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Nonlocality, as established by the seminal Bell’s theorem, is considered to be the most striking feature of
correlations present in spacelike separated events. Its practical application in device independent protocols,
such as secure key distribution, randomness certification, etc., demands identification and amplification of
such correlations observed in the quantum world. In this Letter we study the prospect of nonlocality
distillation, wherein, by applying a natural set of free operations (called wirings) on many copies of weakly
nonlocal systems, one aims to generate correlations of higher nonlocal strength. In the simplest Bell
scenario, we identify a protocol, namely, logical OR-AND wiring, that can distill nonlocality to a
significantly high degree starting from arbitrarily weak quantum nonlocal correlations. As it turns out, our
protocol has several interesting facets: (i) it demonstrates that a set of distillable quantum correlations has
nonzero measure in the full eight-dimensional correlation space, (i) it can distill quantum Hardy
correlations by preserving its structure, (iii) it shows that (nonlocal) quantum correlations sufficiently close
to the local deterministic points can be distilled by a significant amount. Finally, we also demonstrate

efficacy of the considered distillation protocol in detecting postquantum correlations.
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Introduction.—One of the most celebrated nonclassical
aspects of quantum mechanics was pioneered by Bell in
1964 [1] (see also [2]). Bell’s theorem mandates departure
of quantum theory from the locally causal world view
which subsequently has been confirmed in several mile-
stone experiments led by Clauser, Aspect, Zeilinger, and
others [3—12]. Unlike other nonclassical features, such as
entanglement and coherence, study of nonlocality can be
conducted in a device-independent setting where only the
input-output statistics of the device matters and one does
not need to know the inner design or working mechanisms
of the device [13]. Along with foundational implications,
Bell nonlocality has also been identified as the necessary
resource for several important protocols [14-25], which,
thus, makes the question of refinement or distillation of this
resource practically indispensable. Study of nonlocality
distillation has two major implications—(i) practical:
where one aims to distill nonlocal correlations observed
in the quantum world which can be then applied to make
information flow networks efficient and secure, and
(i1) foundational: where the goal is to identify postquantum
correlations, which, in turn, helps to understand the
speciality of quantum theory among other possibilities
allowed within the framework of generalized probabilistic
theories. Interestingly, in Ref. [26], Forster et al. proposed a
nonlocality distillation protocol that can extract nonlocality
in a stronger form starting with many copies of weakly
nonlocal systems; this work has inspired a number of
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subsequent works consisting of interesting results on non-
locality distillation [27-41].

The research conducted so far on nonlocality distillation
is mainly focused on distilling postquantum correlations
[27-32,34-39]. Only a few protocols are known that
successfully distill some quantum correlations [26,39].
The difficulty arises due to the top-down approach con-
sidered in earlier works where one starts with some
parametric family of generic no-signaling (NS) correla-
tions, and after obtaining a successful distillation protocol
the aim is to check whether for some range of the parameter
values the considered NS correlations allow quantum
realization or not. For the simplest bipartite case, the
well-known analytical criterion by Tsirelson-Landau-
Masanes [42-44] and the Navascues-Pironio-Acin (NPA)
criterion [45], and, in the general case, a hierarchy of
semidefinite programming conditions [46] can serve this
purpose. Only in some fortunate cases sophisticated
choices of the parametric class of NS correlations might
lead to a desirable subset of quantum realizable correla-
tions. However, the approach has a severe pitfall when
more input-output scenarios are considered, as the recent
mathematical breakthrough by Slofstra and the subsequent
results establish that the set of quantum correlations is not
topologically closed [47—49]. There are only a few results
that report distillation of nonlocal correlations within
the quantum setup [26,39], albeit the nonlocal strength
of the distilled correlation is low. Therefore the aspects of
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analytical and quantitative study for distillation of quantum
nonlocal correlations remain open.

In this Letter, we propose a generic framework for
nonlocality distillation which overcomes limitations of
the thus far proposed protocols. In contrast to the pre-
viously reported results, we intend to find out efficient
distillation protocol(s) for quantum correlations. To this
aim we consider the bottom-up approach. Instead of
generic NS signaling correlations we start with weak
nonlocal correlations which are quantum, and then try to
obtain a nonlocality distillation protocol. The set of
quantum correlations being closed under wirings [40,41]
assures the resulting distilled correlations to be quantum.
Interestingly, we identify a simple protocol and come up
with a generic approach that successfully distills non-
locality in a large class of weakly nonlocal quantum
correlations. Toward this goal, first we consider a variant
of nonlocality test proposed by Lucien Hardy [50]. Success
probability in Hardy’s test qualifies as a measure of
nonlocality for Hardy’s correlations [51]. Given two copies
of a quantum Hardy correlation, we show that there exists a
simple wiring that can distill Hardy nonlocality. We call this
wiring logical OR-AND protocol, where OR (V) and AND
(A) functions on 2-bits z;, z, are defined as V(zy,2) =
max{z;,2,} and A (z;,z,) = min{z;,z,}, respectively.
The OR-AND protocol allows an immediate n-copy
generalization (see Fig. 1), which can provide a substantial
distillation of Hardy’s success with sufficiently large copies
of initial correlations. Further, we show that the OR-AND
wiring when applied to a broader class of quantum
correlations yields an interesting result: an arbitrarily small
violation of the Clauser-Horne-Shimony-Holt (CHSH) [3]
inequality can be amplified to a significantly higher degree.
Finally, by applying our protocol we demonstrate that
nonlocal correlations arbitrarily close to the extreme points
of the set of local correlations are always distilled, which, in
turn, establishes that a set of distillable quantum correla-
tions has nonzero measure in the full eight dimensions of
the correlation space. We also study distillation of post
quantum correlations, and show that the OR-AND protocol
becomes efficient there too. In particular, we find correla-
tions whose post-quantum signature is established through
OR-AND distillation, while the known information prin-
ciples, such as nontrivial communication complexity [52]
and information causality [53,54], fail to serve the purpose.
In the end, we discuss the novelty of the approach followed
here in comparison to the existing methods on nonlocality
distillation.

Preliminaries.—A Bell experiment involves spatially
separated parties performing local measurements on the
respective parts of a composite system shared among them.
The simplest case considers two parties, Alice and Bob,
with their respective inputs to the box denoted as x and vy,
and outputs from the box denoted as a and b, respectively,
where x,y,a,b € {0,1}; and this is generally called the
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FIG. 1. Multicopy OR-AND wiring. Given n-number of
parent correlations {Pyg[i]}7_, C NS, the OR-AND wiring

produce a child correlation ng € NS. The outcome a on
Alice’s side for the child box is obtained as a = a;V ---Va, =

max{ay, ..., a,} for the input x; = --- = x, = x, where x; and
a; are the input and output of the ith parent. On Bob’s side,
yvp=-=y,=yand b=>by A+ A b, =min{by,....b,}.

2-2-2 Bell scenario. Correlation generated by a box P is the
set of joint input-output probabilities, i.e., P = {p(ab|xy)}.
A set of boxes satisfying the no-signaling condition forms
an eight-dimensional polytope NS having 24 vertices [55]:

8 nonlocal vertices [Popescu-Rohrlich (PR) boxes [56] ]

given by PYY = {p(ablxy) = 18.@pnewuepay) ). Where

a, B,y € {0,1}, and 16 local deterministic vertices given

by P(Zlaz/}]/}Z = {p(ab|xy) = 6((1,(11x@az)é(b,/}]y@ﬂz)}s where
ay, &, f1, P, € {0,1}. A correlation is termed as local if
and only if it allows a decomposition of the form
plab|xy) = > p(A)p(alx,A)p(bly, ), where 1 is some
classical variable shared between Alice and Bob following
a distribution {p(4)} [1] (see also [2]). A collection of all
local correlations forms a subpolytope £, within NS, with
16 local deterministic boxes as their vertices. Correlations
obtained from local quantum measurements performed on
some bipartite quantum state are called quantum correla-
tions. A set of all quantum correlations Q forms a convex
set (but not a polytope) lying strictly in between the local
and NS polytope, ie., L < Q C NS [57]. No signaling
correlations that do not belong to the set £ are called
nonlocal as they do not allow a local-causal description [1].
We consider one of the eight symmetries for the nonlocal
correlations witnessed by the Bell CHSH inequality
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B = (00) — (01) — (10) — (11) <2, (1)

where (xy) := >, ,(—1)*® p(ab|xy). Then, only one
PR-box violates the inequality and there are exactly eight
extremal local boxes that saturate the local bound. These
nine boxes, which form an eight dimensional simplex [58],
are as follows:

0001 PO100 PO111
PLl 7PL2 ’PL3 )
1101 pl111 p1000
PL4 7PL5 vPLﬁ )

0010 1010
PL7 ’PLR

{PN} = B=4, =B=2. (2)

The CHSH value B < 2 for all the remaining extremal
nonlocal or local boxes. The choice of this symmetry is due
to the simple OR-AND function description of our dis-
tillation protocol. One can always apply local reversible
relabelings to switch to any of the eight symmetries (then
the protocol become suitably relabelled OR-AND). From
here on, we will simply refer to the nine boxes in Eq. (2) by
dropping their superscripts.

While violation of the Bell-CHSH inequality is a
paradigmatic test for certifying nonlocality of a correla-
tion, Hardy provided a simpler nonlocality argument for
the same [50]. He showed that if the following four
conditions

Ag,By) >0,
AI’BO) :p(l’l

PHardy = p(o’ 0

p(0,0|Ay.B;) = p(0,0

AI’BI):O’ (3)

are satisfied, then the resulting correlation is necessarily
nonlocal. The probability pp,qy in Eq. (3) quantifies
strength of nonlocality of Hardy correlations. While the
maximum value of py,qy, in the no-signaling set is 1/2
(achieved with PR box), its optimal value in quantum
mechanics turns out to be (5v/5 — 11)/2 ~0.09 [59] (see
also [60,61]), and it is achieved on a pure two qubit state
with projective measurements. The correlation yielding the
maximum Hardy nonlocality in quantum theory reads

HE™ = (5v/5 — 11)Py;

+%(7 -3V5) ;PL,. +(V5-2)P, (4)

and it has been shown to be an extreme point of the
set Q [57].

Distillation of quantum nonlocality.—In the following
parts of this Letter, we first present our results on
distillation of quantum nonlocal correlations. For ease of
readability, here we present our main results and discuss the
important proofs. The detailed analyses of some of the
more technical aspects is deferred to the Supplemental

Material [62]. We start by presenting our results on
nonlocality distillation of Hardy’s correlations, by applying
the OR-AND protocol.

Theorem 1.—The OR-AND wiring preserves the struc-
ture of quantum Hardy correlations and can efficiently
distill the strength of success probability in Hardy’s test of
nonlocality.

Proof—Within the considered CHSH symmetry [i.e.,
Eq. (2)], any NS correlation can be represented as a convex
mixture of the nonlocal vertex along with 8 local vertices.
A quantum Hardy correlation demands nonzero weights for
exactly 5 different local vertices along with the nonlocal
vertex [38]. This, in turn, ensures that the correlation matrix
has precisely 3 zero elements corresponding to probabilities
taking the value zero in the Hardy’s test. It turns out
that, then any quantum Hardy correlation Hy, can be
represented as

5 5

HQ:COPNL+ZCiPL,-; Ci>0 Vl, and Zcizl,
i=1 i=0

(5)

with success in Hardy’s test py,qy = (co/2). On applying
the OR-AND wiring to 2 copies of (parents) Hy one

obtains a resulting (child) Hardy correlation H(Qz) with non-

locality strength pgidy = [(co/2) + ¢;]* = ¢}. Similarly,
on applying OR-AND protocol to n copies of Hy, we

obtain a (child) Hardy correlation H{}’

strength pﬂ?rdy = [(co/2) + ¢1]" = c}. The protocol serves
the purpose of an effective n copy distillation as long as

pggrdy > pg:r;;, for all k € {2,3,...,n}. For example, let

with nonlocality

us consider the class of quantum correlations

Hp(4) = AHZ™ + (1 — )P, 2€(0,1], (6)

for which the Hardy success probability ppyay(4) =
My = (4/2)(5V/5 —11). Then, on applying the OR-
AND protocol to two copies of (parent) Hy(1) yields
the child AY'(2) with Hardy success probability
Phimay (2) = [A(ky + 2k;) +2(1 = 2)]2k,. Then it follows
that iz, (2) > Piaay(4) for 2 € (0,¢7"), where ¢ is the
golden ratio, i.e., ¢ = [(1 +/5)/2]. On considering suffi-
ciently large copies (n) of very weakly nonlocal correla-
tions Hy with PHardy(4) = 0, we find that the OR-AND
wiring results in a Hardy correlation with a considerably
large nonlocal strength pga)rdy = 0.041 (see Supplemental
Material [62]). =

In the Supplemental Material [62] we further shown that
arbitrarily weak quantum Hardy correlation can be distilled
up to 0.0433. Since a correlation with Hardy success pygrqy
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yields CHSH value 2 + 4 pyyqy [51], in order to measure
the efficacy of distillation let us define the Tsirelson gain in
percentage as follows:

1
2(v2-1)

Manifestly, the gain will be 100% when by wiring a
nonlocal correlation with arbitrary small CHSH violation,
the distilled correlation achieves Tsirelson’s bound—the
maximum CHSH value in Q [63]. We then obtain that
under the OR-AND wiring a quantum Hardy correlation
can yield Tsirelson gain at-most 20.9%.

While applying the multicopy OR-AND protocol it turns
out that the optimal distillation of Hardy’s success is
obtained with a threshold number of initial boxes, and
the success gets decreased if more numbers of initial boxes
are considered. Our next proposition provides an exact
expression for the optimal number of the initial Hardy
correlation required for maximal distillation.

Proposition 2.—A no-signaling Hardy correlation of the

form of Eq. (5) yields Hardy success p%)rdy = [(co/2)+

AT = (Bcehita = Bpaent) X 100%.  (7)

c1]" =, when its n copy is wired under OR-AND

protocol. The optimal value of distilled Hardy success is

. N N+1
given by iy, = max{p{l. Piny }» Where

0g ¢y

e ) )

Proof provided in Supplemental Material [62]. Next, we
consider quantum nonlocal correlation, not necessarily in
Hardy form, to establish an even higher Tsirelson gain
through the OR-AND wiring.

Theorem 2.—Starting with a quantum correlation with
arbitrarily small CHSH nonlocality OR-AND wiring can
yield Tsirelson gain up to (~)39.75%.

A proof of Theorem 2 follows similar arguments as
Theorem 1. However, for the sake of completeness a
detailed proof is provided in Supplemental Material [62].

Theorem 2 has many interesting implications for infor-
mation processing tasks, wherein higher CHSH violation is
desirable for higher performance of the protocols. For
instance, the amount of certifiable randomness as obtained
in [17] monotonically scales with the degree of violation of
CHSH inequality. On the other hand, the authors in [22]
come up with a conflicting interest Bayesian game where
the payoff in correlated equilibrium strategy increases
linearly with the amount of CHSH violation (see also
[23]). More recently, the authors in [24] proposed a
communication task where preshared entanglement
between sender and receiver is shown to enhance the
communication utility of a perfect classical communication
channel. As it turns out payoff of this task is also a linear
function of the value of CHSH expression [25].

By now, an observant reader might have already noticed
that the local box P, plays crucial role in the proof of
Theorem 1 and Theorem 2. We will now use this obser-
vation to prove a generic result as formalized in the
following theorem.

Theorem 3.—CHSH nonlocality of any no-signaling
correlation of the form C(1) = AC + (1 — A)Py,, where
0<4A<1 and C € ConvexHull{Py,.P, |i € {I,....8}}
can be distilled through OR-AND wiring by choosing
the values of A sufficiently small. Furthermore, 2-copy OR-
AND distillation is successful for all the C(4) correlation
boxes whenever 4 < %co; where ¢ is the Py, fraction in C.

Proof—Given two correlations yq,y, € NS, let
Wix1,x»] denote the resulting correlation obtained under
OR-AND wiring, where W[y, y] = y'*. We, therefore,
have

C@(3) = 22CO) 4+ A(1 = H{WIC, P, ] + WIP,,,C]}
+ (1= 2)*W[P,,.P.].

A straightforward calculation yields WIC, P, | =C =
WIP,,.C], which further result in

CA (1) = 2CP +24(1 = 1)C + (1 = 2Py,

While the CHSH value of the box P, is 2, let the CHSH
value of the boxes C and C?) be denoted as (> 2) and
KC®), respectively. Then, the CHSH value of the correla-
tions C(2) and C? (1) can be expressed as

B(2) = AK +2(1 = 2),
B®(2) = 22K® 4+ 2(1 = )K 4 2(1 = 2)2.

A successful distillation demands B?)(1) > B(4), implying
(K =2) + (K® = 2K 4 2)A > 0, which can be guaranteed
by choosing the values for 4 accordingly. This completes
the first part of the proof. A bit more calculation yields the
quantitative bound 4 < %co, on the radius of the eight-
dimensional Ball centered at point P; —assuring 2-copy
OR-AND distillation such that any nonlocal no-signaling
correlation, be it quantum or post-quantum, chosen from a
nonzero-measure sector of the Ball can be distilled (in the
full eight dimensions). We provide the detailed calculation
in the Supplemental Material [62]. u

Theorem 3 has profound topological implications. It
establishes that the sets of no-signaling as well as quantum
correlations allowing nonlocality distillation have nonzero
measure in the full eight-dimensional correlation space.
Furthermore, it should be mentioned that the correlation
box P, appearing in Theorem 3 is not any special local
deterministic box: the result holds also for all the remaining
15 local deterministic boxes on suitable relabeling of the
OR-AND wiring.
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While the studies in nonlocality distillation of quantum
correlations are mostly limited to the 2-2-2 Bell scenario,
Theorem 3 opens up an avenue to study the same in a
general N-M-K scenario that involves N spatially separated
parties each performing M different measurements with K
outcomes. It is not hard to find the extreme local boxes in
such a general scenario. Now if for such an extreme box P;,
we obtain a wiring W such that W[P, X] = X = W[X, P;]
for any N-M-K no-signaling correlation X, then it results in
a generalization of Theorem 3 in the N-M-K scenario. This
consequently will imply that quantum correlations allowing
nonlocality distillation have nonzero measure even in this
general scenario.

Distillation of post-quantum nonlocality.—We now pro-
ceed to show that OR-AND wiring also has an important
proviso in ruling out (unphysical) post-quantum correla-
tions. Several techniques are there to establish postquan-
tumness of a given correlation. For instance, isotropic
no-signaling correlations yielding CHSH value more than

4./2/3 violate the principle of nontrivial communication
complexity [52] (see also [64—66]), thus demarcating such
correlations as unphysical. Furthermore, any NS correlat-
ing with CHSH value more than Tsirelson bound violates
the principle of information causality [53,54]. It has also
been shown that a correlation might not violate these
principles by its own, but after distillation the resulting
correlation violates such a principle, which, in turn,
establish unphysicality of the original correlation [27]
(see also [39]).

Interestingly, the OR-AND wiring becomes useful to
establish the postquantum nature of a correlation. Let us
consider the following NS correlation

HNS — O'IPNL + 085PL]
+0.01(P,, + P, +2P,, +P; ), 9)

which exhibits Hardy’s nonlocality with success proba-

bility pyaqy = 0.05. However, correlation H](f,g; obtained by

distilling 8 copies of Hyg has the Hardy success pl'f;trdy =

0.15797, which ensures that the boxes Hl(f,g; and Hyg are
postquantum. As it turns out the correlation Hyg neither
violates known necessary condition for respecting the
principal of nontrivial communication complexity nor for
the principle of information causality. However, the con-
sidered example violates the macroscopic locality principle
[67] (see [62]). That being said, we do point out that
checking membership to the NPA hierarchy can become
computationally expensive, particularly at higher orders of
the hierarchy, while the distillation criteria is far more
tractable [62].

Discussion.—Distillation, the process of extracting a
desirable substance in pure form from a source of impure
mixture through heating and other means, has an ancient
history. Quite interestingly, during the recent past, the idea

finds novel applications in quantum information theory,
where one aims to obtain fewer number of higher resource-
ful states starting with larger number of lesser resourceful
states under free operations [68]. Some canonical examples
are (i) for our present study, the resource theory of Bell-
nonlocal boxes [69,70], or (ii) the well-known protocols
for quantum entanglement distillation, where many copies
of mixed entangled states are distilled into pure form
under local quantum operations and classical communica-
tions [71].

In this Letter, we have established a generic approach
for distillation of nonlocal correlations arising in quantum
mechanics. This problem is of utmost importance as
Bell nonlocal correlations are ubiquitous in device inde-
pendent protocols—more the nonlocality more the utility.
Interestingly, we come up with an elegant protocol, the
OR-AND wiring, that distills nonlocality in quantum
correlations with high efficiency. In the simplest bipartite
scenario, in stark distinction with the results reported prior
to our work [26—41], our protocol establishes that, within
the set of full eight-dimensional correlation space, the
distillable quantum as well as no-signaling nonlocal
correlations form subsets of nonzero measures; i.e., sector
of open balls of a specified radius centered at local
deterministic correlations. Moreover, by considering cor-
relations arbitrarily close to local deterministic points,
applying our protocol, with optimal number of copies, one
can distill nonlocality by a significant amount both for the
quantum as well as postquantum nonsignaling correla-
tions. As for the future, it would be interesting to explore
the full potential of our generic framework proposed here
in distilling quantum nonlocal correlations. In particular,
obtaining some bound on the relative volume of the
quantum correlations in the correlation space that can
be distilled under OR-AND wiring would be interesting.
Furthermore a generalization of this protocol for higher
input-output as well as in a multiparty scenario might be of
great use.
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