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Gapped fracton phases of matter generalize the concept of topological order and broaden our
fundamental understanding of entanglement in quantum many-body systems. However, their analytical
or numerical description beyond exactly solvable models remains a formidable challenge. Here we employ
an exact 3D quantum tensor-network approach that allows us to study a ZN generalization of the
prototypical X cube fracton model and its quantum phase transitions between distinct topological states via
fully tractable wave function deformations. We map the (deformed) quantum states exactly to a
combination of a classical lattice gauge theory and a plaquette clock model, and employ numerical
techniques to calculate various entanglement order parameters. For the ZN model we find a family of
(weakly) first-order fracton confinement transitions that in the limit of N → ∞ converge to a continuous
phase transition beyond the Landau-Ginzburg-Wilson paradigm. We also discover a line of 3D conformal
quantum critical points (with critical magnetic flux loop fluctuations) which, in the N → ∞ limit, appears
to coexist with a gapless deconfined fracton state.
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Quantum states with intrinsic topological order distin-
guish themselves through long-range entanglement [1],
quasiparticle excitations with exotic statistics [2], and their
applicability as quantum memories [3]. Such states have
been widely studied in two spatial dimensions (2D), e.g., as
ground states of the toric code (TC) [3], which has also
allowed for recent experimental realizations engineered in
state-of-the-art quantum simulators [4,5]. Exploring such
states in three-dimensional (3D) settings has given rise to the
family of fracton topological orders [6–9] with strictly
immobile excitations, the eponymous fractons, which have
ignited interest not only in the fields of quantum information
and quantum matter but also elasticity and gravity [10,11].
The simplest exactly solvable fracton model is the X cube
(XC) [9]where themobility constraint is deeply rooted in the
absence of string operators [7]. The ground states of the XC
span a degenerate manifold which is insensitive to local
perturbations and whose peculiar subextensivity can be
traced back to an intimate connection to 2D topological
order via a coupled-layer-construction [12–19]. Like the TC
which is equivalent to a Z2 lattice gauge theory [3], the XC
can be viewed as a generalized lattice gauge theory coupled
to Z2 matter with certain subsystem symmetries [9]; in the
long wave-length limit, it is equivalent to an off-diagonal
Uð1Þ tensor gauge theory that is turned massive via a Higgs
mechanism [20–24] and where the matter charge has
conserved higher moments [25–33].
Despite this impressive understanding of fracton physics,

there are still a number of unresolved questions. One is the

principal nature of quantum phase transitions (QPTs)
involving fracton topological phases, which due to their
nonlocal structure have to go beyond the traditional
Landau-Ginzburg-Wilson paradigm. Although there have
been analytical attempts based on Hamiltonian duality,
series expansions, or phenomenological field theories
[13,34–40], a direct microscopic investigation, e.g., by
considering deformations of exactly solvable Hamiltonians
as for their 2D counterparts, has remained largely out of
scope of current approaches.
Here we follow a different route and study wave function

deformations that allow us to move from the exactly known
ground states of certain fracton models through QPTs to
topologically trivial states devoid of any fractons. Such
paths differ from the conventional Hamiltonian deforma-
tions by spacetime anisotropy and could yield space-
conformal quantum critical points [41]. In doing so, we
employ tensor-network (TN) wave functions that allow us
to exactly tune these quantum states along a chosen path—
an approach previously employed in the context of 2D
topological order [41–50]. For the 3D fracton order of
interest here, we identify QPTs along the path by numerical
TN calculations that are based on an analytical quantum-
classical mapping and allow us to calculate various entan-
glement order parameters [44,45,48,51–55] as diagnostics.
For the ZN generalized XC fracton model our main
findings can be concentrated around a line of 3D space-
conformal deconfined quantum critical points, where the
deconfined fractons are connected by critical fluctuating
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strings. In one direction, the string can either condense
resulting in a gapped ZN fracton phase, or confine a pair of
fractons into a fracton dipole thereby falling into the
stacked 2D TCs phase; in the other direction, monopole
proliferation leads to a complete fracton confinement in a
weak first-order transition that turns continuous in the un-
Higgsed N → ∞ limit.
Parent wave function.—Our starting point is the obser-

vation that stacked intersecting 2D TCs can act as a parent
for realizing both the XC and 3D TC models through
condensing its elementary excitations—magnetic flux
loops or monopoles [12,13,34,56]. In terms of wave
functions, this motivates us to adopt the ground state of
the stacked 2D TCs as a parent wave function and study its
deformations that will pass through QPTs to either the XC
or 3D TC ground states, as illustrated in Fig. 1. At the fixed
point the wave function is a stack of dual 2D Ising quantum
paramagnets [3]

jψ0i ¼
X
fsg

jZp∩q ¼ spsqi; ð1Þ

where the Pauli z matrix Z for the physical spin on a link
l ¼ p ∩ q can be recast as the domain wall between
classical Ising spins s ¼ �1 on the two adjacent plaquettes
p, q in the same plane. On every link this results in two
spins from two intersecting planes. Now let us rotate the
local basis into μzl ≡ Zl1Zl2 , μxl ≡ Xl2 , σxl ≡ Xl1Xl2 ,
σzl ≡ Zl1 , where l1, l2 lie in xzðyxÞðzyÞ and xyðyzÞðzxÞ
planes, respectively (see Supplemental Material (SM)
[57]). The ground state fulfills

ð2Þ

for every vertex and cube , respectively. These are the
Gauss laws for the 3D vector and tensor gauge theories,
respectively, which makes it natural to interpret the sub-
system fμzg as the 3D TC [58], while fσxg as the XC
[9,20,21]. The parent state jψ0i is free of charge, while any
violations of Eq. (2) define the boson (e) and fracton (f)
charge excitations. The magnetic flux loop (m loop) is
composed of a loop of m particles that penetrate plaquettes
with

Q
l∈□ μxl ¼ −1 [58], while the magnetic monopole is

defined on the site satisfying
Q

l∈þ σzl ¼ −1 for inplane
vertices þ [9]. Notice that the monopoles in the XC
subsystem are entangled with the proliferating electric
string turning points of the TC subsystem. Thus if either
one subsystem is traced out, one would get a mixed state
with m loops or monopole excitations [57].
To explore the QPTs induced by condensing these

elementary excitations, we add fluctuations of the m loop
and monopoles by a local nonunitary deformation [59]

jψðt; hÞi ¼ exp

�
1

2

X
l

hμzl þ tσxl

�
jψ0i: ð3Þ

Here hμz fluctuatesm loops and adds electric string tension
to confine the boson charge, distilling the XC state from
jψ0i, which in the h → ∞, t ¼ 0 limit turns into the exactly
solvable XC TN state as a cuboid condensate [57,61,62].
tσx fluctuates the monopole (lineon) and turns on electric
membrane tension to confine the fracton, distilling the 3D
TC out of jψ0i as a loop condensate. Such deformations can
be captured by an exact, frustration-free Rokhsar-Kivelson
Hamiltonian, which in the perturbative limit is equivalent to
turning on magnetic fields along μz and σx [57]. In our
numerical analysis, we express the state (3) as a 3D
projected entangled paired state (PEPS) with finite bond
dimension (see Fig. 1).
Quantum classical correspondence.—The TN wave

functions (3) can be mapped onto effectively classical
models by defining hψ jψi as a partition function
[41,48,60,63] over the ensemble of the virtual TN variables.
We find analytically that this partition function factorizes
into

hψ jψi ¼
X
fsg

e−ϵg ×
X
fτg

e−ϵp ; ð4Þ

where the two terms

ð5Þ

are precisely the cubic lattice variants of the classical Z2

gauge [64] and plaquette [65–67] models, describing the
(fluctuating) loop gas and fracton matter, respectively. Here
s creates the m particle [48], while τ measures the fractons
in the dual lattice [57]. For the latter, the parameter

FIG. 1. Phase diagram of tuning the exact quantum TN state
between the stacked 2D toric codes, 3D toric code, X cube, and
the trivial paramagnet (PM) for ZN gauge group. The TN states
are illustrated in dual cubes, where the black dots denote the
virtual variables and the red (green) arrow denotes physical spin
σzðμzÞ, satisfying μz ¼ ωn1−n2−n3þn4 , σz ¼ ωn4−n3 . The classical
TNs lying at the QPTs show the wave function norm.
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t0 ≡ 1
2
ln coth t is obtained via a Kramers-Wannier relation

[68]. An immediate consequence of this factorization is that
the phase diagram in Fig. 1 is controlled by two independent
QPTs, tuned by h and t, respectively. The physical origin is
that the m loops and the monopoles have trivial mutual
statistics and can thus condense simultaneously. The
classical TNs for ϵg and ϵp can both be equivalently
generated, through cube-vertex duality, by a rank-6 tensor
(Fig. 1, top right) where the tensor bond takes the plaquette
variable W□ ¼ Q

l∈□ sl or W0
□
¼ Q

j∈□ τj. To contract the
TNs hψ jψi, we employ the variational infinite projected-
entangled-paired-state (iPEPS) method to get the dominant
boundary fixed point [69–74] (see SM). As in a general
PEPS, the virtual variables serve as the entanglement
degrees of freedom that are responsible for stretching out
the long range entanglement [42,44,45,48,51]. This allows
us to set up a dictionary between the quantum correlation
and the classical correlations as in Table I. We elucidate the
nature of the two QPTs in the following.
m-loop condensation.—This QPT is captured by the

classical vector gauge model. A classical Wilson loop
around an arbitrary membrane M excites an m-loop
excitation above the ground state, which we denote as
jQp∈∂M mpi. Consequently, the condensate fraction of m
loops can be measured by its overlap with the ground state

�
ψ j

Y
p∈∂M

mp

�
¼
� Y

p∈∂M
sp

�
¼
�Y

□∈M
W□

�
≡e−jMj=ξ2m; ð6Þ

where jMj denotes the area ofM, and ξm defines them-loop
condensation length scale beyond which larger loops are
orthogonal to the ground state. In the TN representation it is
a membrane correlation written as a product of W□. An X
operator to the virtual variable violates the local Gauss law
and creates an e particle, equivalent to a semi-infinite
’t Hooft string in the classical gauge theory, measuring the
deconfined charge amplitude hejei. Using Wegner’s Ising-
gauge duality [75], hejei is mapped to the dual Ising order
parameter, and the critical point hc ≈ 0.7614 can be

deduced from the known 3D Ising critical temperature
2= ln cothhc ≈ 4.5115 [76]. In Figs. 2(a) and 2(b) our
iPEPS calculation shows that the loop condensation length
scale ξm is finite if h < hc and diverges for h ≥ hc; near the
Ising* critical point it obeys a scaling law with exponent
νm ¼ 0.52ð2Þ. The critical exponent β for the deconfined
charge amplitude is also close to the Ising order parameter
exponent 0.3295 [76]. Thus the divergence of the m-loop
fluctuation length and the vanishing of the deconfined
boson charge amplitude signal a continuous phase tran-
sition from the 2D TCs into the XC in the Ising*
universality class [77].
Fracton confinement.—This QPT is described by the

classical plaquette model. The model is invariant under
planar subsystem Ising symmetries, which interpolate
between the global and the local gauge symmetry [65–
67,78] and are spontaneously broken across a first-order
transition [68,79] at tc ≃ 0.66. For an arbitrary membrane
M, the probability amplitude for finding fractons at its
corners (denoted by ∂∂M) is measured by the wave function
norm

������Y
j∈∂∂Mfj

E���2 ¼
� Y

j∈∂∂M
τj

�
¼

�Y
□∈M

W0
□

�
≡ e−jMj=ξ2f ;

ð7Þ

where fj denotes the fracton, and ξf defines the fracton
confining length scale, beyond which the fracton amplitude
decays exponentially. 1=ξ2f is analogous to the string
tension in the quark confinement [80]. Moreover, an X
operator to the virtual variable violates the magnetic Gauss

TABLE I. Quantum classical correspondence between wave
function and statistical model.

Quantum toric code Tensor network Classical gauge

μz Z□ W□

hejei X□ ’t Hooft string
hψ jQp∈∂M mpi

Q
□∈M Z□ Wilson loop

Quantum fracton Tensor network Classical plaquette

Quadrupole Z□ W0
□

hψ jmonopolei X□ Twist defect
kjQj∈∂∂M fjik2

Q
□∈M Z□

Q
j∈∂∂M τj

− lnhψ jψi − ln tTr
Q

j T̂ðjÞ Free energy
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FIG. 2. QPTofm-loop condensation in theZN model for (a),(b)
N ¼ 2 and (c),(d) N ¼ 5. (a),(c) Inverse of the m-loop con-
densation length scale. (b),(d) Deconfined charge amplitude.
Insets fit the critical exponents ξm ∝ jhc − hj−νm and hejei ∝
jhc − hjβ. Data are computed by iPEPS of bond dimension
ðD ¼ 3; χ ¼ 72Þ for N ¼ 2 and ðD ¼ 2; χ ¼ 80Þ for N ¼ 5.
Dashed vertical line denotes the critical point hc ≈ 0.7614 for
N ¼ 2 and hc ≈ 2.2 for N ¼ 5.
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law locally and creates a vector monopole excitation [57],
whose expectation value measures the monopole conden-
sate. An individual Z operator in the TN evaluates the
classical plaquette operator W0

□
, which corresponds to the

probability of a fracton quadrupole around an elementary
plaquette kjQj∈□ fjik2, which is a composite particle
freely mobile in all directions. As shown in Fig. 3 and
the SM, our iPEPS calculations indeed confirm the first-
order transition across which the fracton confining length
jumps from a large value for t < tc to a finite value when
t > tc, accompanied by a jump of the monopole condensate
hψ jmonopolei from approximately zero to a finite value.
The fracton quadrupole amplitude and the second Rényi
entropy coefficient also exhibit a jump from approximately
1 to a finite value, and the effective free energy density as a
generating function shows a clearly visible kink [81]. For
t < tc the wave function with isolated fracton excitations
and the degenerate ground states on a torus [9,12] are
renormalizable and well defined. For t > tc, the state with
fractons separated at large distances has exponentially
vanishing norm and is thus unrenormalizable, which means
the fracton excitations as well as the topological degeneracy
are gone in the thermodynamic limit—a hallmark for the
breakdown of topological order. While hψ jψi is interpreted
as a partition function, from kjQj∈∂∂M fjik2 ∝ e−FðMÞ one
may define a dimensionless free energy FðMÞ ¼ jMj=ξ2f
which captures the energetics of a set of fracton excitations
lying at the corners of M. FðMÞ reflects the underlying
entanglement structure of the ground state wave function
[44,45,51], reminiscent of the fact that the dimensionless
entanglement Hamiltonian from a pure ground state can
also capture the low energy behavior of a true physical
boundary [82–84].
ZN generalization.—All of the above can be generalized

to the ZN gauge group, which interpolates between Z2 and
the compact Uð1Þ gauge group. Importantly, the factori-
zation (4) still holds and gives rise to a ZN lattice vector
gauge model and aZN generalization for the plaquette Ising
model with planar ZN subsystem symmetries [57]. The ZN

vector gauge model [85,86] on a cubic lattice has been
studied by using Kramers-Wannier duality to map it onto
classical clock spin models exhibiting a single [87] tran-
sition depending on N: for N ≥ 5 it is believed to undergo a
continuous phase transition in the 3D XY universality class
[85,86,88]. In our context, this implies that the m-loop
condensation transition of our phase diagram in Fig. 1
persists in the genericZN scenario (except forN ¼ 3where
the transition at hc becomes first order). Our iPEPS
calculation for the Z5 case in Figs. 2(c) and 2(d) shows
that the m-loop condensation length and the deconfined
charge order parameter indeed approximately follow the
conjectured scaling of the 3D XY universality class [89].
For the fracton confinement transition, on the other hand,
our iPEPS calculations for the plaquette clock model with
finiteN ¼ 2; 3;…; 15; 16; 24 indicate first-order transitions
with finite jumps similar to the Z2 scenario (see Fig. 3
and SM), which however become notably weaker with
increasing N.
N → ∞ limit.—Of particular interest thus is the asymp-

totic limit in whichZN approaches the compactUð1Þ gauge
group. For the vector gauge model, Monte Carlo simu-
lations [85,86] found that hc ∝ N2, consistent with the
absence of a deconfined Uð1Þ vector gauge phase in 3D
[90]. For the plaquette model, we however find that the
critical point converges to a finite value tc → 1.58 (Fig. 4).
The inverse fracton confining length 1=ξf decreases ∝ 1=N
(for tþc ), and the transition jump of the quadrupole
amplitude vanishes ∝ 1=N2. These numerical observations
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FIG. 3. Fracton confinement transition in the ZN model
for N ¼ 24. tc ≈ 1.5788ð13Þ. (a) Left axis: inverse fracton-
confinement lengthscale; right axis: monopole condensate frac-
tion. (b) Left axis: fracton quadrupole amplitude; right axis:
logarithm of the wave function norm mapped to the classical free
energy density. Data are computed with iPEPS with bond
dimension D ¼ 2, χ ¼ 24.
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FIG. 4. Large-N limit. (a) Schematic phase diagram. The XC
fracton phase shrinks to a quantum critical line at tanhðhcÞ ¼ 1,
on which deconfined fractons are glued by critical fluctuating m
strings. h perturbation drives a partial confinement that binds
fractons into a fracton dipole, adiabatically connected to the m
particle in 2D TCs. t > tc drives complete confinement that
leaves no deconfined fracton dipoles. (b) N-scaling for the
first-order QPTs of ZN plaquette model: tc converges to
tc ≈ 1.5775ð25Þ. The jump of the monopole condensate fraction
remains finite and largely independent of N. The fracton
confining length ξf for tþc is proportional to N. The jump of
fracton quadrupole amplitude vanishes like 1=N2. Data are
computed with bond dimension D ¼ 2 for N ¼ 2;…; 15; 16; 24.
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indicate that the deconfined ZN→∞ XC fracton phase
shrinks to a critical line ðhc ∝ N2; t ≤ tcÞ in the asymptotic
limit.
What is the nature of this critical line? The asymptotic

limit can be described by the un-Higgsed Uð1Þ hollow
tensor gauge theory studied in Refs. [20,22,24], where the
electric field tensor is purely off diagonal so as to enhance
the dipole conservation to subsystem charge conservation
as an organizing principle [57]. Also, the classical plaquette
model that our wave function is mapped onto, is equivalent
to the classical field theory predicted for the Rokhsar-
Kivelson point [20]. Such a 3D quantum tensor gauge
theory is known to be generally unstable against monopole
proliferation [20], which gaps out a deconfined Coulomb
phase, analogous to the instability of a 2D quantum Uð1Þ
vector gauge theory [90]. Nevertheless, it does not rule out
the possibility that the deconfined gauge theory can emerge
at a critical point, dubbed deconfined quantum critical point
(DQCP) [91]. What we find here is a tensor gauge
generalization of the vector gauge DQCP wave function
[48], as the un-Higgsed fracton phase shrinks to a line of
critical points decorated with critical fluctuating m strings
that glue pairs of fractons (Fig. 4). As a consequence, the h
perturbation is relevant (in the renormalization group sense)
and confines two fractons into a fracton dipole. The fracton
dipole is adiabatically connected to the deconfined m
particle in the 2D TCs phase, signalling a partial confine-
ment from the fracton state. On the other hand, sufficiently
strong t > tc leads to monopole proliferation and confines
not only the fractons but also the fracton dipoles. Notice
that the adjacent phases of our DQCP do not exhibit
spontaneous symmetry breaking but rather distinct topo-
logical orders. It remains to be understood why the jump of
the monopole condensation order across tc extrapolates to a
finite value, which is mapped to the nonlocal symmetry
twist defect in the classical model.
Outlook.—The two phase transition lines cross at a

peculiar multicritical point that can serve as a parent critical
state, upon which any perturbations are relevant and flow to
all four possible topologically distinct states. It is straight-
forward to generalize the isotropic deformation to aniso-
tropic deformation, covering a richer variety of anisotropic
subdimensional criticalities in Refs. [34,38,39]. Our
approach, by deforming an exact tensor-network state
and mapping to a tunable and computable classical
statistical model, can be further extended to type II fracton
orders as fractal condensates [7,8], and twisted fracton
topological order [92]. The wave function–deformed QPT
of our study is particularly suitable for realization in
programmable quantum simulators [4,5,93], where the
application of a local nonunitary circuit can directly deform
the wave function. Our 3D tensor network wave function
also serves as a natural variational ansatz for Hamiltonian
deformations, which we leave to future work.
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