone-Wilczek charge and current densities are
[Eq. (6)],

ρπ ¼
1

2π
∂x½ωt0ðx; tÞ�; j⃗π ¼ − 1

2π
∂t½ωt0ðx; tÞ�: ð8Þ

The fractional charge density (ρπ) is mainly pinned on the
interface due to the spatial kink configuration, while the

nonzero current (j⃗π) is distributed in the topological bulk
that corresponds to a topological pumping effect [40,41].
As a result, the anomalous current is conserved,

∂μhjμi ¼
∂ρπ
∂t

þ∇ · j⃗π ¼ 0: ð9Þ

We observe that the domain-wall dynamics with frac-
tional charge match an anomalous current flow towards the
interface. This is the predicted Floquet gauge anomaly in a
periodically driven system, inspired by the Callan-Harvey
mechanism from quantum fields [7].
Experimental verification.—To experimentally observe

the π-mode anomaly, we construct an optical analog of a
driven TI=NI heterostructure using femtosecond laser
direct waveguide writing [42]. Via the quantum-optical
analogy [25], the electron wave function in time (t) is
mimicked by light propagation along the direction (z). The
fabrication and setup are given in the Supplemental
Material [36] (Sec. I and Figs. S1, S2, and S3).
Figure 4 demonstrates our prediction and measurement

results for the adiabatic, intermediate, and high-frequency
regimes. For each regime, we measure the light intensity
distribution at the output of the corresponding waveguide
structure. As seen in Figs. 4(c), 4(f), and 4(i), only the
structure corresponding to the intermediate drive regime
(curving period T ¼ 8.3 mm) displays an output intensity
distribution confined to the central waveguide of the array.
The output intensity distributions of the other structures
exhibit diffusive behavior, both in the adiabatic regime
[T ¼ 50 mm, see Figs. 4(b), 4(e), and 4(h)] and in the high-
frequency regime (T ¼ 2.5 mm, see Figs. 4(d), 4(g),

FIG. 3. The confinement signature of Floquet gauge anomaly
with arbitrary fractional charges in driven systems. (a)–(e) Time
evolutions with fractional charge of Qπ ¼ 1=2, 1=3, 1=5, 1=7,
and 1=17, respectively, are presented, respectively, from left to
right. The fractional charge is topologically induced by the spatial
change of the Floquet gauge. Topological excitations with smaller
charges are more weakly confined.

PHYSICAL REVIEW LETTERS 130, 223403 (2023)

223403-4



and 4(j)]. This observed behavior agrees well with the
calculated quasienergy spectrum [Fig. 2(a)]. As a calibra-
tion, we also fabricated a straight waveguide array and
observed the zero-mode domain walls, see the
Supplemental Material [36], Secs. 3 and 4, Figs. S4–S7.
We would like to note to important points regarding the

characteristics of our setup. First, our experiment is based
on photonic modeling by translating the time into the
propagation direction. Keeping this in mind, our measure-
ment is an analog of the anomaly dynamics of the π-mode
domain walls, allowing us to measure the evolution.
However, to further detect the micromotion with an
arbitrary Floquet gauge, an optical near-field measurement
[27] is required to record the field distribution, which is
beyond the current capabilities of our optical system.
Second, fractional charges cannot be directly seen in the

waveguide array platform at hand. One reason for that is
that fractional charge is a nonlocal excitation induced by a
global topological structure [43]. A second reason is that
our photonic platform is a classical system, and all bosonic
particles might occupy the same state, preventing the
detection of fractional excitation at a quantum level. In
light of the global phase structure of fractional excitations
[Eq. (7)], we would suggest identifying the optical spectral
feature of fractional charges by using optical spectroscopy
and interferometry. A recent work observed a signature of
fractional charges in photonic crystals by detecting an
abrupt change in the local optical density of states [44].
Nevertheless, direct detection and manipulation of

fractional charges in optical and photonic systems, or even
in condensed matter experiments [45–47], remains a long-
standing open issue.
Conclusion.—We showed that a driven topological-

normal insulator heterostructure can create Floquet gauge
anomaly inflow and excitations with an arbitrary fractional
charge. For that purpose, we proposed a Floquet-engi-
neered Callan-Harvey mechanism. Using femtosecond
laser direct writing, we further experimentally observed
the confinement of a π-mode anomaly in periodically
modulated photonic lattices. Still, many issues pertinent
to Floquet gauge anomalies, including the coexistence of
zero and π-mode anomalies, and direct detection of frac-
tional charges, remain unexplored. We anticipate our work
will stir the curiosity of researchers from several fields,
such as condensed matter, cold atoms, and even quantum
fields, and prompt them to study periodically driven
systems.
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Appendix: Floquet gauge anomaly inflow from the kp
approximation quasienergy spectrum.—To assess the
Floquet gauge anomaly in our setup, we build an effective
Dirac-type Hamiltonian and then use the Goldstone-
Wilczek formula to account for the Floquet quasienergy
states. The Floquet-Dirac Hamiltonian can be derived from
the Hamiltonian we constructed in a Floquet TI=NI
heterostructure, which is given by

Hðk; tÞ ¼ fκ0 − δκ1 cosðωtþ θÞ
þ ½κ0 þ δκ1 cosðωtþ θÞ� cosðkÞgσ1
þ ½κ0 þ δκ1 cosðωtþ θÞ� sinðkÞσ2; ðA1Þ

where σ1, σ2 are Pauli matrices on the basis of sublattices,
and k is the momentum index. For a general spatiotemporal
varying Floquet gauge t0ðx; tÞ, the phase is given by
θ ¼ ωt0ðx; tÞ. For our concern, the gauge is only spatially
dependent, i.e., θðLÞ ¼ ωt0ðx < 0Þ, θðRÞ ¼ ωðt0 þ T=2Þ×
ðx > 0Þ. The spatial dependency of the Floquet gauge
t0ðx; tÞ results in a fractional charge, and its temporal
dependence results in an anomalous current (i.e., Floquet
topological pumping) as shown in the following derivation.
The spatiotemporal variation of t0ðx; tÞ would then activate

FIG. 4. Experimental observation of the Floquet π-mode
anomaly ranging from the adiabatic limit to the high-frequency
limit. (a) The reading system for detecting the output intensity
distribution of the photonic modeling of driven TI=NI hetero-
structures. The designed structures (b)–(d), simulated propagation
dynamics (e)–(g), and experimental measurements of the output
intensity distributions (h)–(j) are shown. The π-mode anomaly
appears only at the intermediate frequency range (c),(f),(i).
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the Floquet anomaly inflow mechanism, allowing the
conversation between the transferred fractional charge
and the accumulated anomalous current.
Considering the time periodicity in Hðk; tÞ, we can

define the Floquet Hamiltonian HF in terms of the photon
band replica

ðA2Þ

where the matrix block HðnÞ represents the nth order
Fourier component of Hðk; tÞ. The leading three terms
are given by

Hð0Þ ¼ ½ðκ0−δκ0Þþðκ0þδκ0ÞcosðkÞ�σx
þ½ðκ0þδκ0ÞsinðkÞ�σy;

Hð1Þ ¼
�
−δκ1eiθ

2
þδκ1eiθ

2
cosðkÞ

�
σxþ

δκ1eiθ

2
sinðkÞσy;

Hð−1Þ ¼
�
−δκ1e−iθ

2
þδκ1e−iθ

2
cosðkÞ

�
σxþ

δκ1e−iθ
2

sinðkÞσy;

ðA3Þ

with Hð�nÞðkÞ ¼ 0 for n ≥ 2. In this case, the diagonal
terms, n ¼ 0;�1;… are the artificial photon replica with
discrete energy nω and the decoupled local electron energy
Hð0Þ. The secondary-diagonal terms Hð�1Þ represent the
artificial photon scattering between two neighbor photon

bands n and nþ 1, where the sign “−” denotes the
emission process and the sign “þ” denotes the absorption
process. Figure 2(b) depicts the quasienergy spectrum HF.
At the condition 1 < ω=Δ < 1=3, two neighboring bands
cross and open a π gap, forming a local Dirac Hamiltonian
of Floquet quasienergy bands. We further apply the kp
approximation at the crossing points with the momentum
k� ¼ �cos−1ðω=ΔÞ to eliminate the other irrelevant bands,
reducing the full Hamiltonian HF into an effective
Hamiltonian with a 2 × 2 matrix form:

HðπÞ
FD ¼ ω

2
I2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
ω

Δ

�
2

s
ðκ0pσ3 þ δκ1e−iθσ3σ2Þ; ðA4Þ

where p ¼ k� cos−1ðω=ΔÞ and Δ ¼ 4κ0. To apply the
Goldstone-Wilczek formula, we rewrite the effective Dirac

Hamiltonian HðπÞ
FD in the field-quantization formulation,

HðπÞ
FD ¼

Z
dxψ†ðxÞ

�
ω

2
I2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
ω

Δ

�
2

s

× ðκ0pσ3 þ δκ1e−iθðx;tÞσ3σ2Þ
�
ψðxÞ: ðA5Þ

Here, the field ψðxÞ represents the quantized steady state on
the Floquet band. It should be mentioned that the field ψðxÞ
is actually bosonic in our photonic setup. Since the anti-
commutation relation obeys fHðk; tÞ; σ3g ¼ 0, our
Floquet TI=NI heterostructure should have a chiral (sub-
lattice) symmetry specified by the Pauli operator σ3.
However, when we perform a chiral gauge transfor-
mation ψðxÞ → eiθðx;tÞσ3=2ψðxÞ, we obtain the following
Hamiltonian with an additional potential term:

eiθðx;tÞσ3=2
�
ω

2
I2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
ω

Δ

�
2

s
ðκ0pσ3 þ δκ1e−iθðx;tÞσ3σ2Þ

�
e−iθðx;tÞσ3=2

→
ω

2
I2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
ω

Δ

�
2

s
fκ0pσ3 þ δκ1e−iθðx;tÞσ3σ2 − κ0∂x½θðx; tÞ�g;

where we use the momentum operator p → −i∂x in real
space. The last term suggests that a spatially varying
Floquet gauge would add a potential corresponding to
the rate of spatial variation in θðx; tÞ. Since we obtained the
prototypical Jackiw-Rebbi model with the Dirac-type
Hamiltonian HðπÞ

FD [Eq. (A5)], there are several approaches
to obtaining the Floquet gauge anomaly and Jackiw-Rebbi
domain wall solutions [41], similar to the treatment of zero-
mode domain wall and zero-mode anomaly (see the
Supplemental Material [36]). Without losing the generality,
we can directly apply the Goldstone-Wilczek formula [8]

for the positive branch at kþ, to obtain the anomalous 2-
form current term [see Eq. (6) in the main text], given by

hjμi ¼ 1

2π
ϵμν∂ν½ωt0ðx; tÞ�; ðA6Þ

As a result, the fractional charge density and anomalous
current density are obtained as

ρπðx; tÞ ¼
ω

2π
∂xt0ðx; tÞ; j⃗πðx; tÞ ¼ − ω

2π
∂tt0ðx; tÞ: ðA7Þ
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It implies that the fractional charge originates from the
spatial variation of the Floquet gauge t0ðx; tÞ while the
anomalous current originates from the temporal variation.
Finally, when the gauge field t0ðx; tÞ is spatiotemporally
variable [see Eq. (9) in the main text], there is a nontrivial
conservation between fractional charge and anomalous
current, satisfying equation (9).
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