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We consider the quantum gravity partition function that counts the dimension of the Hilbert space of a
spatial region with topology of a ball and fixed proper volume, and evaluate it in the leading order saddle
point approximation. The result is the exponential of the Bekenstein-Hawking entropy associated with the
area of the saddle ball boundary, and is reliable within effective field theory provided the mild curvature
singularity at the ball boundary is regulated by higher curvature terms. This generalizes the classic
Gibbons-Hawking computation of the de Sitter entropy for the case of positive cosmological constant and
unconstrained volume, and hence exhibits the holographic nature of nonperturbative quantum gravity in
generic finite volumes of space.
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Introduction.—Gibbons and Hawking (GH) [1] pro-
posed in 1977 that the thermal partition function Z in
quantum gravity can be approximated by a Euclidean
saddle point of a path integral over spacetime geometries.
When applied to spacetimes without a boundary, using the
Einstein-Hilbert action I with a positive cosmological
constant Λ, they found that there is a saddle corresponding
to a round Euclidean four-sphere, which can be obtained by
analytic continuation of the time coordinate in a static patch
of Lorentzian de Sitter (dS) spacetime. This method yields

Z ≈ expð−Isaddle=ℏÞ ¼ expðA=4ℏGÞ; ð1Þ

where A is the area of the dS horizon for the saddle andG is
the gravitational constant (in units with the speed of light
equal to 1). Each “time” slice of the Euclidean saddle is a
spatial geometry that is identical to the spatial geometry of
a static slice bounded by the event horizon of the corre-
sponding Lorentzian geometry. In the Euclidean solution
these time slices all coincide at this event horizon surface,
which we refer to as the “Euclidean horizon,” or just
“horizon.”
This and other results strongly suggested that the concept

of Bekenstein-Hawking entropy A=4ℏG for black hole
horizons [2,3] applies also to de Sitter horizons [4]. Two
decades later Fischler [5] and Banks [6] argued that, since
the sphere partition function is an integral unconstrained by

any boundary conditions, this Z must represent the dimen-
sion of the Hilbert space of all states in this theory
describing a volume of space, whose size in the saddle
point approximation is determined by the value of the
cosmological constant. That is, logZ is the entropy of the
maximally mixed state in that Hilbert space. This inter-
pretation of the “entropy of de Sitter space” has since
received support from several directions [7–12].
Numerous lines of evidence indicate that gravitational

entropy is associated not only to the area of a de Sitter or
black hole horizon, but also to the area of any boundary
separating a region of space (see, for example, [13,14]), in
particular to the bounding area of a topological ball of space.
We present a derivation of the “entropy of a volume of
space” from a quantum gravity partition function, without or
with a cosmological constant, in the vein of the original GH
calculation. In our case, the size of the spatial region is
determined not by a cosmological constant, but by a volume
constraint imposed on the states. The constraint modifies the
saddle point condition, and we find that the Einstein-Hilbert
action of the saddle geometry is −A=4G, where A is the
boundary area. Our derivation involves no classical back-
ground spacetime as input; rather, it is in principle a fully
nonperturbative quantum gravity calculation from which a
classical saddle arises as output. On the other hand, like the
GH calculation, it is formulated within general relativity,
which is the low-energy effective theory of some ultraviolet-
complete theory of quantum gravity.
The microstates counted by the Bekenstein-Hawking

entropy are arguably related to vacuum fluctuations [15–19],
but their precise nature is not resolvable within the low-
energy effective theory. Moreover, the notion of a Hilbert
space of a subregion in quantum gravity requires explan-
ation. Because of the diffeomorphism constraints,
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the Hilbert space of quantum gravity is not decomposable
as a tensor product of subregions of Hilbert spaces.
This is similar to the case of Yang-Mills theory, for which
the entire Hilbert space can nevertheless be realized as a
gauge-invariant subspace of a tensor product of subregion
Hilbert spaces that contain “edge state” degrees of
freedom [20,21]. We presume that the Hilbert space of a
ball of space in quantum gravity admits (at least in some
approximate description) a similar subregion interpretation,
and that horizon entropy can be thought of as the logarithm
of the dimension of the space of edge states. The remarkable
thing is that, even without having the microscopic theory of
the edge states, their contribution to the entropy per unit
horizon area may be encoded in the value of the low-energy
effective gravitational constant [22,23].
Sphere partition function.—The GH partition function

for the case of dS—which has no boundary—can be
interpreted as the trace of the identity operator on the
Hilbert space of all states of a topological ball. This inter-
pretation has recently been justified [10] by first introducing
an artificial internal boundary sphere of radius RB, and
inverse temperature β at that boundary, and considering the
canonical partition function Z ¼ Tr expð−βHBYÞ, where
HBY is the Brown-York Hamiltonian for that system. In the
limit RB → 0 the boundary disappears and HBY → 0,
assuming the geometry is regular inside the shrinking
boundary and assuming D ≥ 3 spacetime dimensions.
Therefore, in this limit, Z → Tr expð0Þ ¼ TrIH, where H
is the Hilbert space of the ball of space. That is, the no-
boundary canonical ensemble is maximally mixed, and Z
counts the dimension of the entire Hilbert space.
The paths in a path integral representation of Z are

periodic in time because the path integral is computing the
trace. At each time the configuration is a Riemannian
metric on a topological (D − 1) ball of space, whose
surface is a (D − 2) sphere. In the saddle D geometry
the time translation becomes a Euclidean signature rotation
encircling the ball surface, which is a fixed point set of the
rotation. The manifold generated by rotating the ball
through a complete time circle in the about the ball surface
is topologically a D sphere, SD. This is easy to visualize in
the D ¼ 2 case (see Fig. 1), where a complete rotation of a
line segment about its endpoints sweeps out a topological
2-sphere. The way it works for D ¼ 3 is explained in detail
in Sec. 5 of [10], which includes a possibly useful figure.
To see it in a general dimension D one can invoke the
topological fact that the (D − 1) ball is the one point
compactification of the half-space 1

2
RðD−1Þ, and rotating

this through an extra dimension around its boundary yields
the one point compactification of RD, which is SD. The
boundaryless D-sphere topology for the paths in effect
removes the need for a boundary condition at the surface of
the spatial ball, and presumably corresponds to the con-
dition that the spatial ball is smoothly embedded into the
ambient space, like the dS static patch.

The partition function is dominated and thus well-
approximated by the saddle—i.e., the solution to the
vacuum Einstein equation—with minimal action. In the
presence of a positive cosmological constant Λ, the saddle
with minimal action is a round D sphere of radius
L ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðD − 1ÞðD − 2Þ=ð2Λp Þ, a.k.a., Euclidean dS space-
time [10] (for a proof see Appendix A in Supplemental
Material [24]). As mentioned above, the action of this
saddle is −A=4G, which (since there is no temperature
dependence) implies that the entropy is given by A=4ℏG.
The cosmological constant (together with ℏG) thus deter-
mines the dimension of the Hilbert space of all states of a
topological ball of space in pure gravity.
In the limit Λ → 0, the de Sitter sphere saddle becomes a

sphere of infinite radius and the entropy is therefore
infinite. We believe this result is correct, but it does not
tell us what is the entropy of a ball of a fixed size. Unlike the
case in which a particular size is selected by the cosmo-
logical constant, any other size must be specified as an
external constraint that restricts the ensemble of states.
Since the entropy of a ball is expected to be proportional

to the boundary area one might think that the natural way to
restrict the size would be to restrict the boundary area. A
fixed area constraint can be imposed using a Lagrange
multiplier term in the action, which contributes to the field
equations an effective energy-momentum tensor of a
cosmic membrane at the ball boundary. The solutions to
the resulting field equation have a conical defect at the
membrane. It seems unlikely, however, that the presence of
such a conical defect allows for a Euclidean solution to the
Λ ¼ 0 vacuum Einstein equation on SD. For instance, in
D ¼ 3 dimensions such a metric would be locally flat
everywhere except at the S1, where there would be a conical
defect, but it can be shown that this is not possible [29]. The
(presumed) absence of a saddle for the fixed area ensemble
suggests that the rigidity of this constraint entails quantum
fluctuations that are too large to be compatible with a

FIG. 1. Illustration of the topology of the round Euclidean
sphere “path” SD for the case D ¼ 2. The meridian arcs (half
circles) each correspond to a patch of space at one time. They are
topologically 1-balls, which all share the same 0-sphere boundary
consisting of the two poles. Together they comprise a foliation of
the 2-sphere that is degenerate at the poles which constitute the
Euclidean horizon.
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semiclassical description of the ensemble. According to the
uncertainty relation, at fixed area one expects that the
conjugate variable, which is the angle at which the maximal
surface meets the edge of the causal diamond [30], is totally
uncertain.
One could instead fix the Euclidean spacetime volume,

and this constrained partition function admits a saddle;
however, this is not a physically valid way to implement the
constraint that the ball has a particular “size.” Since we are
trying to count the dimension of the Hilbert space of the
system, the size constraint should be imposed on the system
itself, whose states are enumerated at one time. Moreover,
the Euclidean spacetime geometry is relevant only in the
saddle point approximation to the partition function being
computed; the domain of integration in the path integral
representation of the partition function is not Euclidean
geometries [10,31–34]. That said, the fixed spacetime
volume partition function can perhaps be understood as
a weighted sum dominated by spatial balls of a given size.
We are currently exploring this interpretation [35].
Partition function at fixed spatial volume.—An appa-

rently sensible way to fix the size of the system is to
constrain its spatial volume. The dimension of the Hilbert
space of a quantum gravitational ball at fixed volume V can
be approximated as a path integral over metrics on
the topological D sphere that admit a (degenerate) foliation
by (D − 1) balls with volume V whose (D − 2)-sphere
boundaries all coincide. The paths are weighted by the
exponential of minus the Einstein-Hilbert action with
cosmological constant Λ together with a Lagrange multi-
plier term implementing the volume constraint

Z½V;Λ� ¼
Z

DλDg exp

�
1

16πℏG

Z
dDx

ffiffiffi
g

p ðR − 2ΛÞ

þ 1

ℏ

Z
dϕλðϕÞ

�Z
dD−1x

ffiffiffi
γ

p
− V

��
; ð2Þ

where the contour of integration for the metric is assumed
to pass through a Euclidean saddle. (See Ref. [10]
for a discussion of the nature of the required contour
deformation.) Here ϕ is a periodic Euclidean coordinate,
and γab ¼ gab − N2ϕ;aϕ;b is the induced metric on a
constant ϕ slice, where N ≔ ðgabϕ;aϕ;bÞ−1=2, so that
Ndϕ is a unit 1-form. The integral of the Lagrange
multiplier λðϕÞ is for each ϕ over a contour parallel to
the imaginary axis, and thus introduces a Dirac delta
function that imposes the constraint that the spatial volume
of each ϕ slice is equal to V. Following Gibbons and
Hawking, we shall estimate Z as in Eq. (1), where Isaddle is
the Einstein-Hilbert action evaluated at the stationary point
with the lowest action. The constraint term vanishes when
the constraint is satisfied, so does not contribute to the
saddle action.
The saddle point equations are given by the volume

constraint, together with the Euclidean Einstein equation

sourced by a perfect fluid stress-energy tensor Tab with
vanishing “energy density,” arising from the variation of the
volume element in the volume constraint term

Gab þ Λgab ¼ 8πGTab with Tab ¼
λ

N
γab ≕Pγab; ð3Þ

whereP is the effective fluid pressure, and the λ contour has
been deformed so as to pass through the required real value
at the saddle. For each value of V, there is now a
saddle, even if Λ ¼ 0. This is referred to as the method
of constrained instantons [36,37]. By analogy with the
unconstrained Λ > 0 case, where the saddle with the
lowest action (i.e., the greatest volume) is the sphere,
we presume that the dominating saddle is the most
symmetrical one. We therefore look for a static, spherically
symmetric solution with ϕ as a Killing coordinate, such that
λðϕÞ ¼ λ ¼ constant. Our metric ansatz for the Euclidean
saddle thus takes the form

ds2 ¼ N2ðrÞdϕ2 þ hðrÞdr2 þ r2dΩ2
D−2; ð4Þ

where dΩ2
D−2 is the line element on a unit (D − 2) sphere,

and we choose the period of the ϕ coordinate to be
Δϕ ¼ 2π. With this symmetry ansatz, the equations to
be solved are the Euclidean version of those of a static,
spherically symmetric fluid star in D spacetime dimen-
sions, but with different boundary conditions.
The spatial metric function hðrÞ is determined by the ϕϕ

component of the Einstein equation, which receives no
contribution from the fluid stress tensor since that has
vanishing “energy density” Tϕϕ. The solution for hðrÞ with
Λ > 0 is thus the same as for D-dimensional dS space,

hðrÞ ¼ ð1 − r2=L2Þ−1; ð5Þ

while that with Λ ¼ 0 corresponds to L → ∞ and that
with Λ < 0 to L → iL. The equation for the metric
function NðrÞ is the (Euclidean, D-dimensional) Tolman-
Oppenheimer-Volkoff equation, which for vanishing
energy density is identical to the corresponding Lorentzian
equation. The boundary conditions for NðrÞ arise from the
requirement that the ball boundary be a regular Euclidean
horizon, i.e., a fixed point set of the periodic ϕ translation
symmetry where the metric is locally flat. This implies that
the lapse NðrÞ must vanish at some value r ¼ RV (deter-
mined by the volume constraint) that defines the location of
the horizon. According to Eq. (3) the pressure PðrÞ and
curvature must therefore diverge at the horizon, unless
λ ¼ 0. Furthermore, absence of a conical singularity at RV
requires that the line element in the r − ϕ subspace there
takes the form of the Euclidean plane in polar coordinates,
l2dϕ2 þ dl2, where l is the proper radial distance from the
Euclidean horizon. This fixes the coefficient of the linear
term in a Taylor expansion of the lapse N about RV ,
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dN
dl

����
l¼0

¼ 1: ð6Þ

We first solve the saddle point equations for Λ ¼ 0, and
then generalize the solution to nonzero Λ.
Λ ¼ 0 case.—For Λ ¼ 0, Eq. (5) reduces to hðrÞ ¼ 1, so

the spatial metric for the saddle is flat, and the Tolman-
Oppenheimer-Volkoff equation with zero energy density
is [38]

dP
dr

¼ −
8πG
D − 2

P2r: ð7Þ

The general solution to this equation is

PðrÞ ¼ −
D − 2

4πG
1

R2
V − r2

; ð8Þ

where R2
V is an integration constant. The condition that P

diverges somewhere requires that R2
V > 0, and the horizon

is located at r ¼ RV . The value of RV is set by the volume
constraint ½ΩD−2=ðD − 1Þ�RD−1

V ¼ V, where ΩD−2 is the
volume of a unit (D − 2) sphere. The lapse is given by
NðrÞ ¼ λ=PðrÞ, so the condition, Eq. (6), implies that
λ ¼ þ1=ðdP−1=dlÞl¼0, i.e.,

λ ¼ −
1

8πG
D − 2

RV
: ð9Þ

The Euclidean saddle metric is given by

ds2 ¼ 1

4R2
V
ðR2

V − r2Þ2dϕ2 þ dr2 þ r2dΩ2
D−2: ð10Þ

To estimate Z½V�, Eq. (2), we evaluate the on-shell Einstein-
Hilbert action with Λ ¼ 0

Isaddle ¼ −
1

16πG

Z
dDx

ffiffiffi
g

p
R ¼ D − 1

D − 2
2πλV ¼ −

AV

4G
;

ð11Þ

where AV is the area of the (D − 2) sphere that forms the
boundary of the spatial volume, i.e., the horizon of the
Euclidean “diamond” with spatial volume V. This action
yields an approximation to the partition function in the
zero-loop saddle point approximation

Z½V� ≈ expðAV=4ℏGÞ: ð12Þ

The logarithm of the dimension of the Hilbert space is thus
given by the Bekenstein-Hawking entropy formula, with
the horizon area equal to the boundary area of the saddle
point ball metric. This result for the action can also be seen
from the fact that the Euclidean Einstein-Hilbert action with
Gibbons-Hawking-York boundary term—evaluated on a

configuration that is independent of a periodic Euclidean
“time” coordinate, has a Euclidean horizon of area A, and
satisfies the vacuum Hamiltonian constraint—generally
takes the form Isaddle ¼ βEBY − A=4G, with β the
Euclidean time period, and EBY the Brown-York energy
[39]. This applies in the present case, and EBY vanishes as
the boundary size goes to zero, so the action, Eq. (11), is
reproduced in that limit.
Let us discuss some properties of the saddle. The saddle

has topology SD, is conformally flat [40], spatially flat, and
spherically symmetric and has a rotational Killing sym-
metry along the Euclidean time direction (see Fig. 2).
Further, the effective fluid pressure, Eq. (8), is negative, and
diverges as the inverse proper distance to the edge of the
ball (horizon), P ∼ −1=ðRV − rÞ. Hence, the energy-
momentum tensor, and therefore the Ricci tensor, is
singular on the horizon in the sense that it has eigenvalues
that diverge as 1=ðRV − rÞ. However, this curvature diver-
gence [which can be traced to a nonzero quadratic term in
the Taylor expansion of the lapse function NðrÞ about the
horizon] is sufficiently mild that the on-shell Einstein-
Hilbert action is finite and given by Eq. (11).
Nevertheless, since the curvature diverges one should

take into account higher derivative terms in the effective
Lagrangian L ∼ Rþ l2R2 þ � � �, with relative coefficients
determined by some UV length scale l. It is possible that
such higher derivative terms allow for a regular saddle with
everywhere finite curvature, but with divergent derivatives
of curvature that match the divergence of the effective
energy-momentum tensor. If they do not, then our use of
effective field theory appears inadequate to treat the
problem. However, if they do, the entropy will be given
by the Bekenstein-Hawking term with the area of the
horizon of the regular saddle, plus the higher curvature

FIG. 2. The Euclidean saddles for de Sitter with Λ > 0 (dotted)
and for fixed volume with Λ ¼ 0 (solid), with RV ¼ 2L so that
the Euclidean time periods match at the center of the saddle (the
cap perimeter on the left). The hemispherical caps are flat space
embeddings of the intrinsic geometries of the time-radius (ϕ − r)
discs, with the horizons at the tips of the caps. At each point of the
cap there is a round (D − 2) sphere, shown here on the right as a
circular section of a cone with azimuthal angle φ, whose radius in
the de Sitter case is equal to the vertical embedding height on the
hemispherical cap and in the Λ ¼ 0 case is equal to the radial
distance along the cap. The fixed volume saddle has a mild
curvature singularity at the horizon, whereas the de Sitter saddle
is a round D sphere that is everywhere smooth.
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corrections to the horizon entropy functional [42–44]. This
computation would be under control in the effective field
theory provided that the higher curvature terms are sys-
tematically suppressed. To estimate their contribution, note
that the contribution of the R2 term to the field equation
behaves as ∼l2

∂
2
rR, and the curvature of the uncorrected

saddle diverges as ðRVρÞ−1, where ρ ≔ RV − r, so the
contribution from the R2 terms scales as ∼ðl=ρÞ2R, which
becomes comparable to the Einstein term when ρ≲ l. At
that point the curvature is ∼ðRVlÞ−1. If the curvature
saturates at this value, the contribution of the R2 term to the
entropy functional, which is the integral of ∼l2R over
the horizon, would be of order l=RV relative to that of the
Bekenstein-Hawking area term. Moreover, the contribu-
tions of higher curvature terms would be suppressed by an
additional factor of l=RV for each additional power of
curvature in the Lagrangian, so that it would be consistent
to truncate the effective field theory.
Λ ≠ 0 case.—For nonzero Λ a similar saddle exists, with

action again given by Isaddle ¼ −AV=4G. The most signifi-
cant difference occurs for Λ > 0, in which case the spatial
geometry is a ball of volume V embedded in a round
(D − 1) sphere of radius L. AV grows with V until V
reaches half the volume of that (D − 1) sphere, and then
decreases to zero as V reaches the full (D − 1)-sphere
volume. (For details, see the appendix.)
Discussion.—To sum up, the quantum gravity partition

function that counts the dimension of the Hilbert space of a
spatial region with topology of a ball and fixed proper
volume is approximated, in the leading order saddle point
approximation, by expðAV=4ℏGÞ, where AV is the area of
the saddle ball boundary, up to higher curvature corrections
suppressed by a UV length scale divided by the ball radius.
For positive cosmological constant and for volume V >
VdS (where VdS is the volume of the de Sitter static patch),
AV and hence the dimension of the Hilbert space decreases
as V increases. The Hilbert space becomes one dimensional
for V ¼ 2VdS, and no saddle exists for V > 2VdS. Hence,
more space does not always imply more states. The integral
over all volumes,

R
dV expðAV=4ℏGÞ, agrees, in the lead-

ing order saddle point approximation, with the Gibbons-
Hawking result, Eq. (1), for a ball of unconstrained volume
because the ensemble is dominated by ball geometries with
surface area equal to that of the de Sitter horizon.
That the logarithm of the Hilbert space dimension in our

nonperturbative framework matches the horizon entropy
attributed to a semiclassical static patch in de Sitter space
and other causal diamonds supports the notion that the total
dimension of the Hilbert space is captured already at
leading order by the exponential of the semiclassical
entropy. From this follows the surprising conclusion that
the semiclassical, gravitationally dressed vacuum state of
such a causal diamond is close to a maximally mixed state,
a notion that has already been advanced for the case of a de
Sitter static patch [5–12].

We have explicitly considered only the states of the
gravitational field in a ball, but matter fields could be
included without any modification of the saddle calcula-
tion, provided the matter fields vanish in the saddle
configuration. The existence of extra states due to the
matter fields would be accounted for at leading order by the
value of the low energy effective gravitational constant G,
which figures in the denominator of the Bekenstein-
Hawking entropy [22,23]. The entropy match discussed
above thus lends nonperturbative quantum gravitational
support to the “maximal vacuum entanglement hypothesis”
[45]—that entanglement entropy of matter and gravity in
small balls at fixed volume is maximized in the semi-
classical, gravitationally dressed vacuum state. To elevate
that support to full justification would require mastery of
the corrections to the saddle point approximation.
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Appendix: Derivation of the Λ ≠ 0 saddle.—In the
presence of a positive cosmological constant, hðrÞ is
given by Eq. (5), so the spatial metric is that of a round
(D − 1) sphere of radius L and is half covered by the
range r ∈ ½0; L�. The Tolman-Oppenheimer-Volkoff
equation for Einstein gravity with Λ > 0 and zero
energy density is [38,46]

dP
dr

¼ −P
ð8πGL2

D−2 P − 1Þr
L2 − r2

: ðA1Þ

To uniquely label points on the (D − 1) sphere, we switch
from r to the polar angle coordinate χ ∈ ½0; π� (with
r ¼ L sin χ), in terms of which the proper radial distance
is Ldχ. The case of Λ < 0 is obtained by the replace-
ment ðL; χÞ → ðiL;−iχÞ in the following formulas. For
notational brevity we momentarily adopt units with
8πG=ðD − 2Þ ¼ 1. Then Eq. (A1) becomes
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dP
dχ

¼ −PðL2P − 1Þ tan χ; ðA2Þ

and the solution is

PðχÞ ¼ L−2

1 − cos χ= cos χV
; ðA3Þ

where cos χV is an integration constant whose value is
determined by the volume constraint,

V ¼ VðχVÞ ≔ LD−1ΩD−2

Z
χV

0

dχðsin χÞD−2: ðA4Þ

The pressure is negative for χV < π=2, and positive for
χV > π=2, and blows up as the reciprocal of the proper
distance to the horizon at χ ¼ χV . The Lagrange
multiplier λ is fixed by the condition, Eq. (6), at the
horizon,

λ ¼ −L−1 cot χV: ðA5Þ

The Euclidean saddle metric is thus

ds2 ¼ L2

��
cos χ − cos χV

sin χV

�
2

dϕ2 þ dχ2 þ sin2χdΩ2
D−2

�
;

ðA6Þ

with χ ∈ ½0; χV �. This metric is also conformally flat, and
it has a Killing horizon at χ ¼ χV . The saddle again has
topology SD, and a constant ϕ slice is a ball of volume V
embedded in a round (D − 1) sphere of radius L. In the
limit L → ∞ we have χV → 0, and holding Lχ fixed,
Eq. (A6), becomes the spatially flat metric, Eq. (10). For
χV ¼ π=2 the metric becomes that of Euclidean de Sitter
space (the round D sphere of radius L) and λ ¼ 0, so the
volume constraint plays no role in determining the saddle
geometry. In the zero-loop saddle point approximation,
the partition function is thus unaffected by the constraint
if the volume is set equal to that of (a maximal slice of)
the dS static patch.
The Euclidean action of the saddle can be computed

directly by using the saddle point equations, Eq. (3), the
pressure, Eq. (A3), and the metric, Eq. (A6). In Appendix C
of the Supplemental Material [24], we present an explicit
computation of the on-shell action using the above coor-
dinate system, and in Appendix D we derive the on-shell
action as well as a Smarr formula and first law using the
Noether charge formalism [43,47] (see also [48–50]).
Alternatively, as explained below, Eq. (11), we know from
the general properties of the saddle that the action is given by
Isaddle ¼ −AV=4. The horizon area of the saddle geometry is
determined by the parameters of the ensemble V and Λ. At
fixed V the area decreases as the cosmological constant
increases. At fixedΛ, the area increases with volume until it

reaches a maximum when V ¼ VðχV ¼ π=2Þ, such that the
(D − 1) ball covers half of a (D − 1) sphere of radiusL, after
which it decreases, reaching zero when V ¼ VðχV ¼ πÞ.
In the case of Λ < 0 the trig functions become hyper-

bolic trig functions, the saddle ball is embedded in hyper-
bolic space, and there is no upper limit to χ or to the size of
the saddle ball as the volume grows.

[1] G.W. Gibbons and S.W. Hawking, Action integrals and
partition functions in quantum gravity, Phys. Rev. D 15,
2752 (1977).

[2] J. D. Bekenstein, Black holes and entropy, Phys. Rev. D 7,
2333 (1973).

[3] S. W. Hawking, Particle creation by black holes, Commun.
Math. Phys. 43, 199 (1975); 46, 206(E) (1976).

[4] G.W. Gibbons and S. W. Hawking, Cosmological event
horizons, thermodynamics, and particle creation, Phys. Rev.
D 15, 2738 (1977).

[5] W. Fischler, Taking de Sitter seriously, Talk given at “Role
of Scaling Laws in Physics and Biology” (celebrating the
60th birthday of Geoffrey West), Santa Fe (2000).

[6] T. Banks, Cosmological breaking of supersymmetry?, Int. J.
Mod. Phys. A 16, 910 (2001).

[7] T. Banks and W. Fischler, Holographic cosmology 3.0,
Phys. Scr. T 117, 56 (2005).

[8] T. Banks, B. Fiol, and A. Morisse, Towards a quantum
theory of de Sitter space, J. High Energy Phys. 12 (2006)
004.

[9] X. Dong, E. Silverstein, and G. Torroba, De Sitter holo-
graphy and entanglement entropy, J. High Energy Phys. 07
(2018) 050.

[10] B. Banihashemi and T. Jacobson, Thermodynamic ensem-
bles with cosmological horizons, J. High Energy Phys. 07
(2022) 042.

[11] V. Chandrasekaran, R. Longo, G. Penington, and E. Witten,
An algebra of observables for de Sitter space, J. High
Energy Phys. 02 (2023) 082.

[12] H. Lin and L. Susskind, Infinite temperature’s not so hot,
arXiv:2206.01083.

[13] T. Jacobson and R. Parentani, Horizon entropy, Found.
Phys. 33, 323 (2003).

[14] E. Bianchi and R. C. Myers, On the architecture of space-
time geometry, Classical Quantum Gravity 31, 214002
(2014).

[15] R. D. Sorkin, 1983 paper on entanglement entropy: ”On the
Entropy of the Vacuum outside a Horizon”, in Proceedings
of the 10th International Conference on General Relativity
and Gravitation (1984), Vol. 2, pp. 734–736, arXiv:1402.
3589.

[16] L. Bombelli, R. K. Koul, J. Lee, and R. D. Sorkin, A
quantum source of entropy for black holes, Phys. Rev. D
34, 373 (1986).

[17] V. P. Frolov and I. Novikov, Dynamical origin of the entropy
of a black hole, Phys. Rev. D 48, 4545 (1993).

[18] T. Jacobson and A. Satz, Black hole entanglement entropy
and the renormalization group, Phys. Rev. D 87, 084047
(2013).

PHYSICAL REVIEW LETTERS 130, 221501 (2023)

221501-6

https://doi.org/10.1103/PhysRevD.15.2752
https://doi.org/10.1103/PhysRevD.15.2752
https://doi.org/10.1103/PhysRevD.7.2333
https://doi.org/10.1103/PhysRevD.7.2333
https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/BF01608497
https://doi.org/10.1103/PhysRevD.15.2738
https://doi.org/10.1103/PhysRevD.15.2738
https://doi.org/10.1142/S0217751X01003998
https://doi.org/10.1142/S0217751X01003998
https://doi.org/10.1238/Physica.Topical.117a00056
https://doi.org/10.1088/1126-6708/2006/12/004
https://doi.org/10.1088/1126-6708/2006/12/004
https://doi.org/10.1007/JHEP07(2018)050
https://doi.org/10.1007/JHEP07(2018)050
https://doi.org/10.1007/JHEP07(2022)042
https://doi.org/10.1007/JHEP07(2022)042
https://doi.org/10.1007/JHEP02(2023)082
https://doi.org/10.1007/JHEP02(2023)082
https://arXiv.org/abs/2206.01083
https://doi.org/10.1023/A:1023785123428
https://doi.org/10.1023/A:1023785123428
https://doi.org/10.1088/0264-9381/31/21/214002
https://doi.org/10.1088/0264-9381/31/21/214002
https://arXiv.org/abs/1402.3589
https://arXiv.org/abs/1402.3589
https://doi.org/10.1103/PhysRevD.34.373
https://doi.org/10.1103/PhysRevD.34.373
https://doi.org/10.1103/PhysRevD.48.4545
https://doi.org/10.1103/PhysRevD.87.084047
https://doi.org/10.1103/PhysRevD.87.084047


[19] J. H. Cooperman and M. A. Luty, Renormalization of
entanglement entropy and the gravitational effective action,
J. High Energy Phys. 12 (2014) 045.

[20] W. Donnelly, Decomposition of entanglement entropy in
lattice gauge theory, Phys. Rev. D 85, 085004 (2012).

[21] W. Donnelly, Entanglement entropy and nonabelian gauge
symmetry, Classical Quantum Gravity 31, 214003 (2014).

[22] L. Susskind and J. Uglum, Black hole entropy in canonical
quantum gravity and superstring theory, Phys. Rev. D 50,
2700 (1994).

[23] T. Jacobson, Black hole entropy and induced gravity, arXiv:
gr-qc/9404039.

[24] See in Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.130.221501, which in-
cludes Refs. [25–28].

[25] K. Akutagawa, H. Endo, and H. Seshadri, A gap theorem for
positive Einstein metrics on the four-sphere, Math. Ann.
373, 1329 (2019).

[26] R. L. Bishop, A relation between volume, mean curvature
and diameter, in Euclidean Quantum Gravity, edited by
G.W. Gibbons and S. W. Hawking (World Scientific Pub-
lishing Company, Singapore, 1993), pp. 161–161.

[27] R. L. Bishop, Riemannian geometry, arXiv:1303.5390.
[28] S. B. Myers, Riemannian manifolds with positive mean

curvature, Duke Math. J. 8, 401 (1941).
[29] E. Hawkins, (private communication).
[30] S. Carlip and C. Teitelboim, The off-shell black hole,

Classical Quantum Gravity 12, 1699 (1995).
[31] G.W. Gibbons, S. W. Hawking, and M. J. Perry, Path

integrals and the indefiniteness of the gravitational action,
Nucl. Phys. B138, 141 (1978).

[32] K. Schleich, Conformal rotation in perturbative gravity,
Phys. Rev. D 36, 2342 (1987).

[33] J. B. Hartle and K. Schleich, The conformal rotation in
linearised gravity, arXiv:2004.06635.

[34] P. O. Mazur and E. Mottola, The gravitational measure,
solution of the conformal factor problem and stability of the
ground state of quantum gravity, Nucl. Phys. B341, 187
(1990).

[35] T. Jacobson and M. Visser (to be published).
[36] I. Affleck, On constrained instantons, Nucl. Phys. B191,

429 (1981).

[37] J. Cotler and K. Jensen, Gravitational constrained instan-
tons, Phys. Rev. D 104, 081501 (2021).

[38] J. Ponce de Leon and N. Cruz, Hydrostatic equilibrium of a
perfect fluid sphere with exterior higher dimensional
Schwarzschild space-time, Gen. Relativ. Gravit. 32, 1207
(2000).

[39] B. F. Whiting and J. W. York, Action Principle and Partition
Function for the Gravitational Field in Black-Hole Topol-
ogies, Phys. Rev. Lett. 61, 1336 (1988).

[40] See Appendix B in the Supplemental Material [24] for an
explicit coordinate transformation to a conformally flat
metric based on Ref. [41].

[41] H. Casini, M. Huerta, and R. C. Myers, Towards a derivation
of holographic entanglement entropy, J. High Energy Phys.
05 (2011) 036.

[42] T. Jacobson and R. C. Myers, Black Hole Entropy and
Higher Curvature Interactions, Phys. Rev. Lett. 70, 3684
(1993).

[43] R. M. Wald, Black hole entropy is the Noether charge, Phys.
Rev. D 48, R3427 (1993).

[44] M. Visser, Dirty black holes: Entropy as a surface term,
Phys. Rev. D 48, 5697 (1993).

[45] T. Jacobson, Entanglement Equilibrium and the Einstein
Equation, Phys. Rev. Lett. 116, 201101 (2016).

[46] J. de Boer, K. Papadodimas, and E. Verlinde, Holographic
neutron stars, J. High Energy Phys. 10 (2010) 020.

[47] V. Iyer and R. M. Wald, A comparison of Noether charge
and Euclidean methods for computing the entropy of
stationary black holes, Phys. Rev. D 52, 4430 (1995).

[48] R. C. Myers and M. J. Perry, Black holes in higher
dimensional space-times, Ann. Phys. (N.Y.) 172, 304
(1986).

[49] D. Kastor, S. Ray, and J. Traschen, Enthalpy and the
mechanics of AdS black holes, Classical Quantum Gravity
26, 195011 (2009).

[50] T. Jacobson and M. Visser, Gravitational thermodynamics
of causal diamonds in (A)dS, SciPost Phys. 7, 079
(2019).

Correction: A sign error in the inline equation for λ
preceding Eq. (9) has been fixed.

PHYSICAL REVIEW LETTERS 130, 221501 (2023)

221501-7

https://doi.org/10.1007/JHEP12(2014)045
https://doi.org/10.1103/PhysRevD.85.085004
https://doi.org/10.1088/0264-9381/31/21/214003
https://doi.org/10.1103/PhysRevD.50.2700
https://doi.org/10.1103/PhysRevD.50.2700
https://arXiv.org/abs/gr-qc/9404039
https://arXiv.org/abs/gr-qc/9404039
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.221501
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.221501
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.221501
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.221501
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.221501
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.221501
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.221501
https://doi.org/10.1007/s00208-018-1749-x
https://doi.org/10.1007/s00208-018-1749-x
https://arXiv.org/abs/1303.5390
https://doi.org/10.1215/S0012-7094-41-00832-3
https://doi.org/10.1088/0264-9381/12/7/011
https://doi.org/10.1016/0550-3213(78)90161-X
https://doi.org/10.1103/PhysRevD.36.2342
https://arXiv.org/abs/2004.06635
https://doi.org/10.1016/0550-3213(90)90268-I
https://doi.org/10.1016/0550-3213(90)90268-I
https://doi.org/10.1016/0550-3213(81)90307-2
https://doi.org/10.1016/0550-3213(81)90307-2
https://doi.org/10.1103/PhysRevD.104.L081501
https://doi.org/10.1023/A:1001982402392
https://doi.org/10.1023/A:1001982402392
https://doi.org/10.1103/PhysRevLett.61.1336
https://doi.org/10.1007/JHEP05(2011)036
https://doi.org/10.1007/JHEP05(2011)036
https://doi.org/10.1103/PhysRevLett.70.3684
https://doi.org/10.1103/PhysRevLett.70.3684
https://doi.org/10.1103/PhysRevD.48.R3427
https://doi.org/10.1103/PhysRevD.48.R3427
https://doi.org/10.1103/PhysRevD.48.5697
https://doi.org/10.1103/PhysRevLett.116.201101
https://doi.org/10.1007/JHEP10(2010)020
https://doi.org/10.1103/PhysRevD.52.4430
https://doi.org/10.1016/0003-4916(86)90186-7
https://doi.org/10.1016/0003-4916(86)90186-7
https://doi.org/10.1088/0264-9381/26/19/195011
https://doi.org/10.1088/0264-9381/26/19/195011
https://doi.org/10.21468/SciPostPhys.7.6.079
https://doi.org/10.21468/SciPostPhys.7.6.079

