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There are various research strategies used for non-Hermitian systems, which typically involve
introducing non-Hermitian terms to preexisting Hermitian Hamiltonians. It can be challenging to directly
design non-Hermitian many-body models that exhibit unique features not found in Hermitian systems. In
this Letter, we propose a new method for constructing non-Hermitian many-body systems by generalizing
the parent Hamiltonian method into non-Hermitian regimes. This allows us to build a local Hamiltonian
using given matrix product states as its left and right ground states. We demonstrate this method by
constructing a non-Hermitian spin-1 model from the asymmetric Affleck-Kennedy-Lieb-Tasaki state,
which preserves both chiral order and symmetry-protected topological order. Our approach opens up a new
paradigm for systematically constructing and studying non-Hermitian many-body systems, providing
guiding principles for exploring new properties and phenomena in non-Hermitian physics.
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Introduction.—Non-Hermitian physics has attracted
much attention both theoretically [1–10] and experimen-
tally [11–17] for describing open systems [18], such as
photonics [19] and acoustics [20,21] with gain and loss,
as well as quasiparticles in interacting or disordered
systems [22,23]. It has also revealed nontrivial properties
that have no Hermitian counterpart [24–29].
However, many recent studies revealing nontrivial prop-

erties of non-Hermitian systems have focused on the single-
particle picture [30–32]. One reason for this is that many
powerful numerical methods for Hermitian quantum many-
body models, such as the density matrix renormalization
group [33,34] and quantum Monte Carlo methods [35],
cannot be directly applied to non-Hermitian systems. Some
modified algorithms also suffer from unstable convergence
[36,37] and incapability near exceptional points [38–40].
Therefore, it is interesting to consider the opposite ques-

tion: can we construct a non-Hermitian Hamiltonian from a
pair of easily engineered states that preserve desired proper-
ties, rather than having to extract various properties from a
given Hamiltonian? In Hermitian systems, this task can
be achieved using the parent Hamiltonian method [41,42],
which allows for the construction of a local, gapped
Hamiltonian whose ground state is represented by a matrix
product state (MPS) [43–47]. However, this method cannot
be directly applied to non-Hermitian systems.
In this Letter, we present a method for constructing

non-Hermitian parent Hamiltonians (NH-PHs) by general-
izing the conventional Hermitian approach. We provide
criteria for states that can be used to establish a NH-PH and
derive the explicit form of the Hamiltonian. As an example,
we construct a non-Hermitian model from asymmetric

Affleck-Kennedy-Lieb-Tasaki (AKLT) states [48] and
examine its physical properties in the thermodynamic limit
using the generalized infinite time-evolving block decima-
tion (iTEBD) method [49,50]. We find that the model
has two nontrivial orders: chiral order detected by a local
order parameter and symmetry-protected topological (SPT)
order [51–53] detected by a string order parameter [54].
Non-Hermitian parent Hamiltonian.—The expectation

value of any observable hÔi for a general non-Hermitian
system can be evaluated in different ways [55–58]. Here,
we choose the formalism discussed in [55] to calculate the
expectation as

hÔiLR ¼ hLjÔjRi=hLjRi; ð1Þ

which has a clear geometric interpretation [59]. Here, jRi
and jLi are the ground states of H and H†, respectively,
which are defined as the eigenstates with the lowest real
parts of the eigenvalues. As a result, many more novel
properties emerge in non-Hermitian systems since we have
more degrees of freedom in choosing hLj independent of
jRi than in the Hermitian case, where expectation values
are evaluated under hÔiRR ¼ hRjÔjRi=hRjRi. A natural
question arises: can such a system be constructed, i.e.,
can we find a non-Hermitian Hamiltonian that has the
given hLj and jRi as its corresponding ground states? In
the following, we answer this question for MPSs,
which satisfy the entanglement area law and can describe
ground states of one-dimensional (1D) local and gapped
Hamiltonians [60,61]. The same argument can be easily
extended to higher dimensions.
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In this context, we consider 1D translation-invariant (TI)
and injective MPS [42] jRi and jLi shown in Figs. 1(a)
and 1(b), written as

jRðLÞi ¼
X

i1;…;iN

Tr
h
A½i1�
RðLÞ;…; A½iN �

RðLÞ
i
ji1;…; iNi; ð2Þ

with the same virtual bond dimension D and physical bond
dimension d. A detailed explanation of MPSs is shown in
the Supplemental Material [50]. As shown in Figs. 1(c)
and 1(d), tensors after contracting k neighboring sites can
be regarded as maps from virtual to physical degrees of
freedom, i.e., T̂R ¼ jpiTRðrj and T̂†

L ¼ jlÞT†
Lhpj. Here, jpi

is the collective physical basis and jrÞ [ðlj] is the collective
virtual basis of jRi (hLj). TR and TL are coefficient
matrices. The local support spaces HR and HL are the
images of T̂R and T̂L, respectively. With the injectivity
condition, we can choose a large enough k such that dk ≥
D2 and dimHR ¼ dimHL ¼ D2 [42].
We aim to find a local Hamiltonian in the form

Ĥ ¼ P
i Π̂i, where each Π̂i ¼ Î − P̂i acts on k local sites

and ensures that hLj and jRi are zero-energy modes. Here,
P̂i is a projector with P̂2

i ¼ P̂i. In other words, we require
P̂i and P̂†

i to be projectors onto HR and HL, respectively,

P̂iT̂R ¼ T̂R; T̂†
LP̂i ¼ T̂†

L: ð3Þ

Meanwhile, we require rankP̂ ¼ rankP̂† ¼ D2. Therefore,
the most general form of a projector can be written as (the
site index i has been omitted for simplicity)

P̂ ¼ jpiTRCT
†
Lhpj ¼ T̂RĈT̂

†
L; ð4Þ

where C is a D2 ×D2 matrix and Ĉ ¼ jrÞCðlj is its
operator form. The matrix elements are determined by
Eq. (3), T̂RĈT̂

†
LT̂R ¼ T̂R. As rankT̂R ¼ rankT̂†

L ¼ D2, this
gives

Ĉ ¼ ðT̂†
LT̂RÞ−1 ≡ Ĝ−1: ð5Þ

Therefore, the metric operator Ĝ ¼ jlÞGðrj shown in
Fig. 1(e) must be invertible and can fully determine the
k-local Hamiltonian shown in Fig. 1(f)

Π̂ ¼ Î − T̂RĈT̂
†
L ¼ jpiIhpj − jpiTRG−1T†

Lhpj: ð6Þ

In Fig. S1 in the Supplemental Material [50], we verify
Eq. (3) in a straightforward way.
We note that Ĝ−1 is simply the operator used to

biorthogonalize HR and HL. In other words, if we perform
the transformations TR → TRG−1 and TL → TL, T̂L and
T̂R become orthogonal operators

T̂ 0†
L T̂

0
R ¼ jlÞT†

LTRG−1ðrj ¼ Î: ð7Þ

On the other hand, the ability to perform biorthogonaliza-
tion guarantees the existence of NH-PHs, as proved in
the Supplemental Material [50]. As a specific example,
when we set T̂L ¼ T̂R, our method reproduces the conven-
tional Hermitian projector, but with a clearer physical
interpretation.
By referencing the proof in Ref. [42], we see that the

given right (left) state is guaranteed to be the unique zero-
energy eigenstate of Ĥ (Ĥ†) by construction. However, the
zero mode is not necessarily the ground state due to non-
Hermiticity. Specifically, we have hĤi ¼ hψ jPi ĥijψi ¼P

ihψ jĥijψi ≥
P

i E0;i for a Hermitian parent Hamiltonian,
where E0;i is the ground state energy of the local term ĥi.
Thus, the total system energy is bound by the local ground-
state energies. However, this inequality no longer holds
in the non-Hermitian regime. ℜðhψ jĥijψiÞ can be even
smaller than ℜðE0;iÞ (which equals to 0 in our NH-PH),
implying the existence of a negative energy eigenstate. As a
consequence, the bound on the total energy disappears,
and the common ground state of local projectors is not
necessarily the global ground state. This phenomenon often
occurs when non-Hermitian effects are significant but
can be reduced by increasing the interaction length k, as
demonstrated in the following example.
PT symmetry.—In the following, we consider non-

Hermitian systems with PT symmetry. These systems
are particularly noteworthy because their spectra only
contain real numbers or conjugate pairs [1,62,63], and
they can be easily implemented and maintained in our
NH-PH by designing jRi and hLj.
We construct a pesudo-Hermitian Hamiltonian [5]

satisfying that P̂Ĥ†P̂−1 ¼ Ĥ and T̂ Ĥ†T̂ −1 ¼ Ĥ, where

FIG. 1. Construction of non-Hermitian parent Hamiltonian for
k ¼ 2. (a),(b) Translation-invariant MPS. (c),(d) Local tensors
T̂R ¼ jpiTRðrj and T̂†

L ¼ jlÞT†
Lhpj. (e) The metric operator

Ĝ ¼ T̂†
LT̂R. (f) The local projector Π̂ ¼ Î − T̂RĈT̂

†
L. (g) The

transfer matrixE constructed from tensors Ab and A�
a. (h) The RG

fixed point E∞ and the corresponding G∞.
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P̂ and T̂ ¼ eiπŜy K̂ are the parity symmetry and time-
reversal symmetry operators, respectively. This results in
the PT joint symmetry P̂ T̂ ĤðP̂ T̂ Þ−1 ¼ Ĥ. Meanwhile,
the above condition requires that the ground state of
H and H† be connected by similar transformations P̂ or T̂ .
To construct such a non-Hermitian Hamiltonian, we
need a TI MPS that does not preserve P̂ or T̂ symmetry
itself, but satisfies the joint symmetry conditionP

jðe−iπŜyÞi;jðA½j�Þ� ∝ M−1ðA½i�ÞTM. Here, P̂ is realized
by exchanging two virtual indices for a TI MPS, and M is
an arbitrary gauge on the virtual indices of the right
ground state jRi. The left ground state is chosen as
jLi ¼ P̂jRi, whose tensors are given by A0½i� ¼ ðA½i�ÞT.
Asymmetric AKLT model.—We use the asymmetric

AKLT state as the right ground state jRi ¼ jΦμi [48],
which satisfies the aforementioned conditions. This state
can be represented by an MPS with the following nonzero
elements:

A½1�
μ;↓↑ ¼ −

ffiffiffi
μ

p
; A½−1�

μ;↑↓ ¼ ffiffiffi
μ

p
;

A½0�
μ;↑↑ ¼ 1=

ffiffiffi
2

p
; A½0�

μ;↓↓ ¼ −μ=
ffiffiffi
2

p
: ð8Þ

Its entanglement structure is similar to that of the AKLT
state, with an asymmetric underlying valence bond j↑↓i −
μj↓↑i tending toward one side. It is worth noting that jLi ∝
jΦ1=μi since their local tensors are related by a gauge

transformation on virtual indices ðA½i�
μ ÞT¼−μσ̂yA

½i�
1=μσ̂y [50].

First, we focus on the region μ ∈ ½0; 1� for simplicity, and
will reveal the reason later. To calculate the expectation
value of any observable hOiLR in the thermodynamic limit,
we need to evaluate the composed transfer matrix [44,45]
defined in Fig. 1(g) using Ab ¼ Aμ and Aa ¼ AT

μ . On the
basis f↑↑;↑↓;↓↑;↓↓g, we obtain

Eμ;ðαβ;α0β0Þ ¼
�
1

2

�
⊕

�− μ
2

μ

μ − μ
2

�
⊕

�
μ2

2

�
; ð9Þ

whose eigenvalues are f1
2
;−ð3μ=2Þ; ðμ=2Þ; ðμ2=2Þg [50].

At μ ¼ 1
3
, there is a “level crossing” transition for the

dominant eigenvector of Eμ. We will study this transition
from the renormalization group (RG) perspective and
conclude that it is a unique phenomenon that can only
occur in non-Hermitian systems.
Implementation of a RG aims to remove short-range

entanglement and study long-range patterns. This can be
achieved from the fixed point of E via grouping infinite
local tensors [52], i.e., E∞ ¼ limk→∞ðE=λÞk with λ being
the dominant eigenvalue. When μ > 1

3
, the fixed point

transfer matrix [50]

E∞
μ;ðαβ;α0β0Þ

�
μ>

1

3

�
¼ 1

2
ð0Þ⊕

�
1 −1
−1 1

�
⊕ ð0Þ; ð10Þ

is the same as that of the conventional AKLT state up to a
gauge, indicating that the non-Hermitian system is in the
same AKLT phase for μ > 1

3
. On the contrary, E∞

ðαβ;α0β0Þðμ <
1
3
Þ ¼ Diagf1; 0; 0; 0g is equivalent to a transfer matrix con-
structed from two product states, where any local observable
would have a trivial expectation value. Therefore, there is a
quantum phase transition from the AKLT phase to the trivial
phase at μc ¼ 1

3
, which can be detected by a chiral order

parameter that will be introduced later.
At the same time, the corresponding metric matrix

G∞
ðαα0;ββ0Þðμ < 1

3
Þ ¼ Diagf1; 0; 0; 0g shown in Fig. 1(h) is

not invertible, implying that the ability to biorthogonalize
the local Hilbert spaces H∞

R and H∞
L will be destroyed

during the RG process. Thus, it is impossible to create a
projector-form NH-PH for k → ∞, even if G is invertible
for finite k. In summary, this new kind of phase transition
without a Hermitian counterpart originates from the mis-
match between the left and right ground states at the RG
fixed point.
Chiral order and SPT order.—The asymmetric under-

lying valence bonds j↑↓i − μj↓↑i and−μj↑↓i þ j↓↑i tend
in opposite directions in jRi and jLi, implying an interest-
ing chiral property. To detect this chiral order, two non-
Hermitian order parameters are introduced Ôleft ¼ 1

2
Ŝþi Ŝ

−
iþ1

and Ôright ¼ 1
2
Ŝ−i Ŝ

þ
iþ1. The chiral order parameter is then

defined as Ôchiral ¼ Ôright − Ôleft. As a comparison, we also
consider ÔAF ¼ Ŝzi Ŝ

z
iþ1, which is commonly adopted to

detect the conventional antiferromagnetic (AF) order [50].
The results for the non-Hermitian case are shown in
Fig. 2(a). For 1

3
< μ < 3, we obtain

hÔAFi¼−
4

9
; hÔlefti¼−

4μ

9
; hÔrighti¼−

4

9μ
: ð11Þ

FIG. 2. Order parameters evaluated under different μ. The x
axis is presented in a log scale. (a) and (c) The expectation values
of chiral and string order parameters for non-Hermitian systems.
(b) and (d) The same for Hermitian systems.
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At the AKLT point μ ¼ 1, the state is isotropic with
hÔAFi¼ hÔlefti¼ hÔrighti. Meanwhile, sgnhÔchirali changes
when μ passes by 1, demonstrating the chiral property of
different directions. In contrast, if we choose jLi ¼ jRi in
Fig. 2(b), hÔchirali ¼ 0 for all values of μ. This is because
the chiral order parameter Ôchiral is anti-Hermitian, meaning
that ℜðhψ jÔchiraljψiÞ ¼ 0 for any jψi. As a result, such a
nontrivial chiral order cannot be realized in Hermitian
systems.
In addition, there is a duality μ ∼ ð1=μÞ for H ∼H†,

which is induced by the parity operation, i.e.,
j↑↓i− μj↓↑i→ −μj↑↓i þ j↓↑i ¼ −μðj↑↓i− ð1=μÞj↓↑iÞ.
Since H and H† share the same energy spectrum, this
relation directly gives the isotropic point μ ¼ 1 and
explains why the transitions from nontrivial to trivial
systems occur in pairs at μ ¼ 1

3
and μ ¼ 3. For the same

reason, the chiral order parameter in Fig. 2(a) is
centrosymmetric.
Our system also exhibits nontrivial SPT order. We use

Ôstringði; jÞ ¼ Ŝzi ð
Qj−1

k¼iþ1 e
iπŜzkÞŜzj, which was previously

adopted for the conventional AKLT state [54,64], to detect
the SPT order in our non-Hermitian system. Its expectation
value can be calculated analytically in the thermodynamic
limit [48,50], and the result is shown in Fig. 2(c). For
1
3
< μ < 3, the system preserves perfect nondecaying string

order hÔstringi ¼ − 4
9
for any string length, indicating that it

is in the same SPT phase as the conventional AKLT model.
Nevertheless, the string order vanishes for μ < 1

3
and μ > 3,

showing that it is similar to a trivial product state. This is
consistent with previous discussions. In contrast, for the
Hermitian system shown in Fig. 2(d), the string order
parameter also saturates to a nonzero value for all μ [50],
but the value becomes smaller as μ deviates from the
AKLT point.
Parent Hamiltonian.—Here, we explicitly construct a TI

non-Hermitian Hamiltonian to realize the aforementioned
chiral and SPT orders with k ¼ 2, i.e., with only nearest-
neighbor interactions [50]

Π̂ðμÞi ¼
5

12

�
μ

2
Ŝ−i Ŝ

þ
iþ1 þ

1

2μ
Ŝþi Ŝ

−
iþ1 þ Ŝzi Ŝ

z
iþ1

�
þ 2

3

þ 1

6

�
μ2

4
Ŝ−2i Ŝþ2

iþ1 þ
1

4μ2
Ŝþ2
i Ŝ−2iþ1 − Ŝz2i − Ŝz2iþ1

�

þ 1

24

�
μŜ−zi Ŝþz

iþ1 þ
1

μ
Ŝþz
i Ŝ−ziþ1

�
þ 1

4
Ŝz2i Ŝ

z2
iþ1; ð12Þ

where Ŝ�z ¼ Ŝ�Ŝz þ ŜzŜ�. It is obvious that ĤðμÞ ¼P
i Π̂ðμÞi does not preserve either P̂ (exchanging site i

and iþ 1) or T̂ (Ŝz → −Ŝz, Ŝþ → −Ŝ−, Ŝ− → −Ŝþ)
individually, but remains unchanged when P̂ and T̂ are
combined.

We use exact diagonalization to investigate the energy
spectrum for small systems and find that the spectrum for
open boundary condition is identical for all μ > 0 [50],
with fourfold degenerate ground states as a characteristic
property of SPT [51]. We also calculate the spectrum under
periodic boundary condition and show that the Hamiltonian
remains gapped for a wide range of μ via finite-size scaling
to N → ∞, as shown in Fig. S5 in the Supplemental
Material [50].
According to previous sections, the phase transitions

occur at μc ¼ 1
3
and μc ¼ 3 for k → ∞. In this case,

eigenvalues with negative real parts will not appear, and
the invertibility of G∞ is equivalent to the existence of a
NH-PH with jΦμi as its ground state. When using finite k,
the NH-PH ĤkðμÞ is still well defined, even when μ < 1

3
and

μ > 3, but it does not have jΦμi as its unique ground state
in these regions. Furthermore, the construction of NH-PHs
may have unfavorable consequences, such as level crossing
caused by the noncommutability of local projectors and
non-Hermiticity, which shifts the critical points toward the
intermediate phase for finite k.
To detect phase transitions, we generalize the modified

iTEBD method [49] to analyze Hamiltonians with multisite
interactions [50]. We find that k ¼ 2 is sufficient to identify
chiral and string orders for a wide range of μ in the
intermediate phase. We evaluate the infidelity between the
output state from iTEBD jΨμi with D ¼ 12 and the given
asymmetric AKLT state jΦμi, which is defined as η ¼
1 − limN→∞jhΦμjΨμij1=N ¼ 1 − jλΦΨj with normalization
conditions hΦμjΦμi ¼ 1 and hΨμjΨμi ¼ 1. The results
shown in Figs. 3(a) and 3(b) indicate that the asymmetric
AKLT state jΦμi is, indeed, the ground state in the
intermediate phase, but not for extreme values of μ near
the regions μ < 1

3
and μ > 3, although it is always a zero

mode by construction. As we increase k, the critical point
will converge to μc. Using k ¼ 3 allows us to expand the
region of NH-PHs and brings the critical points much
closer to μc.

FIG. 3. Calculated ground state jΨμi of HkðμÞ using the
multisite iTEBD method with D ¼ 12 for k ¼ 2 and k ¼ 3.
(a),(b) Infidelity between jΨμi and jΦμi. (c),(d) Entanglement
spectrum of jΨμi (black dots) and jΦμi (red lines).
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Moreover, we investigate the entanglement spectrum of
jΨμi in Figs. 3(c) and 3(d). In the intermediate phase, the
ground state jΨμi has only two nonzero elements in the
entanglement spectrum, consistent with that of jΦμi shown
in red curves. On the contrary, for extreme μ, the algorithm
cannot converge to a unique ground state and the entan-
glement spectrum is gapless. Numerical simulations for
H†

kðμÞ, whose ground state is expected to be jΦ1=μi, are
shown in Fig. S7 in the Supplemental Material [50], where
we obtain consistent results.
Conclusion.—In this Letter, we propose a general

scheme to construct a non-Hermitian Hamiltonian from
two different MPSs hLj and jRi as left and right ground
states. As an example, we demonstrate how to create a non-
Hermitian model from asymmetric AKLT states that
preserves both chiral and SPT orders, and identify a
phase transition with a new origin without a Hermitian
counterpart.
Our approach changes the paradigm of non-Hermitian

physics, from top-down to bottom-up. We can now con-
struct Hamiltonians with short-range interactions from
states that preserve desired properties rather than extracting
information from a given Hamiltonian. Compared to the
conventional Hermitian parent Hamiltonian, our method
offers more possibilities, as there are extra degrees of
freedom in choosing two states, instead of one. It also
establishes a duality between quantum states and
Hamiltonians, liberates researchers from the constraints
of specific systems, and provides a new perspective to study
strongly correlated quantum many-body systems. We
believe that there is a broader world in strongly correlated
many-body systems in the non-Hermitian regime.
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Aubry-André-Harper model, Phys. Rev. B 101, 235150
(2020).

[41] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Rigorous
Results on Valence-Bond Ground States in Antiferromag-
nets, Phys. Rev. Lett. 59, 799 (1987).
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