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We study flat bands and their topology in 2D materials with quadratic band crossing points under
periodic strain. In contrast to Dirac points in graphene, where strain acts as a vector potential, strain for
quadratic band crossing points serves as a director potential with angular momentum l ¼ 2. We prove that
when the strengths of the strain fields hit certain “magic” values, exact flat bands with C ¼ �1 emerge at
charge neutrality point in the chiral limit, in strong analogy to magic angle twisted-bilayer graphene. These
flat bands have ideal quantum geometry for the realization of fractional Chern insulators, and they are
always fragile topological. The number of flat bands can be doubled for certain point group, and the
interacting Hamiltonian is exactly solvable at integer fillings. We further demonstrate the stability of these
flat bands against deviations from the chiral limit, and discuss possible realization in 2D materials.
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Introduction.—Electronic band structures of 2D materi-
als can be controlled and designed by manipulating
superlattice structures. One well-known example is
twisted-bilayer graphene (TBG),where interference between
the two layers makes the band structure angle dependent.
Remarkably, at some “magic angles,” isolated nearly flat
topological bands arise [1–3], which become exactly flat in
the chiral limit [4], and similar flat bands may arise in other
twisted-bilayer systems as well, such as quadratic band
crossing point (QBCP) bilayers [5,6]. This property of
twisted bilayers makes them an exciting platform for study-
ing strongly correlated phenomena such as unconventional
superconductivity and correlated insulators [7–31]. In single
layer moiré systems, exciting progress toward similar inter-
ference has been achieved via spatially varying electrostatic
field, magnetic field, and elastic strain field [32–43].
However, for these systems, it was recently argued [41] that
(without a constant background magnetic field) exact flat
bands cannot be achieved even in the chiral limit.
In this Letter, we study single layer systems with QBCPs

under periodic strains. In contrast to Dirac points in
graphene, where strain serves as a vector potential via
minimal coupling i∂ → i∂þ A [44], for QBCPs at time-
reversal invariant momenta, such gauge-field-like cou-
plings are prohibited by the time-reversal symmetry.
Because i∂ and strain fields have opposite parity under
time reversal, the couplings allowed by symmetry for
QBCPs take the form of ∂∂ → ∂∂þ A, where A is propor-
tional to the strain field. In other words, the strain fields
here provide a director potential with angular momentum
l ¼ 2, instead of a vector with l ¼ 1.
Remarkably, we find that this strain-field coupling

induces exact flat bands, in strong analogy to TBG.

Here, instead of controlling the twisting angle, we vary
the strength of the strain field. In the chiral limit, exact flat
bands are obtained as the strength of the strain field hits
certain “magic” values, and the flat bands carry Chern
numbers C ¼ �1. Away from the chiral limit, these magic
flat bands survive in a wide range of phase space, although
their bandwidth is no longer exactly zero. We prove
analytically that these exact flat bands are protected by
the same mathematical principles as magic flat bands in
TBG, and thus in analogy to TBG, they are fragile
topological bands and their quantum metrics satisfy the
trace condition. In addition, we find that their Berry
curvature distributions are more uniform than the TBG
flat bands, making them ideal for the realization of frac-
tional Chern insulators [45–51].
Despite these similarities, it is also worth highlighting

that these strain-induced flat bands are due to a very
different physical mechanism, and thus they exhibit some
unique physical properties, sharply distinct from TBG. For
example, these strain-induced flat bands can arise at the Γ
valley and only need a single layer, while twisted-bilayer
magic flat bands require a finite wave vector away from
Γ [52] and interference between two layers. Secondly,
twisted-bilayer magic flat bands arise for various
dispersion, e.g., Dirac and QBCP [5], while the strain-
induced magic flat bands can only emerge from QBCPs.
QBCP, strain field, and director potential.—Without

requiring fine tuning, a stable QBCP can only arise at time-
reversal (T) invariant momenta (Tk ¼ −k) with proper
rotational symmetry [53], where T and rotational sym-
metries protect the QBCP from being gapped out or
splitting into Dirac points [53–55]. Here, we will focus
on a QBCP with T and three or sixfold rotational symmetry,
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e.g., the Γ point of a kagome metal. Up to a change of basis,
the Hamiltonian near Γ takes the following form

HΓ ¼ −t0a2ðc0k21 − ðk2x − k2yÞσx − 2kxkyσyÞ; ð1Þ
where 1, σx, σy represent the 2 × 2 identity and Pauli
matrices respectively, and k ¼ jkj. Without loss of general-
ity, we set t0 ¼ 1 and a ¼ 1. Here, c0 determines the
average effective mass of the two bands. At c0 ¼ 0, a chiral
symmetry emerges, fH; σzg ¼ 0, and thus the dispersion of
the two bands is symmetric around E ¼ 0. A nonzero c0
breaks the chiral symmetry with dispersion similar to a
kagome metal [Fig. 1(b)]. The special case of c0 ¼ �1

generates a flat band, as in the nearest-neighbor-hopping
kagome lattice [Fig. 1(a); also Supplemental Material
(SM) [56] ].
Under a slowly varying strain field uijðrÞ, the

Hamiltonian becomes

HðrÞ ¼ HΓ þ AIðrÞ1þ AxðrÞσx þ AyðrÞσy;

¼
�
4c0∂z∂z̄ þ AI 4∂2z þ Ã

4∂2z̄ þ Ã� 4c0∂z∂z̄ þ AI

�
; ð2Þ

where AI ∝ uxx þ uyy describes bulk deformation, and
Ax ∝ uxx − uyy and Ay ∝ uxy describe shear deformations.
Here, we introduce complex coordinates and strains z ¼
xþ iy and Ã ¼ Ax − iAy. Here, Ã couples to ðkx − ikyÞ2,
which is a director with angular momentum l ¼ 2. This
director potential is the key reason why periodic strain can
induce magic flat bands for QBCPs. In SM [56], we
demonstrate a specific example using a kagome lattice
tight-binding model to explicitly derive this Hamiltonian
and the director potential coupling.
C3v symmetric and the chiral limit.—We start from the

chiral limit c0 ¼ AI ¼ 0 and show that periodic strains lead
to exact flat bands. A real physical system in general
deviates from this ideal limit, but as is shown below, as long
as such deviation is not too severe, magic flat bands still
remain. Before studying this chiral limit, it is worth
commenting on how to achieve this limit. To make c0
close to zero, we need to use materials where the two bands
near a QBCP have opposite effective mass [e.g.,
GaCu3ðOHÞ6Cl2 [64] ]. To make AI ≪ Ax or Ay, it simply
requires to use 2D materials with a bulk modulus (B) larger
than the shear modulus (G), so that shear deformations (Ax

and Ay) have lower energy cost than bulk deformation (AI).
In typical materials, this condition B > G is naturally
satisfied, unless the material is auxetic, i.e., has negative
Poisson ratio.
In the chiral limit, we apply a periodic strain with C3v

symmetry. Such strain fields can be categorized into two
classes depending on whether the mirror plane is parallel or
perpendicular to the reciprocal lattice vector Gm. The first
category (parallel) includes space groups p3m1 and p6mm,
while the latter (perpendicular) gives p31m. Here, we will
focus on the first category. Within the first harmonic
approximation, the strain can be written as

ÃðrÞ ¼ t0
α2

2

X3
n¼1

ωn−1 cos ðGm
n · rþ ϕÞ; ð3Þ

where α2 > 0 is the strength of the strain and ϕ is an arbi-
trary phase and ω ¼ expð2πi=3Þ. Gm

1 ¼ ð4π= ffiffiffi
3

p
amÞð0; 1Þ

and Gm
2;3 ¼ ð4π= ffiffiffi

3
p

amÞð∓ ffiffiffi
3

p
=2;−1=2Þ are the reciprocal

FIG. 1. Exact flat bands from a QBCP under periodic strain.
(a) Schematic of a kagome lattice, which has a QBCP at Γ.
(b) The band structure of a QBCP [Eq. (1)] at c0 ¼ 0, 0.5, 1, 1.5,
where c0 ¼ 0 is the chiral limit. (c)–(e) Band structures in the
chiral limit under strain Ã [Eq. (3) at ϕ ¼ 0] at different critical
values of α̃ ¼ α=ðjGmjaÞ along the high symmetry path in the
moiré Brillouin zone shown in (f). There are two exact flat bands
at E ¼ 0 in each case. (g),(h) Bandwidth Ew and band gap Eg as a
function of α̃, respectively. The bandwidth is exactly zero at the
critical values of α̃. The minima of the bandwidth occur at
the same values of α̃ as the maxima of the band gap. (i) Table of
the values of Δα̃ ¼ α̃iþ1 − α̃i.

PHYSICAL REVIEW LETTERS 130, 216401 (2023)

216401-2



lattice vectors. The second category has similar exact flat
bands (see SM [56]) and its strain field is

ÃðrÞ ¼ �t0α2
X3
n¼1

ωn−1 exp ðiGm
n · rÞ: ð4Þ

Exact flat bands at ϕ ¼ 0.—We start by considering a
special case with ϕ ¼ 0 in Eq. (3), where the system
exhibits a higher rotational symmetry C6v. As shown in
Figs. 1(c)–1(e), two exactly flat bands with E ¼ 0 arise at
critical values of α (the square root of the strain strength).
We define a dimensionless parameter α̃ ¼ α=ðjGmjaÞ,
which fully controls the physics of the system. These
critical α̃s are roughly equally spaced Δα̃ ≈ 1.39 [Figs. 1(g)
and 1(i)], and they also maximize the band gap that
separates these two flat bands from others [Fig. 1(h)]. In
analogy to TBG in the chiral limit [4,41], these critical
strains and exact flat bands can be analytically proved, and
their Bloch wave functions can be analytically constructed.
We start from the Γ point. Because the strain preserves T
and C3 symmetry, the twofold degeneracy of the QBCP
remains. In the chiral limit, the energy of these two
degenerate states must remain at E ¼ 0, and their wave
functions can be obtained from the Hamiltonian Eq. (2):
ΨΓ;1ðrÞ ¼ fψΓðrÞ; 0g and ΨΓ;2ðrÞ ¼ f0;ψ�

ΓðrÞg, where
ψΓðrÞ is a periodic function of the superlattice and obeys
ð4∂2z̄ þ Ã�ÞψΓðrÞ ¼ 0. ΨΓ;1 and ΨΓ;2 are related with each
other via time reversal, T ¼ σxK, where K is the complex
conjugation.
If there are exact flat bands at E ¼ 0, the eigenfunctions

can be written as fψkðrÞ; 0g and f0;ψ�
−kðrÞg with

ð4∂2z̄ þ Ã�ÞψkðrÞ ¼ 0. Since the kinetic part of D†ðrÞ is
antiholomorphic, we can construct a trial wave function
ψkðrÞ ¼ fkðzÞψΓðrÞ. The fkðzÞ needs to satisfy Bloch
periodicity (translation by a superlattice vector am gives a
phase shift of eik·a

m
). However, from Liouville’s theorem,

such fkðzÞ must have poles, making ψkðrÞ divergent. To
avoid such singularity, ψΓðrÞ needs to have a zero that
cancels the pole of fkðzÞ. As shown in Fig. 2(a), at the
magic values of α̃i, ψΓð0Þ ¼ 0. Hence, we have

Ψk;1ðrÞ ¼
�
ψkðrÞ
0

�
; Ψk;2ðrÞ ¼

�
0

ψ�
−kðrÞ

�
;

ψkðrÞ ¼
ϑk·am

1
2π −1

2
;1
2
−
k·am

2
2π

ð z
a1
;ωÞ

ϑ−1
2
;1
2
ð z
a1
;ωÞ ψΓðrÞ; ð5Þ

where ϑa;bðz; τÞ is the theta function of rational character-
istic [65], ami are lattice vectors [am1 ¼amð1;0Þ, am2 ¼
amð−1; ffiffiffi

3
p Þ=2] of the superlattice, ai¼ðami Þxþ iðami Þy.

As shown in the SM [56], these wave functions give
two exact flat bands with E ¼ 0.
In analogy to the Chern basis in TBGs [66], because

these two flat bands only involve holomorphic or anti-
holomorphic functions, they have Chern number �1. Same
as Landau levels, their Fubini-Study metric gðkÞ satisfies
the trace condition tr½gðkÞ� ¼ jFxyðkÞj [46–51], where
FxyðkÞ is the Berry curvature (see SM, Sec. III [56]). In
SM Fig. S1 [56], the distributions of the Berry curvature in
k space are shown for the first three critical α̃, which we
found to be quite uniform. To quantify the nonuniformity of
Berry curvature, we measure the ratio between the root-
mean-square deviation of the Berry curvature and its
average value ΔFxy=F̄xy [45]. The smallest value (most
uniform distribution) is found at the second critical α̃ with
ΔFxy=F̄xy ≈ 0.027, much smaller than the reported values
in TBG flat bands [47]. Ideal quantum metric and very
uniform Berry curvature make this system an ideal candi-
date for realizing fractional Chern insulators [45–51].
Generic ϕ, double zeros, and fourfold flat bands.—In

addition to ϕ ¼ 0 (Eq. (3), exact flat bands also arise at
ϕ ≠ 0. At ϕ ¼ nπ=3 (ϕ ≠ nπ=3), the strain preserves
sixfold (threefold) rotational symmetry with space group
symmetry p6mm (p3m1). In Fig. 3(a), we plot the
bandwidth as a function of α̃2 and ϕ in polar coordinate,
setting α̃2 and ϕ to be the radius and polar angle,
respectively. The dark lines mark the exact flat bands
and the dashed green line marks analytic solution from
perturbation theory (see SM [56]). As we can see, for any
value of ϕ, exact flat bands can be reached at certain critical
field strengths.
To further verify this conclusion, we show that ψΓðrÞ

indeed contains zeros for all critical α̃s, and thus ana-
lytic wave functions can be constructed for these exact flat
bands following the same procedure shown above. In
Figs. 3(c)–3(e), we plot in log scale jψΓðr ¼ 0Þj,
jψΓðr ¼ ð2am1 þ am2 Þ=3Þj, and jψΓðr ¼ ð2am2 þ am1 Þ=3Þj,
as well as minfjψΓðr ¼ 0Þj; jψΓðr ¼ ð2am2 þ am1 Þ=3Þj;
jψΓðr ¼ ð2am1 þ am2 Þ=3Þjg in Fig. 3(b). These three real
space points are the threefold rotation centers of the p3m1
lattice, and the dark lines in these figures mark ψΓ ¼ 0,
which perfectly match the exact flat bands shown in
Fig. 3(a).

FIG. 2. (a) The plot of lnð1=jψΓðrÞjÞ at the critical value α̃ ≈
0.79 for Ã in Eq. (3) with ϕ ¼ 0. The spikes imply that ψΓðrÞ has
zeros at r ¼ n1am1 þ n2am2 , n1; n2 ∈ Z. Here, am1 and am2 are the
lattice vectors of superlattice. (b) Contour plot of ð2jÃðrÞj=α2Þ.
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The reason we only see ψΓ ¼ 0 at these three high
symmetry points in the unit cell is that ψΓ at other r are in
general complex. To make both the real and imaginary parts
zero, it typically requires one to adjust two real control
parameters simultaneously. In contrast, ψΓ at these high
symmetry points must be real, due to the T and C3v
symmetry (see SM [56]), and thus its value can be
tuned to zero with only one control parameter, which is
why exact flat bands can emerge as we scan α̃. This is why
the addition of mirror symmetry to C3 and T is
important.
It is easy to check that, for these periodic strain fields,

there exists a symmetry of ϕ → ϕþ 2π=3. This trans-
formation corresponds to a real space translation that swaps
the three real space high symmetry points 0, ð2am1 þ am2 Þ=3,
and ð2am2 þ am1 Þ=3, as can be seen from Figs. 3(c)–3(e).
This is the reason why Figs. 3(a) and 3(b) are threefold
symmetric. At points highlighted by the red circles in
Fig. 3(b), ψΓðrÞ has 2 zeros in a unit cell (two of the three
real space high symmetry points). These double zeros are
not accidental but due to the rotational symmetry. For
example, at ϕ ¼ π, the rotational symmetry of the system
increases to sixfold and two of the high symmetry points,
ð2am2 þ am1 Þ=3 and ð2am1 þ am2 Þ=3, are connected by this
sixfold rotation. Thus, when ψΓðr ¼ ð2am2 þ am1 Þ=3Þ re-
aches zero at α̃ ≈ 1.695, so does ψΓðr ¼ ð2am1 þ am2 Þ=3Þ
[see SM, Fig. S3(d) [56] for the plot of ψΓðrÞ]. With two
zeros, we can construct two meromorphic Bloch-periodic

functions fð1Þk ðzÞ and fð2Þk ðzÞ similar to Eq. (5). Hence there
are four flat bands instead of two, as is shown in SM,
Fig. S3 [56]. For completeness, we also plotted the
predicted values of smallest critical α̃ from 9th order
perturbation theory in Fig. 3(a) (green dashed lines, see
SM, Sec. VII [56], for details), they agree very well with the
numerically calculated critical α̃.

Fragile topology and exact solutions in interacting
systems.—As shown in SM, Sec. IX–X [56], in analogy
to flat bands in TBG [2,3,66], these flat bands are fragile
topological bands. In addition, for spin-1=2 fermions with
charge repulsion, these flat bands exhibit an emergent
Uð2Þ × Uð2Þ symmetry and integer fillings can be solved
exactly (see SM, Sec. XII [56]), similar to TBG [67–69]. At
charge neutrality (ν ¼ 0), there are degenerate ground
states with Chern number 0 or �2, but thermal fluctuations
stabilize the C ¼ 0 state via order by disorder. At filling
ν ¼ �1, the exact ground state is a Chern insulator
with C ¼ �1.
Breaking chiral symmetry.—In analogy to TBG, as we

move away from the chiral limit, these magic flat bands
survive, although a small bandwidth emerges. Here, we
turn on the chiral symmetry breaking term c0 and AI in
Eq. (2), setting Ã as Eq. (3) with ϕ ¼ 0 and AIðrÞ ¼
−ðα2c0t0=4Þ

P
3
i¼1 cosðGm

i · rÞ. For a kagome lattice, this
AI naturally arises from nearest-neighbor hoppings (see SM
[56]). As shown in Fig. 4, magic flat bands survive even if
c0 reaches 0.5, although the bandwidth is no longer exactly
zero, and the maximum band gap and the minimum
bandwidth slightly misalign. At α̃ ¼ 0.79, the band gap
to bandwidth ratio is > 17 for c0 ¼ 0.1 and > 5 for
c0 ¼ 0.3. Upon further increasing c0, these two bands
eventually mix with other bands. However, band hybridi-
zation and inversion result in an isolated highly flat band at
c0 ¼ 0.9 and α̃ ¼ 1.29 as shown in SM, Fig. S4 [56].
Similarly, for Ã with ϕ ¼ π [Eq. (3)] and the same AI, at
c0 ≈ 0.15 and α̃ ≈ 1.695, the four degenerate flat bands
around charge neutrality split into two pairs of isolated
nearly flat bands as shown in SM, Sec. IX [56], and both of
them remain fragile topological, protected by C2 and C3,
respectively.

FIG. 3. Exact flat bands in polar coordinate of α̃2 (radius) and ϕ (polar angle). (a) Bandwidth lnEw as a function of ϕ and α̃.
The green dashed line shows the predicted value of principal critical α̃ from 9th order perturbation theory.
(b) minfln jψΓðr ¼ 0Þj; ln jψΓðr ¼ ð2am2 þ am1 Þ=3Þj; ln jψΓðr ¼ ð2am1 þ am2 Þ=3Þjg as a function of α̃ and ϕ. (c)–(e) ln jψΓðr ¼ 0Þj,
ln jψΓðr ¼ ð2am1 þ am2 Þ=3Þj, ln jψΓðr ¼ ð2am2 þ am1 Þ=3Þj as a function of α̃ and ϕ. The dark lines in each plot show critical α̃ with two
exact flat bands. At the crossing point of two dark lines [red circles in (b)], the strain induces four degenerate flat bands.
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Discussions.—In this Letter, we studied a QBCP near the
Γ point under periodic strain with C3v symmetry, and
found exact topological flat bands in the chiral limit. Using
materials with nearly chiral QBCPs [e.g., GaCu3ðOHÞ6Cl2
[64] ] and a periodic strain field, which has already been
achieved in experiments [32,34], it is possible to access the
vicinity of this chiral limit and explore these flat bands,
offering a new platform to study topological flat bands,
fragile topology, and correlated phases such as fractional
Chern insulators and unconventional superconductivity.
To further verify the feasibility of this proposal, in SM,
Sec. XIV [56] we compared our model with existing
experiments and the estimation indicates current strain-
engineering technology would allow us to reach at least the
first two magic flat bands at the temperature T ∼ 4 K. In
addition, the same principle also applies to other systems
with quadratic band crossings, such as photonic and
phononic crystals, magnons, and optical lattices [70–74].
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