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The time evolution of multi-neutrino entanglement and correlations are studied in two-flavor collective
neutrino oscillations, relevant for dense neutrino environments, building upon previous works. Specifically,
simulations performed of systems with up to 12 neutrinos using Quantinuum’s H1-1 20 qubit trapped-ion
quantum computer are used to compute n-tangles, and two- and three-body correlations, probing beyond
mean-field descriptions. n-tangle rescalings are found to converge for large system sizes, signaling the
presence of genuine multi-neutrino entanglement.
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In extreme astrophysical environments, such as those
found in core-collapse supernovae, neutrino densities are
sufficiently high to participate in the transport of energy and
momentum, in local chemical compositions and in dynam-
ics [1–5]. Coherent evolution of lepton flavors, that depends
on self-interactions between neutrinos induced by weak
interactions [6–10], plays an important role. First studies of
the quantum correlations in coherent evolution of dense
neutrino systems, beyond mean-field descriptions, are
providing important insights into such dynamics [11–28].
So far, they have focused on bipartite entanglement wit-
nesses, such as entanglement entropy, negativity, and
concurrence [15–19,21–26]. In this work, we explore
multi-neutrino entanglement in such systems by computing
n-tangles [29], τn, between n neutrinos induced by time
evolution. The total n-tangles at late times are found to scale
for large system sizes. Our work utilized classical simu-
lations, and quantum simulations using the Quantinuum
20-qubit trapped-ion quantum computer H1-1 and noisy
emulator H1-1E [30].
The leading-order low-energy effective Hamiltonian

describing collective, coherent neutrino flavor oscillations
is composed of three terms. One term is responsible for
vacuum oscillations, originating from the neutrino mass
matrix [31–34]. A second is from the weak interactions
between neutrinos and matter, mainly between νe and e−,
through charged-current processes, and is responsible for
the Mikheev-Smirnov-Wolfenstein effect [35,36]. In what
follows, we neglect the contributions from this term. A
third term, from the neutral-current weak interactions, is
responsible for coherent forward scattering of neutrinos,
which becomes significant at sufficiently high neutrino
densities [7–10].
Because of the small value of θ13 [37], three-flavor

neutrino systems can be approximated by two-flavor sys-
tems involving the electron neutrino νe and a heavy neutrino
νx, considered to be a combination of νμ and ντ [38]. The
effectiveHamiltonian forN neutrinos can bewritten in terms
of spin operators acting in flavor space [14],

H ¼ Hν þHνν ¼
X

i

b · σðiÞ þ 1

N

X

i<j

JijσðiÞ · σðjÞ; ð1Þ

where σðiÞ ¼ ðσðiÞx ; σðiÞy ; σðiÞz Þ are the Pauli matrices acting on
the ith neutrino flavor doublet ðjνei; jνxiÞT . The three-vector
b encodes the vacuum oscillations,

b ¼ Δm2

4E
½sinð2θvÞ; 0;− cosð2θvÞ�; ð2Þ

with Δm2 being the difference between neutrino squared
masses, E the neutrino energy, and θv the vacuum-mixing
angle. The two-body couplings Jij, uniquely defined at
leading order by the standard model, are

Jij ¼
ffiffiffi
2

p
GFρνð1 − cos θijÞ; ð3Þ

where GF is Fermi’s constant, ρν the number-density of
neutrinos, and θij the angle of the momenta between the
ith and jth neutrino. Following previous works, e.g.,
Refs. [18,28], we introduce μ≡ ffiffiffi

2
p

GFρν, and, for demon-
strative purposes, set μ=N ¼ Δm2=4E (assuming a mono-
chromatic beam), so that the one- and two-body terms have
comparable strengths [18]. Following the inspiring work of
Hall et al. [18], a one-parameter set is used to demon-
strate relevant physics, with a vacuum-mixing angle
of θv ¼ 0.195, a distribution of momenta with θij ¼
arccosð0.9Þ × ji − jj=ðN − 1Þ (cone-shaped), and an initial
state that is a product state of N=2jνei and N=2jνxi,
i.e., jΨ0i ¼ jνei⊗N=2 ⊗ jνxi⊗N=2.
While a number of previous calculations of neutrino

systems using quantum devices have been focused on the
coherent time evolution of the flavor content [18,20,25,28],
and the entanglement of one or two neutrinos [18,25], here
we examine correlations between different neutrinos and
multibody entanglement, quantities that can further probe
mean-field descriptions of these systems. Specifically, we
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look at the two-body correlations, as considered previously,
e.g., Ref. [26],

Cð2νÞij ðtÞ ¼ hσðiÞz σðjÞz i − hσðiÞz ihσðjÞz i; i ≠ j; ð4Þ

with h·i ¼ hΨtj · jΨti, and three-body correlations,

Cð3νÞijk ðtÞ ¼ hσðiÞz σðjÞz σðkÞz i − hσðiÞz ihσðjÞz σðkÞz i
− hσðjÞz ihσðiÞz σðkÞz i − hσðkÞz ihσðiÞz σðjÞz i
þ 2hσðiÞz ihσðjÞz ihσðkÞz i; i ≠ j ≠ k: ð5Þ

Ultimately, studies of entanglement will help quantify the
limitations of classical techniques in providing reliable and
accurate results, and can also guide tensor-networks
approaches [17,19,24]. Entanglement in neutrino systems
has been previously computed via full-state tomography
[18,25], which, however, is expected to become inefficient
for larger systems due to the required number of measure-
ments. Alternative methods including classical shadows
[39], which are expected to require fewer measurements,
are currently being pursued.
As a way to gain further insight into the entanglement

structure of dense, coherent neutrino systems, we focus on
the n-tangle τn, defined as jhΨjσ⊗n

y jΨ�ij2, where jΨ�i is the
complex conjugate of jΨi. This quantity is a measure of
the n-body entanglement [29]. For two-qubit (neutrino)
systems, τ2 is the concurrence squared [40,41], C2

12. For
three-qubit systems, τ3 is the residual entanglement [42],
C2
1ð23Þ − C2

12 − C2
13, with C1ð23Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 2Trρ21

p
, with ρ1 the

reduced density matrix of the first qubit. However, for
n ≥ 4, τn is not uniquely the residual entanglement, and it is
smaller than or equal to the concurrence C1ð2…nÞ [43]. An
interesting property of τn is that, for the N-qubit GHZ state
[44,45], τN ¼ 1, while for the N-qubit W state [46],
τN ¼ 0. Thus, while it can help distinguish between
different types of entanglement, by itself it is not a measure
of N-body entanglement [29,47].
Implementation on a quantum computer.—Previous

works have performed quantum simulations of these
systems using IBM’s superconducting-qubit quantum com-
puters [18,20], D-Wave’s superconducting-qubit annealing
devices [25] and Quantinuum’s Trapped-ion quantum
computers [28]. We implement the time evolution of an
initial stateΨ0 under the Hamiltonian given in Eq. (1) using
Quantinuum’s H1-1 20 qubit trapped-ion quantum com-
puter, that is based on using the two hyperfine clock states
in the 2S1=2 ground state of 172Ybþ ions as qubits [30]. For
purposes of comparison, we also provide results obtained
using its emulator, H1-1E (Ref. [50] showed that H1-1E
could well reproduce the behavior of H1-1). The evolution
operator, expð−itHÞ, is Trotterized, and each contribution
is mapped to a quantum circuit composed of gates that are
native to H1-1. As noted in Ref. [28], the one-body and

two-body parts of the Hamiltonian commute, ½Hν;Hνν�¼0,
so they can be Trotterized without introducing a higher-
order systematic error. For Hν, since each term acts on a
different neutrino,

e−itH
ν ¼ ⊗

i
e−itb·σ

ðiÞ
: ð6Þ

This term is implemented with the following Euler decom-
position for SU(2) matrices [51],

ð7Þ

where the angles αi are fixed numerically.
For Hνν, the known decomposition of SU(4) matrices

with 3 CNOT gates [52] is used,

ð8Þ

with β ¼ 2tJij, which has a slight advantage over [53,54]
(requiring 5 single-qubits gates instead of 8). While not
directly relevant to the present set of simulation, it is
interesting to consider the T-gate resource requirements for
such simulation. Standard methods [55] suggest a T-gate
count of Nð187N − 101Þ=2 for ϵ ¼ 10−4, for N neutrinos
per Trotter step. While the circuits in Eqs. (7) and (8) are
not written in terms of the native gates used in H1-1 (these
can be found in Ref. [28]), the package PYTKET [60]
includes a function that performs this translation, along
with optimizations. Implementation of this two-neutrino
term is more delicate. Since the sum over different pairs of
neutrinos is split in the implementation of the time-
evolution operator, the noncommutativity of terms intro-
duces systematic Trotter errors. While it is possible to find a
combination that minimizes this error, as in Ref. [28] for the
case of 4 neutrinos, this is not feasible for larger systems.
As shown in Ref. [18], it is possible to build a circuit that
performs the Trotterized version of expð−itHννÞ with N
layers of the operator in Eq. (8) (if multiple gates can be
applied in parallel across the device). Figure 1 shows the
circuits used for different number of neutrinos. A nice
property of these circuits is that they retain the symmetry
present in the Hamiltonian given in Eq. (1), between the
exchange of the ith and (N − iþ 1)th neutrino, for the
current choice of Jij. While first order Trotter evolution has
been used, higher orders with their improved convergence
have been explored in Ref. [28]. They found that the Trotter
errors from first and second order evolution from the
prepared initial state are significantly smaller than naive
theoretical bounds. Alternative methods for time evolution,
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such as variational fast forwarding [61], should also be
examined.
Two- and three-neutrino correlations.—A term that

appears in the computation of correlation functions is
the expectation value of σz. For this reason, it is interesting
to first compute the inversion probability for a single
neutrino, defined as

PiðtÞ ¼
1

2
ð1 ∓ hσðiÞz iÞ; ð9Þ

where the ∓ sign depends on the initial state of the ith
neutrino (− for νe and þ for νx). Because of the symmetry
of the Hamiltonian (and its Trotterized version), the
inversion probabilities for the ith and (N − iþ 1)th neu-
trino are the same. The results for N ¼ 12 are shown in
Fig. 2, where the two icons in the legend indicate whether a
quantum device (blue) or emulator (yellow) was used to
obtain the results [62], and the N ¼ 8 are in the
Supplemental Material [63]. The uncertainties in the results
are computed via bootstrap resampling. For theN ¼ 8 case,
agreement is found with the results presented in Ref. [28].

For N ¼ 12, both results from H1-1 and H1-1E are
showing somewhat larger deviations from expectations,
but the device has remained coherent (the associated
Supplemental Material [63] gives the numerical values
of the results shown in Fig. 2, and those shown in
subsequent figures).
As a selection of two- and three-body correlations, we

focus on

Cð2νÞ1i ; with 1< i ≤ N; Cð2νÞ1iN ; with 1< i < N;

Cð2νÞi;iþ1; with 1 ≤ i < N; Cð3νÞi−1;i;iþ1; with 1< i < N:

A representative set of correlation functions for N ¼ 12
neutrinos is shown in Fig. 3, and a more complete set can be
found in the Supplemental Material [63]. For the two-body
correlations, results from H1-1 and H1-1E follow the
expected values, although somewhat limited by statistics.
This gets more prominent when looking at the three-body
correlations, where with the current uncertainties most of
the points are consistent with zero. As seen by comparing
the results from H1-1 and H1-1E, increasing the accu-
mulated statistics by factor of 5 makes a substantial
difference, but it remains insufficient. Increasing further
the number of shots would help resolve those small values,
which would be reasonable with, for instance, IBM’s
quantum computers (where usually one works with
≳104 shots). With the possibility of performing more
shots, error mitigation techniques, such as randomized
compiling [64] and decoherence renormalization [65–67],
become viable. While these correlations differ from zero,
with a hierarchy Cð2νÞ > Cð3νÞ, an interesting trend is that

Cð2νÞ1i plateaus at late times, with Cð2νÞ12 reaching a value ∼0.5,
down to ∼ − 0.5 for Cð2νÞ1N . Other limiting patterns are not
found for other computed quantities.
A potential improvement to the current results has been

explored, in which a postselection of the counts that satisfy
the symmetries of the Hamiltonian. This technique has
been used with great success when studying quantum field
theories, e.g., see Refs. [50,67–69]. However, specific to
this system in the flavor basis, b · J is the conserved
quantity (and not Jz), which makes postselection not
feasible in our studies (calculations could be performed
in the mass basis, but the selected initial state would then be
a sum of product states, which would complicate the
calculation of the n-tangle).
Multi-neutrino entanglement.—The N-tangle, τN , is an

interesting measure of multi-neutrino entanglement in these
systems, which is straightforward to compute via

τNðtÞ ¼ jhΨtjσ⊗N
y jΨ�

t ij2 ¼ jhΨ0jeitHσ⊗N
y eitHjΨ0ij2; ð10Þ

(without the need to use the SWAP test [70–72] to compute
the overlap). We have performed such calculations for the
system of N ¼ 4 neutrinos using H1-1 and H1-1E, as

FIG. 1. Circuits for a single Trotter step for (a) N ¼ 4,
(b) N ¼ 6, (c) N ¼ 8, and (d) N ¼ 12 neutrinos, where the
two-neutrino gates are clustered into groups that can be applied in
parallel, showing the linear scaling with N of the circuit depth.

FIG. 2. Flavor inversion probabilities for N ¼ 12 neutrinos.
The lines show the single-step Trotter (continuous) and exact
(dashed) simulations, and the points show the results from H1-1
(dark circles, using 240 shots) and H1-1E (light squares, using
1200 shots).

PHYSICAL REVIEW LETTERS 130, 221003 (2023)

221003-3



shown in the top panel of Fig. 4, where two Trotter steps
have been used in applying eitH. The N ¼ 6 system has
also been studied, but only using H1-1E (and with a single
Trotter step). For the time-range displayed, τN is seen to
decrease rapidly with system size.
To further explore the dependence of multi-neutrino

entanglement with system size, it is interesting to look at τn,
with n < N. For this quantity, a rescaling of the sum of the
τns is found to be helpful,

τ̃n;N ¼ 1

Nn−2

X

i

τðiÞn ; ð11Þ

where the index i in τðiÞn identifies one of the possible ðNnÞ
permutations of σ⊗n

y , e.g., for N ¼ 4 and n ¼ 2, these are
σy ⊗ σy ⊗ I ⊗ I, σy ⊗ I ⊗ σy ⊗ I;…. Figure 5 shows

the rescaled τ̃n;N for different values of N and n. These
quantities are seen to exhibit convergence to a fixed curve
with increasing N, starting for relatively small system sizes.
The time required to reach the plateau region increases with
n, consistent with the notion that more time is required to
entangle n neutrinos than n − 1. Moreover, upon further
investigation, these plateaus are found to be robust against
variations of the two-body coupling strength (increasing or
decreasing the angle of the cone) and vacuum-mixing angle
(more or less oscillatory behavior), the only observed
difference is in the relaxation time (shorter times for wider
cones because the interaction strength Jij is stronger).
While this scaling is somewhat puzzling, it can be

compared to other entangled multiqubit systems, for which
analytic results are available. For example, the GHZ state
has τn¼N ¼ 1 and τn<N ¼ 0, while the W state has τn ¼
0 ∀ n except for τn¼2 ¼ 2ðN − 1Þ=N (with τn ¼

P
i τ

ðiÞ
n

for n < N). A system that has similar scaling is the product

FIG. 4. N-tangle τN for N ¼ f4; 6g neutrinos on a linear (top)
and log (bottom) scale. The lines show the Trotter (continuous) or
exact (dashed) simulation, and the points show the results from
H1-1 (dark circles, using 480 shots) and H1-1E (light squares,
using 1200 shots).

FIG. 5. The rescaled n-tangle, τ̃n;N , defined in Eq. (11), for
n ¼ f2;…; 12g and N ¼ f4;…; 18g neutrinos.

FIG. 3. Two-body correlation for N ¼ 12 neutrinos. The lines
show the single-step Trotter (continuous) or exact (dashed) sim-
ulation, and the points show the results from H1-1 (dark circles,
using 240 shots) and H1-1E (light squares, using 1200 shots).

FIG. 6. Comparison of two scalings of the n-tangles, Nn=2

(continuous line) as found for systems of Bell pairs, and Nn−2

(dashed line) as we have identified from the time evolution, for
different values of n and system sizes N, normalized to τn¼N ¼ 1.
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of N=2 Bell pairs, with τn ¼ ð N=2
N=2−n=2Þ ∼ Nn=2. Comparing

this with the scaling from Eq. (11), the n-tangle grows
faster for the neutrino state than the Bell-pairs state with
system size (except for τ2 and τ4), as depicted in Fig. 6.
This implies that there is multi-neutrino entanglement,
beyond the two-neutrino entanglement found in the
(N=2)-product Bell-pairs state.
The present analysis concerns the coherent flavor oscil-

lations of a mono-energetic neutrino gas starting in a
mixed-flavor pure state. To gain an understanding of such
dynamics in a mixed state, we have also examined the
impact of different initial states for the evolution, and find
that the values of n-tangle depend upon the initial state in
nontrivial ways. A monoflavor initial state gives vanishing
n-tangle, while an initial state with a single distinct flavor
has nonzero 2-tangle, resembling a W-state (the oscillations
are too large to discriminate between the different N
scalings, consistent with 2ðN − 1Þ=N or Nn−2). Gases of
different energy neutrinos can be described within this
framework through different values of b in Eq. (2).
Summary and conclusions.—The time evolution of

multi-neutrino quantum correlations and entanglement in
dense neutrino systems is studied for systems of N ¼ 4, 6,
8, and 12 neutrinos using Quantinuum’s H1-1 20 qubit
trapped ion quantum computer and its associated noisy
emulator H1-1E. The central reason for including and
developing methods for implementation on quantum com-
puters is that determining the entanglement of the larger
systems that will be required as input into realistic
astrophysical simulations will need quantum simulations
of such systems with larger numbers of neutrinos (than in
this work). We have chosen to study the n-tangle in order to
provide insight into the multiparticle entanglement struc-
ture of the systems. Compared to other entanglement
witnesses, the n-tangle is straightforward to compute using
a quantum computer (at least for a single product state, as
considered here), since it does not require state tomogra-
phy. The behavior of rescaled sums over n-tangles are
found to converge to universal curves with increasing
system sizes, that depend upon the parameters of the
Hamiltonian, with late-time plateaus. Further, the magni-
tudes of the n-tangles are found to increasingly exceed that
of systems comprised of neutrino Bell pairs, indicating the
presence of genuine multi-neutrino entanglement in col-
lective coherent neutrino flavor oscillations in dense
systems.
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