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If dark matter interacts too strongly with nuclei, it could be slowed to undetectable speeds in Earth’s crust
or atmosphere before reaching a detector. For sub-GeV dark matter, approximations appropriate for heavier
dark matter fail, necessitating the use of computationally expensive simulations. We present a new, analytic
approximation for modeling attenuation of light dark matter in Earth. We show that our approach agrees
well with Monte Carlo results, and can be much faster at large cross sections. We use this method to
reanalyze constraints on subdominant dark matter.
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Introduction.—Despite making up most of the mass in
the Universe, the particle nature of dark matter (DM)
remains unknown [1]. The most frequently studied candi-
date is the GeV-scale weakly interacting massive particle,
but the lack of a discovery after decades of searching has
led to increased interest in other candidates [2–8]. These
include sub-GeV DM, which could have evaded detection
by carrying too little energy to trigger detectors [8–46].
DM with masses 1 MeV≲Mχ ≲ 1 GeV can be produced
in a variety of frameworks, including hidden sector models
[43,47–51], models involving a dark photon [51–56],
and strongly interacting particles that undergo 3 to 2
annihilation [37,57,58].
Another topic that has attracted recent interest is sub-

dominant DM, i.e., particles that make up only a small
fraction of DM, which could have evaded detection because
of their low flux [9,43,50,51,59–73]. The models of
Refs. [9,43,50,51] fall under both categories, as they can
contain multiple DM states, including a subdominant state
with mass around 100 MeV. Dark photon models can also
produce small relic densities and large cross sections,
resulting in a population of subdominant, strongly inter-
acting DM [72].
Experimental sensitivity to both light and sub-

dominant DM is limited to relatively large cross sections:
for light DM, because the detectors sensitive to it are
optimized for low energy threshold rather than large

exposure, and for subdominant DM, because of its small
flux. This makes attenuation of DM in Earth’s crust or
atmosphere a serious concern in both cases. For heavy DM,
modeling attenuation by assuming straight particle trajec-
tories is a valid and common simplification [29,74–81]. But
for light DM, although the straight-line assumption may
give reasonably accurate results in some cases [75,82–84],
this is not always true [85], and accurately modeling DM
trajectories has previously required detailed Monte Carlo
methods [25,81,83,86–91]. Accurately assessing direct
detection limits is crucial when proposing new DM
searches, but can be computationally expensive when using
Monte Carlo simulations.
In this Letter, we describe a novel method of modeling

DM attenuation, which has applications to direct detection
as well as DM capture in planets, the Sun, neutron stars,
white dwarfs, and various other media [92–119]. We start
from the more accurate approximation that light DM
particles do not follow straight trajectories, but scatter
isotropically in the lab frame when colliding with nuclei.
Our method computes probabilities of reaching detector
depth analytically, without needing to simulate large
numbers of particles, making it feasible in the limit of
many scatterings. We validate this method through com-
parison with Monte Carlo results, and compute limits on
subdominant DM, showing that direct detection experi-
ments exclude significantly less parameter space than
claimed in previous work.
Modeling of attenuation: Monte Carlo approach.—

Monte Carlo codes model DM propagation by simulating
the trajectories of individual particles. After a particle is
initialized with speed and arrival direction drawn from the
DM velocity distribution, its mean free path is computed,
and its position incremented by a distance drawn from the
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corresponding path length distribution. When the particle
scatters with a nucleus, the isotope and scattering angle are
drawn from the relevant probability distributions, and the
velocity is updated. This process is repeated until the
particle either reaches detector depth (such codes often
neglect backscattering from below the detector), scatters
out of the atmosphere, or loses too much energy to be
detected. This process is repeated for thousands or millions
of particles, until enough statistics are collected to accu-
rately represent the velocity distribution at the detector.
Sophisticated Monte Carlo codes such as DaMaSCUS

[86,90] model the three-dimensional geometry of Earth
and take the DMwind into account, though we neglect both
of these effects in our calculations. Because the rotation
of Earth produces a wide temporal variance in arrival
direction [75], and light particles scatter through large
angles, we expect this effect in the limit of many scatterings
to be negligible.
The Monte Carlo approach accurately models the rel-

evant physical processes on a particle-by-particle basis,
accounting for fluctuations in scattering angle and number
of collisions. The major weakness is that as the number of
scatterings increases, the computational power needed to
compute the DM event rate in a detector increases rapidly:
not only must each particle be propagated through more
collisions, but more particles must be propagated in order to
obtain sufficient statistics. This causes the computation
time to increase exponentially with cross section. This
problem can be severe enough to necessitate the use of
specialized rare-event techniques, such as importance
sampling or importance splitting [85,87].
Convolutional approach.—We present an alternative to

the Monte Carlo approach. Rather than simulating indi-
vidual particles, we analytically compute the probability of
reaching detector depth z in n scatterings. Our approach can
be compared to Ref. [120], which conservatively modeled
attenuation by considering only particles that do not scatter,
and Ref. [121], which considered particles that scatter at
most once. In contrast, this work computes the velocity
distribution for all particles, up to an arbitrary number of
collisions.
We start by asking what fraction of DM particles reach a

depth z without scattering. For a mean free path l, the
probability density for traveling a distance x before
scattering is

PinitialðxÞ ¼
1

l
e−x=l: ð1Þ

Assuming that DM arrives isotropically (from above), and
integrating over the zenith angle, the probability density of
reaching depth z without scattering is

P0ðzÞ ¼
1

l
Γð0; z=lÞ ¼ −

1

l
Eið−z=lÞ; ð2Þ

where Γði; xÞ is the upper incomplete γ function, and EiðxÞ
is the exponential integral.
Next, we need the probability density of reaching depth z

after scattering exactly once. This is the probability density
of reaching an intermediate depth z0, times the probability of
going from z0 to z without scattering, integrated over all
values of z0. In other words, a convolution of two probability
distributions:

P1ðzÞ ¼
Z

P0ðz0ÞPðz − z0Þdz0: ð3Þ

We worked out P0ðzÞ above, so we just need the
second piece. As mentioned in the Introduction, we now
make the simplifying assumption that DM scatters iso-
tropically in the lab frame when colliding with nuclei.
The relationship between the lab-frame and CM-frame
(center of momentum) scattering angles is given by
tan θlab ¼ ½sin θCM=ðcos θCM þMχ=MAÞ�, so as long as
Mχ ≪ MA, isotropic scattering in the CM frame leads to
approximately isotropic scattering in the lab frame. By
analogywith the case for an isotropic flux, the resulting form
for Pðz − z0Þ is

Pðz − z0Þ ¼ 1

2l
Γ½0; jðz − z0Þ=lj�; ð4Þ

where the factor of 2 and the absolute value account for the
fact that the DM could scatter in either the upward or
downward direction. The resulting probability density to
reach detector depth in one scattering is

P1ðzÞ ¼
Z

∞

0

1

l
Γð0; z0Þ 1

2l
Γð0; jz − z0j=lÞdz0: ð5Þ

This process can now be iterated: to compute the
probability density of reaching detector depth after n
scatterings, we simply compute

PnðzÞ ¼
Z

∞

0

Pn−1ðz0Þ
1

2l
Γð0; jz − z0j=lÞdz0: ð6Þ

The Γ function and probability distribution both fall off
rapidly as z0 → ∞, so the upper integration limit can be set
to a finite value that is large compared to the detector depth
with minimal loss of accuracy. Setting the upper limit to
exactly the detector depth is equivalent to not considering
backscattering from below the detector. Throughout this
Letter we usually neglect backscattering, in order to
properly compare with results that also neglected it, but
we include backscattering for the CRESST underground
run (see below).
We now compute the energy distribution of DM

particles after n scatterings. For spin-independent scatter-
ing, as long as the DM kinetic energy is low enough
that the form factor is negligible, DM-nucleus scattering is
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isotropic in the c.m. frame, leading to a flat energy loss
distribution:

PðΔEÞ ¼ 1

Emax
θðEmax − ΔEÞ: ð7Þ

A realistic overburden consists of multiple nuclei. In this
case, the energy loss distribution after one collision is a sum
over different nuclei, weighted by the relative probability of
scattering with nucleus of type A:

PðΔEÞ ¼
P

A
nAσχA
Emax;A

θðEmax;A − ΔEÞP
AnAσχA

: ð8Þ

Given an energy spectrum ðdN=dEÞn−1ðEÞ before scat-
tering, the spectrum after scattering, with the DM losing
energy ΔE with probability PðΔEÞ, is found through a
change of variables and integration over the probability
distribution:

dN
dEn

ðEÞ ¼
Z �

E
E − ΔE

�
dN
dEn−1

�
E2

E − ΔE

�
PðΔEÞdΔE:

ð9Þ
The energy spectrum of DM that reaches detector depth

is then a weighted sum over the spectra after all scatterings:

dN
dEtotal

ðz; EÞ ¼
X∞
n¼0

Z
∞

z
Pnðz0Þdz0

dN
dEn

ðEÞ: ð10Þ

In practice, this sum can be truncated when additional
scatterings produce a negligible flux above threshold. In
this Letter, we truncate the sum at 300 scatterings, unless
the cross section is small enough that over 90% of the
incoming DM flux either reaches detector depth or is
scattered out of the atmosphere in fewer scatterings, in
which case it is truncated sooner. With this energy
spectrum, one can compute nuclear recoil rates in a
detector, and determine whether that detector is sensitive
to the specified DM mass and cross section.
Comparison with Monte Carlo results.—Figure 1 shows

the velocity distribution at a depth of 1400 m for Mχ ¼
100 MeV and σχn ¼ 5 × 10−30 cm2. The multicolored
curves show our computation of the cumulative velocity
distributions of particles that scatter zero to 1000 times.
That is, the lowest curve is the flux of particles that reach
1400 m without scattering, the next is the flux of particles
that scatter up to one time, etc. The solid black curve is the
result of the DaMaSCUS-CRUST Monte Carlo code [83,91].
The high-velocity cutoff is not physical, but results from the
simulation struggling to sample the extremely small flux at
high velocity. For comparison, we also show the straight-
line approximation used by, e.g., Refs. [29,72,75]. In this
case, the high-velocity cutoff is a characteristic feature, as
the method assumes that all particles of a given initial
velocity lose the same amount of energy. The method of

this Letter produces a much better fit than does the straight-
line approximation.
Figure 2 compares the run-time of our method with

that of the DaMaSCUS-CRUST Monte Carlo code [83,91],
for cross sections near the ceiling for the CRESST under-
ground run (see the following section), and depth of
1400 m. The blue line is the run-time needed for our
method to model particles through 100 scatterings.
Increasing this number to 300 or 1000 scatterings has little
effect on the high-velocity end of the spectrum, because
after so many scatterings most particles would have lost
most of their energy. The green curves are the time needed
to obtain a sample of 100 particles capable of triggering
CRESST-III using DaMaSCUS-CRUST. The solid curve
uses the default settings, while the dashed curve uses
importance splitting (see Ref. [85] for details). Although
the Monte Carlo method is faster than ours at small cross
sections, its run-time increases exponentially with σχn,
while the run-time for ours is flat.
Loosening constraints on subdominant dark matter.—

Ceilings for numerous direct detection analyses have
been computed using Monte Carlo and analytic methods
[45,46,75,81–83,87,120]. However, these analyses all
assumed that the particle they consider makes up all of
the DM (fDM ¼ 1). Recent papers on subdominant DM
have not computed detector ceilings numerically, instead
using approximate methods or taking ceilings from existing
references. Focusing on the CRESST surface run and the

FIG. 1. Velocity distribution of DM at a depth of 1400 m,
normalized to the fraction of the incoming flux that reaches the
detector, forMχ ¼ 100 MeV and σχn ¼ 5 × 10−30 cm2. The bold
black curve is the Monte Carlo result, dashed black curve is the
straight-line approximation. The colored curves are the cumu-
lative distributions of particles that scatter 0 to 1000 times,
computed using the method of this Letter (number of scatterings
is labeled for four example curves).
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CRESST-III underground analysis [17,27], we show that
the ceiling of such an exclusion region can change
significantly for fDM ≪ 1. As a baseline, we compare
our results to the exclusion regions shown in Ref. [72], for
fDM ¼ 1, 10−3, and, 10−6.
CRESST surface run.—Figure 3 shows our computation

of the CRESST surface run exclusion region. We neglect
backscattering from below detector depth, as was done in
the Monte Carlo approach of Ref. [83]. The ceiling depends
on the value of fDM because, at large cross sections, the
probability of reaching the detector with high velocity
becomes quite small (see Fig. 1). If the total DM flux is
made smaller, then the probability of having high velocity
must be made larger for the DM to be detectable, so the
ceiling must be lower. The difference between the bottoms
of our exclusion regions and those of Ref. [72] is that our
treatment only considers DM arriving from above the
horizon. The CRESST analysis (and by extension
Ref. [72]) most likely assumed that Earth was transparent
to DM, which is reasonable near the bottom of their
fDM ¼ 1 exclusion region. But for the parameter space
shown, DM would have to scatter O(1000) times to cross
the whole Earth, so it is reasonable to assume that ∼1=2 of
the DM flux is blocked. In contrast with Ref. [72], we find
that the CRESST surface run cannot exclude parameter
space for fDM ¼ 10−6, because the flux is not sufficiently
large to overcome attenuation.
There is a slight discrepancy between our ceiling for

fDM ¼ 1 and the original Monte Carlo result of Ref. [83].
However, improvements to the DaMaSCUS-CRUST code

have since lowered the Monte Carlo ceiling by a few
tens of percent at low masses, bringing these lines into
good agreement (see Ref. [122]; see recent updates
to Ref. [91]).
CRESST underground limits.—Reference [72] also com-

puted the ceiling for the CRESST-III underground run [27],
for fDM ¼ 1, using a straight-line approximation. Such
approximations have been shown to be accurate [83] or
even conservative [87] when compared to numerical
simulations, although Ref. [85] comes to the opposite
conclusion. Here we compute the ceiling for this
detector using the method described above in Modeling
of attenuation, including backscattering, for different
values of fDM.
Figure 4 shows our computation of the CRESST-III

exclusion region for fDM ¼ 1, 10−3, and 10−6, compared to
the straight-line approximation for fDM ¼ 1. For fDM ¼ 1,
we see that while the results agree at large mass, the
straight-line result underestimates the ceiling by a factor of
a few below about 1 GeV. We also see that for fDM ¼ 10−6,
the straight-line result overestimates the ceiling by a factor
of several. This means that, for highly subdominant DM,
underground detectors constrain less parameter space than
the straight-line approximation would suggest. Note that at
the ceiling for fDM ¼ 1, and Mχ ¼ 200 MeV, this Letter’s
method is faster than the Monte Carlo method with
importance splitting by about an order of magnitude
(see Fig. 2).

FIG. 2. Comparison of the run-time for our method (blue line)
and Monte Carlo method (green line), on a single core, forMχ ¼
200 MeV and detector depth of 1400 m. The solid blue curve
tracks DM through 100 scatterings. The solid green line is the
timing to obtain 100 particles able to trigger the CRESST-III
detector with DaMaSCUS-CRUST, while the dashed green line is the
same using the importance splitting algorithm.

FIG. 3. Solid black line shows exclusion region for the
CRESST surface run for fDM ¼ 1, computed via Monte Carlo
method in Ref. [83] and used in Ref. [72]. Dashed and dotted
black line with a solid black ceiling are the exclusion regions for
fDM ¼ 10−3 and 10−6, respectively, reported in Ref. [72]. Solid
and dashed red lines are our computed regions for fDM ¼ 1 and
10−3, respectively; we find that the CRESST surface run is not
sensitive to fDM ¼ 10−6. See the section CRESST surface run for
a discussion of why fDM affects the ceiling.
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In this section, we have used the exclusion regions from
Ref. [72] as a baseline for comparison, but our goal is not to
criticize their approach. We only use them as an example of
treatments that are common in the literature. In fact, our
results show that the limits from Ref. [72] exceed the
CRESST limits more than previously appreciated.
Conclusions.—When searching for dark matter, it is

crucial to understand what parameter space has already
been excluded, in order to effectively design new searches
and interpret existing results. However, treating attenuation
with a detailed Monte Carlo approach can be computa-
tionally intensive, leading to the use of approximate
methods or simplified rescaling of existing limits. In this
Letter, we present a novel method for modeling dark matter
attenuation, which is more appropriate than the straight-line
approximation for light dark matter, and faster than
Monte Carlo methods for large cross sections. We reana-
lyze constraints on subdominant dark matter from multiple
CRESST detectors, showing that they exclude less param-
eter space than previously thought.
As new technologies and analysis methods allow ever-

lower energy thresholds, detectors will become sensitive to
lighter dark matter, and to particles that have lost more
energy in propagation. This will necessitate propagation
methods that are valid for light dark matter and feasible in
the limit of many scatterings, two limits which our method
is tailor-made to handle. In principle, our approach can also
be applied to DM interactions in neutron stars and white
dwarfs, where the high density leads to many scatterings

even for small cross sections. It could also be applied to
other physical processes, such as neutrons propagating
through dense media.
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