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We present a new avenue to black hole evaporation using a heat-kernel approach analogous as for the
Schwinger effect. Applying this method to an uncharged massless scalar field in a Schwarzschild
spacetime, we show that spacetime curvature takes a similar role as the electric field strength in the
Schwinger effect. We interpret our results as local pair production in a gravitational field and derive a radial
production profile. The resulting emission peaks near the unstable photon orbit. Comparing the particle
number and energy flux to the Hawking case, we find both effects to be of similar order. However, our pair
production mechanism itself does not explicitly make use of the presence of a black hole event horizon.
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Introduction.—According to quantum mechanics, a vac-
uum state is populated by virtual particle pairs undergoing
spontaneous creation and annihilation processes. These
quantum fluctuations can turn into real particle pairs in the
presence of a background field. The most prominent
example of such a process is the Schwinger effect predict-
ing the creation of charged particle pairs in the presence of
an electric field [1,2], see Refs. [3,4] for a review.
According to the standard interpretation, the particles of
a spontaneously created virtual pair are accelerated in
opposite directions by the external field. If the particles
separate far enough within the time granted to them by the
Heisenberg uncertainty principle, i.e., if the virtual particles
gain enough energy over the distance of a Compton
wavelength to obey the relativistic energy-momentum
relation E2 ¼ m2 þ p⃗2, they become real. The threshold
for the electric field strength to considerably create elec-
tron-positron pairs via the Schwinger effect, ∼1018 V=m,
currently lies out of experimental reach for static configu-
rations. However, pair production by strong electric fields
may become accessible for instance in high-intensity laser
beams [5,6], in the boosted electromagnetic field in ultra-
peripheral heavy-ion collisions, or in exotic atoms where an
atomic electron shell is occupied by a more massive
particle, e.g., a muon [7]. In condensed matter physics, a
Schwinger-analog effect has been discovered in graphene
recently [8], see also [9,10].
Particle production also occurs in black hole spacetimes

as predicted by Hawking [11,12]. In a heuristic explanation,

it originates from virtual particle–anti-particle pairs
turning real: Close to the event horizon, one particle might
fall into the black hole preventing a reannihilation. The
outside particle contributes to Hawking radiation [12]. A
mathematical treatment of the Hawking effect referring to
quantum fluctuations is based on the tunneling probability
of positive-energy modes outwards or negative-energy
modes inwards through the event horizon [13].
In general, derivations of the Hawking effect require the

existence of a future event horizon which is a global
concept requiring knowledge over the whole spacetime also
at late times. Furthermore they rely on time dependence
such as induced by matter infall forming an event horizon
or a coupling to an external thermal heat reservoir.
According to Ref. [14], the global concept may be relaxed
to a local, observer-dependent requirement for an apparent
horizon. Other processes of particle production in curved
spacetimes have been discussed within cosmology (see,
e.g., [15,16] and [17] for a review), small time-dependent
anisotropies [18–20], or arise from self-interaction of the
quantum field [21,22]. In some of these situations, no
horizon is present.
Sometimes a heuristic connection between the Schwinger

and Hawking effect is drawn for illustrative purposes,
e.g., [ [23] Sec. 12.8] and [ [24] Sec. I.7]. Previous studies
aiming to show such a connection in specific cases followed
the Hawking description in that they used so-called
Bogoliubov coefficients to construct effective actions con-
fined to the horizon of black holes [25–28] or focused on
tunneling through horizons [13,29].
In this Letter, we show the existence of a local gravi-

tational particle production mechanism in curved space-
times similar to the Schwinger effect for electric fields.
Virtual pairs are separated by local tidal forces and become
real. For black holes, some fraction of them will escape to
infinity while others will be recaptured, according to the
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standard escape fraction for massless particles created near
a black hole (see Fig. 1). Both the Schwinger and our
particle production effect arise as two facets from the same
mathematical object: the one-loop effective actionW in the
heat-kernel representation [30]. Applied to a massless
complex scalar in a homogeneous electric background
field, we reobtain the Schwinger effect, i.e., we demon-
strate that our formalism based on the weak-field form of
the heat kernel agrees with the closed-form expression.
Applied to a massless real scalar in the Schwarzschild
background gravitational field, the predicted amount of
particle production is comparable to the a priori indepen-
dent Hawking effect. Our approach applies to general mass
configurations and does not explicitly invoke the presence
of an event horizon other than for calculating an escape
fraction.
Particle production.—In the following, we investigate

the stationary production of real massless scalar particles
by weak electric and gravitational background fields.
Going back to Schwinger [2], the associated vacuum
nonpersistence rate is encoded in the imaginary part of
the one-loop effective action, which is defined as

WE ¼ ℏ
2
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in the Euclidean case with metric gE μν and can be Wick
rotated to Lorentzian signature in the case of a stationary
spacetime. In the first line, the effective action is expressed
in terms of the second-order elliptic differential operator for

the scalar field, H. We apply a zeta-function regularization
including a mass scale μ̃ and a parameter z ∈ C. The second
line makes the interpretation in terms of field excitations
localized at xðτÞ evident, which classically would evolve
according to H as the Hamilton operator for a duration of
the so-called proper time s. In terms of the path integral, all
excitation trajectories are considered which start and end in
the same point, and are weighted according to the classical
action [31],

Se½xðτÞ� ¼
Z

τ

0

dτ0 ½pμ _xμ −H=ℏ�: ð3Þ

In the Lorentzian counterpart, a closed trajectory requires
the field excitation to move forward and backward in the
exterior time. It can be interpreted as the virtual creation and
annihilation of a particle–anti-particle pair [3] (represented
by light gray trajectories in Fig. 1).
The sum of all particle–anti-particle paths, i.e., the path

integral in Eq. (2), is also referred to as the coincidence
limit of the heat kernel. It can be factorized in a purely
classical contribution, expð−m2sÞ, and a contribution from
fluctuations for which we utilize the Barvinsky-Vilkovisky
expansion [32]. This enables us to derive the imaginary part
of the Lorentzian effective action for a massless scalar in
the weak-field limit, which is described in detail in the
Supplemental Material [33], Appendix S.1:
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Here, N is the number of degrees of freedom, i.e., 1 for a
real and 2 for a complex scalar field, and ξ the gravitational
coupling parameter. The Ricci scalar and tensor are denoted
by R and Rμν, and the Riemann tensor by Rμ

νρσ. The gauge-
field curvature in electrodynamics reads Ωμν ¼ iqFμν=ℏ,
which contributes only for a charged, i.e., complex, scalar.
As we show below, this effective action allows a unified
description of the Schwinger effect and our gravitational
particle production mechanism.
Equation (4) allows us to directly calculate the

Schwinger effect, i.e., the vacuum instability rate density
with regard to the spontaneous creation of massless
particles in a homogeneous electric background field E⃗.
In Appendix S.2 [33], we obtain 2ImðLeffÞ ¼ ðqE⃗Þ2=96πℏ,
where Leff is the effective Lagrange density belonging to
the effective action W. This result agrees with the work by
Euler and Heisenberg [1] and Schwinger [2] on electron-
positron pairs when generalized to a massless complex
scalar field (see also Ref. [45] for a generalization to
massless vector bosons in non-Abelian Yang-Mills theory,
in particular QCD).

FIG. 1. Schematic of the presented gravitational particle pro-
duction mechanism in a Schwarzschild spacetime. The particle
production event rate is highest at small distances, whereas the
escape probability [represented by the increasing escape cone
(white)] is highest at large distances.
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Application to the Schwarzschild spacetime.—We can
now apply the same method to a quantum field in a curved
black hole spacetime. We consider the asymptotically flat,
spherically symmetric, and static Schwarzschild spacetime
in (3þ 1) dimensions,

ds2 ¼ −
�
1 −

2GM
r

�
dt2 þ

�
1 −

2GM
r

�
−1
dr2

þ r2ðdθ2 þ sin2θdφ2Þ; ð5Þ
where G is the gravitational constant and M is the mass of
the black hole. Because of Ricci flatness, Rμν ¼ 0, the only
nonvanishing contribution to the imaginary part of the
integrand of the effective action (4) stems from the
Kretschmann scalar RμνρσRμνρσ ¼ 48ðGMÞ2=r6. Upon spa-
tial integration over the black hole exterior, which is the
spacetime region causally connected to outside observers
(see the escape probability factor below), one obtains for
the effective Lagrange function ImðLeffÞ ¼ ℏ=1440GM.
This predicts a rate density of particle production events of

dNe

dt
¼ 1

720GM
≈ 1.39 × 10−3 ðGMÞ−1; ð6Þ

where the rate refers to subsequent slices of constant
Schwarzschild time t, the proper time for a static observer
at infinity.
Per event, an arbitrary number of particle pairs can be

produced, although in the majority of events only one
particle pair is created. As has been shown for the
Schwinger effect, the mean number of pairs can be
extracted from the closed-form expression of the heat
kernel and is encoded by the first pole [46,47]. Thus we
can define a pair-per-event correction factor

fPPE ¼ ðrate density of particle pairsÞ
ðrate density of eventsÞ ¼ 12

π2
ð7Þ

in the bosonic Schwinger case. Because of the use of a
weak-field expansion for the heat kernel, we cannot
distinguish individual pole contributions, but instead adopt
the factor fPPE for the gravitational particle production
mechanism. Then we find ∼3.38 × 10−3 ðGMÞ−1 for the
total number rate of particles produced.
If produced at a larger distance, particles are less likely to

be captured by the black hole (blue trajectories in Fig. 1)
than to escape to infinity (black). The capture cone opening
angle αcapt for lightlike geodesics as measured by a local
static Schwarzschild observer is given by [48]

sin2 αcapt ¼
27ðGMÞ2ð1 − 2GM=rÞ

r2
ð8Þ

and sketched in blue in the lower panel of Fig. 1. Under the
assumption of isotropic emission for such an observer, we
define the escape probability fesc ¼ ð1þ cos αcaptÞ=2.

Taking these factors into account, Fig. 2 displays the radial
distribution of the origin of particles which reach infinity per
unit step in Schwarzschild time t. The distribution is nonzero
throughout the black hole exterior featuring a steep drop
towards the Schwarzschild radius and a power-law decrease
at large distances. The highest production rate density for
escaping particles occurs around 2.32GM while the highest
number of particles per spherical shell is produced at
approximately 2.47GM, which is roughly half way between
the event horizon and the circular photon orbit at 3GM. The
total particle rate observed at infinity is given by

dNobs

dt
¼ 2059

170100π2GM
≈12.3×10−4 ðGMÞ−1: ð9Þ

In order to estimate the energy flux of the created
particles at infinity, we infer the energy of a gravitationally
produced particle from comparison with the Schwinger
effect in two steps. First, we deduce the characteristic
amount of energy which a virtual particle gains during the
Schwinger production process. It depends on the electric
field strength and amounts to ESchwinger ¼ ðℏ2q2E⃗2Þ1=4 ¼
ℏðΩμνΩμν=2Þ1=4 as obtained from the exponential term
present in the closed-form expression of ImðLeffÞ, see
Eq. (S.28) in Appendix S.2 [33]. Second, we derive a
correspondence between electric and gravitational field
strengths based on requiring the same rate of particle
production events. According to Eq. (4), the gauge-field
expression ΩμνΩμν=12 leads to the same imaginary part
of the effective action as the gravitational expression
RμνρσRμνρσ=180 as it reads for Ricci-flat spacetimes.
Thereby we obtain the formal replacement rule
ΩμνΩμν → 2=30 × RμνρσRμνρσ, uch that the characteristic
energy scale for the gravitational particle production reads

Ecurv ¼ ℏðRμνρσRμνρσ=30Þ1=4: ð10Þ

In general, one can expect the characteristic energy scale to
carry most weight in the spectrum because lower-energy

FIG. 2. Radial profile of the production of particles escaping to
infinity per unit Schwarzschild time t.
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particles have wavelengths too large to resolve the space-
time curvature, and higher-energy particles perceive the
spacetime as flat because of the equivalence principle.
Taking into account the gravitational redshift, we obtain for
the energy flux

dE
dt

≈ 12.8 × 10−5 ℏðGMÞ−2: ð11Þ

The characteristic energy scale can be represented in a
more intuitive way by associating it with an effective
temperature scale which we would obtain if the spectrum
was thermal. By matching to Ecurv the average energy of
particles in blackbody radiation, hEi ¼ π4=30ζð3Þ × kBT,
we find for a static observer located at radial position r

TeffðrÞ ¼
30ζð3Þ
π4

EcurvðrÞ
kB

ð12Þ

≈164 nK

�
r

2.5GM

�
−3=2

�
M
M⊙

�
−1
; ð13Þ

with the Riemann zeta function ζðxÞ and the solar
mass M⊙ ≈ 1.988 × 1030 kg.
In order to provide some context for the results from our

local gravitational particle production mechanism, we
contrast them with the properties of Hawking radiation.
Taking into account the gravitational redshift effect, an
observer at infinity finds thermal radiation at the Hawking
temperature

TH ¼ 1

8π

ℏ
kBGM

≈ 62 nK

�
M
M⊙

�
−1
: ð14Þ

Around the distance of highest particle production,
r ≈ 2.5GM, a stationary observer would measure the
Hawking radiation to have the local (Tolman) temperature
of TH=

ffiffiffiffiffiffiffiffiffiffi−g00
p ≈ 138 nK, which is exceeded by the effec-

tive temperature from our effect by a factor ∼ð1.9Þ1=4.
According to the Stefan-Boltzmann law, this implies an
increased particle production rate by a factor of around 1.9.
Independently, our predictions for the particle and energy
flux actually also lie within a factor ∼1.9 above the
Hawking fluxes, see Appendix S.3 [33].
In contrast to radiation in the Hawking case, which is in a

thermal mixed state, the radiation in our case also includes
correlated pairs when the emission direction of both the
particle and antiparticle fall into the escape cone. This is
similar to the Schwinger effect, where the produced
particles do not follow a thermal spectrum [47].
We point out the favorable property that our results for

the total particle number and energy flux are expressed only
in terms of curvature invariants and thus are invariant under
coordinate transformations. However, they depend on the
radial profile of the escape probability, for which we made

two assumptions. First, we adopted a measure in the
geometrical-optics approximation, i.e., the solid-angular
size of the escape cone. This is a rather reliable assumption
given the 6% accuracy in the DeWitt approximation for the
graybody factor discussed in the Appendix S.3 [33].
Second, we made the assumption that the emission of real
particle–anti-particle pairs is isotropic for a static observer.
If we assumed an isotropic emission in the frame of a freely
infalling Painlevé observer, the distribution looks beamed
towards the black hole for a static observer and the particle
flux would be reduced to ∼56% of the Hawking value.
Actually one might expect an anisotropic emission with a
stronger radial component because of the anisotropic
spacetime curvature.
Discussion.—In this Letter we have shown that the

formalism underlying the Schwinger effect can be applied
to curved spacetimes, unifying the description of the decay
of electric and gravitational fields in the presence of a
scalar quantum field. In our nonperturbative path-integral
approach, particle production arises from the separation of
virtual field excitations and is encoded in the imaginary part
of the one-loop effective action. The effective action is
defined by the trace of the propagation operator which
implies that the corresponding path integral in Eq. (2) is
performed only over paths with coincident start and end
point. Such an event can be regarded as the origin of a virtual
particle–anti-particle pair, and the associated path sections
as the corresponding particle trajectories.
Virtual particles can existwithin a portion of spacetime that

is constrained by the Heisenberg uncertainty principle. The
weighted path densities around classical trajectories indicate
the probability distribution of a particle location, which one
could call a “Heisenberg uncertainty cloud.” In flat spacetime,
the volume of these clouds is identical for a particle and
antiparticle, leading to complete annihilation. In curved
spacetimes, these clouds are not necessarily identical, as
particle trajectories pass through different portions of space-
time,which suppresses the particles’ coherence, impacts their
annihilation probability, and leads to the appearance of real
pairs. Such particle decoherence effects occurring in curved
spacetimes may even be experimentally testable [49].
Alternatively, the nonoverlapping portions of the uncer-

tainty clouds between particle and antiparticle could also be
interpreted as being separated by an apparent horizon,
reminiscent of the horizon encountered by an accelerating
observer seeing Unruh radiation [50].
In a Ricci-flat spacetime, such as in asymptotically flat

black-hole spacetimes and in particular the Schwarzschild
solution, the integrand given in Eq. (4) reduces to the
square of the Weyl tensor Cμνρσ, i.e., RαβγδRαβγδ ¼
CαβγδCαβγδ. Because the Weyl tensor indicates volume-
preserving curvature components, it particularly encapsu-
lates tidal forces. Hence, while in the Schwinger case the
electric field separates virtual pairs, this role is taken on by
tidal forces in gravitational fields, which act on all types of

PHYSICAL REVIEW LETTERS 130, 221502 (2023)

221502-4



particles (including photons)—not just charged ones. The
energy of the pairs produced ultimately has to come from
the gravitational field via its coupling to the corresponding
quantum field.
In analogy to the Schwinger effect in electric background

fields, we use heat-kernel techniques for describing gravi-
tational pair production. The action for the fictitious field
excitation, Se, factorizes in a classical and a fluctuating part.
In the Schwinger case, this can be evaluated exactly and
allows one to derive an expression of particle production for
massive and massless particles. In contrast, no closed-form
solution for the fluctuating part is known to date in a
gravitational background (see [51] for a quadratic approxi-
mation). However, an expansion in weak fields is known,
see, e.g., [32,52], which enables us to treat themassless case.
Massless particles are of special interest because they

dominate the black hole emission for most of the black
hole’s lifetime. Only at the end of black hole evaporation
(below the mass scale of 1014 kg ∼ 10−16 M⊙, correspond-
ing to subatomic Schwarzschild radii below 10−12 m do
massive particles contribute a relevant share to the radi-
ation [53] before potential extra dimensions become
relevant [54]. Moreover, the scalar field considered here
is a generic model for one massless bosonic degree of
freedom, e.g., one polarization state of the photon (con-
formal coupling [55], ξ ¼ 1=6) or of the graviton (minimal
coupling [56], ξ ¼ 0). Interestingly, our results show that
the production rate is independent of the gravitational
coupling constant ξ in Ricci-flat spacetimes.
The particle production effect which we have presented

predicts within a factor ∼2 the same fluxes, effective
temperature, and their respective scalings with the black
hole mass as in the Hawking case, assuming thermal
emission. It is not immediately clear whether this is an
additional effect to Hawking radiation or a generalization
thereof. At least, for the radiation escaping between
2GM < r ≤ 3GM, the other half of the pair will fall into
the event horizon, similar to what is described in the
popular explanation of Hawking radiation. However, it is a
local approach. The presence of a black hole event horizon
does not enter our derivation, apart from the escape factor.
This is in contrast to Hawking radiation, where the
presence of a global event horizon or time dependence
is considered vital. Among these, the approaches by Parikh
and Wilczek [13] and Mukhanov, Wipf, and Zelnikov [57]
have aspects in common with our Letter. However, both
these approaches inherently require the reduction to 1þ 1
dimensions and thus cannot be sensitive to local anisot-
ropies and tidal forces.
The popular description of Hawking radiation suggests

that most of the particle production happens at an infini-
tesimal distance from the event horizon. For our mecha-
nism, we explicitly deduce a radial production profile for
evaporating black holes. Its peak is determined by the
counteraction of the rate of local pair creation and the

escape probability, see Fig. 1. The local, generally covar-
iant expression for the imaginary part of the effective action
in Eq. (4) actually indicates that this gravitational particle
production is independent of the choice of the vacuum state
of the quantum field. While there might also be state-
dependent contributions encoded in the subleading higher-
order behavior of the form factors, those would in general
be tied to nonlocal terms [58].
Similarly to Ref. [13], we also expect our particle

production mechanism to backreact on the spacetime.
However, the spacetime background we have used here is
constant by construction which implicitly requires an
external energy reservoir, the thermal nature of which can
be debated as in the case of theUnruh effect [59,60]. Clearly,
if there is radiation without an external energy reservoir, it
means that the spacetime is nonstationary. In consequence,
this would imply that the black hole evaporates indeed. In
principle, the pair production process should also continue
inside the event horizon, but this would not be observable
outside. The process would diverge at r ¼ 0 and the
associated backreaction could potentially tame the curvature
singularity in the center. The weak-field assumptions of our
Letter, however, would not extend to this extrapolation.
Taken at face value, our local approach could imply that

also mass configurations without a global event horizon
would radiate and eventually decay. Furthermore, evapo-
ration processes might not necessarily lead to an informa-
tion paradox. For approaching these questions, the entropy
of the central object and thermal nature of the emission are
topics of further investigation.
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