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We present an experimental study of the velocity circulation in a quasi-two-dimensional turbulent flow.
We show that the area rule of circulation around simple loops holds in both the forward cascade enstrophy
inertial range (ΩIR) and the inverse cascade energy inertial range (EIR): When the side lengths of a loop are
all within the same inertial range, the circulation statistics depend on the loop area alone. It is also found
that, for circulation around figure-eight loops, the area rule still holds in EIR but is not applicable inΩIR. In
ΩIR, the circulation is nonintermittent; whereas in EIR, the circulation is bifractal: space filling for
moments of the order of 3 and below and a monofractal with a dimension of 1.42 for higher orders. Our
results demonstrate, as in a numerical study of 3D turbulence [K. P. Iyer et al., Circulation in High
Reynolds Number Isotropic Turbulence is a Bifractal, Phys. Rev. X 9, 041006 (2019).], that, in terms of
circulation, turbulent flows exhibit a simpler behavior than velocity increments, as the latter are
multifractals.
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A major issue in the study of turbulence is to find its
putatively universal small-scale properties. Most existing
theories of turbulence based on phenomenology and
mathematical analysis largely focus on the structure func-
tion (SF) hjδurjpi (δur is the velocity increment over a
distance r), as their scaling laws can characterize the
dynamics of energy cascade [1]. The celebrated K41 theory
[2] predicted that, in the inertial range (IR) of three-
dimensional (3D) turbulence, the velocity SFs scale as
hjδurjpi ∝ rp=3. However, later studies [3–5] found that,
due to the intermittency effect, the scalings exhibit multi-
fractality (i.e., a nonlinear function of moment order),
which is difficult to understand analytically. This problem
is further aggravated, as high-order longitudinal and trans-
verse SFs scale differently [6–8]. This difficulty motivates
the community to seek other theoretical metrics that may be
used to describe turbulence in a simpler way. A recent
numerical study of high Taylor-scale Reynolds number
(Reλ) 3D turbulence [9] suggests that the circulation ΓA ¼H
C u · dl (A is the area enclosed by the loop C and dl is the
line element along C) may be such an object, which is
simpler than velocity itself: Circulation in IR is bifractal
and satisfies the area rule [10,11].
Circulation was also found numerically to be a bifractal

in quantum turbulence [12,13] despite the distinct differ-
ence of vortex distributions in quantum and classical
turbulence [14,15], which connects the intermittency in
the two types of turbulence [1,16]. In addition, recent

experiments in two-dimensional (2D) quantum turbulence
[17–19] observed the coherent vortex dynamics and con-
densates, as in classical 2D turbulence [20,21]. Classical
2D turbulence is also closely related to physical processes
for large-scale motions in geophysical flows [22]. There
exist essential differences between 2D and 3D turbulence,
such as the conserved quantities, the direction of energy
transfer [20], and the degree of intermittency in terms of
velocity SFs [22,23], which hinder the establishment of a
unified theory of turbulence. It is, thus, highly desirable to
find a single physical quantity that has the same (or similar)
characteristics in both 2D and 3D turbulence, which, in
turn, may afford us a more universal description of
turbulence.
The bifractality and area rule have not been observed

experimentally so far, in both 3D and 2D turbulence. In the
case of low-Reλ 3D turbulence with insufficient extent of
IR, previous simulations and experiments have not been
able to verify the applicability of the area rule, and it was
suggested that the circulation was also multifractal as the
velocity increments [24–27], in contrast with the findings
in high-Reλ turbulence [9]. Moreover, the study of circu-
lation in 2D turbulence is made more interesting by its two
IRs for energy and enstrophy cascades.
In this Letter, the circulation properties in a quasi-2D

turbulent flow are studied experimentally. We show that,
in the energy inertial range (EIR) of 2D turbulence,
circulation possesses bifractality, as in 3D and quantum
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turbulence; whereas in the enstrophy inertial range (ΩIR),
circulation is nonintermittent. We also show that the area
rule for circulation around simple loops holds in both EIR
and ΩIR.
Our 2D turbulence was generated electromagnetically in

stratified thin fluid layers. The experimental setup (see
Supplemental Material [28]) is similar to those described in
Refs. [21,39,40]. A conducting fluid of NaOH water solu-
tion (density 1.08 g=cm3) is floated on a heavier, immis-
cible, dielectric fluid layer, FC-770 (density 1.79 g=cm3).
A direct current is driven through the top layer with two
copper electrodes at each end of the reservoir. Beneath the
reservoir is a square matrix of 30 × 30 neodymium-
iron-boron (NdFeB) grade N52 magnets. Each magnet is
10 × 10 × 5 mm3 and has a peak magnetic field of about
0.43 T. The magnets are placed 10 mm apart (which gives
rise to the forcing scale lf) in a checkerboard pattern with
the poles of adjacent magnets arranged oppositely, which
has the advantage of driving stronger fluctuating kinetic
energy and facilitating the inverse energy transfer [41]. The
resulting Lorenz forces from the interaction between the
current and the vertical magnetic field generate a vortex
lattice in the top fluid that evolves to turbulent flows.
The flow fields were measured by particle image

velocimetry. The top fluid layer was seeded with 50 μm
polyamide spheres and illuminated by a horizontal laser
sheet. A high-resolution camera (3000 × 3000 pixels2, at
40 frames per second) recorded 7221 realizations of flow
field in the steady state. The spatial resolution lres of the
measured velocity field is 0.52 mm, and the measurement
domain L is 193 × 193 mm2, resulting in lf=lres ¼
19.2 and L=lf ¼ 19.3. The entire flow region LB is
300 × 300 mm2, i.e., LB=lf ¼ 30, so little boundary effect
of the sidewalls on the flow in the measurement domain can
be expected. We have close to 109 (371 × 371 × 7221)
measured velocity vectors, which ensures the convergence
of high-order velocity and circulation SFs. The Reynolds
number Ref based on lf and urms is 110, and Reλ is 60. This
is a typical value where turbulent flow is generally
considered to be fully developed and simultaneously the
3D effect is negligible [40,42].
It is challenging for experiments to simultaneously

observe both IRs with sufficient extent in 2D turbulence
[39,43,44]. To do so, sufficient scale separations are
required, i.e., lf=lν ≫ 1 and Lα=lf ≫ 1 [22], where lν is
the viscous scale and Lα the friction-dominated scale. In
this experiment, we have Lα=lf ¼ 13.7 and lf=lν ¼ 12.5,
so the above conditions are well satisfied. Verification of
the two-dimensionality of the flow and the existence of
the two IRs are presented in Supplemental Material [28].
From the second-order circulation moment, as shown
later, we can estimate the extent of the IRs, i.e., ΩIR:
0.05 < r=lf < 0.7; EIR: 1.0 < r=lf < 6.0.
With the measured velocity field, we calculate the SFs

of velocity hjδurjpi and circulation hjΓAjpi. For 2D, the

minimal area is no different from the classical area.
Figure 1(a) plots the probability density functions (PDFs)
of ΓA normalized by urmslf for several rectangular loops
with the same loop area (A=l2f ¼ 0.48) but different aspect
ratios (l1=l2). One sees that, when the lengths of both sides
of the loop are contained within the ΩIR, the corresponding
PDFs collapse to a very good accuracy; whereas, with one
of the lengths outside ΩIR, the PDFs manifest an aspect-
ratio dependence. This indicates that the area rule holds
in ΩIR. Likewise, the area rule is also applicable in EIR
[Fig. 1(b)]: When both sides of the loop are within EIR, the
PDFs of ΓA are independent of l1=l2. Also, when l1 lies in
ΩIR and l2 is within EIR, respectively, the PDFs present a
noticeable dependence on l1=l2; see Fig. 1(c) and the
crosses in Fig. 1(d). It indicates that the area rule is not
valid unless both sides are within the same IR. Figure 1(d)
plots the second- and fourth-order moments of circulation
versus l1=l2 for two values of A=l2f in each IR. It shows that
the circulation satisfies the area rule at least to a fourth-order
accuracy in both IRs in our quasi-2D turbulence.
The above findings support the previous theoretical and

numerical studies on the area rule [9–11,45]. Furthermore,
our results suggest that the area rule of circulation works
not only in EIR for forward cascade, but also in EIR for
inverse cascade and ΩIR for forward cascade. It suggests
that, in terms of area rule, the circulation statistics are more
universal and may serve as a unifying quantity for both 2D
and 3D turbulence.

FIG. 1. PDF of ΓA for loops with different l1=l2 and fixed area
A=l2f ¼ 0.48 (a), 2.44 (b), and 0.54 (c). (d) hΓA

4i and hΓ2
Ai1=2

(inset) versus l1=l2 (the vertical scale for A=l2f ¼ 2.44, 3.26 is
reduced by 30 times in the main figure). In (a), (b), and (d), the
dashed lines and hollow symbols denote loops with at least one
side outside ΩIR (for A=l2f ¼ 0.33 or 0.48) or EIR (for A=l2f ¼
2.44 or 3.26), and the solid lines and symbols indicate both sides
of loops are inside the same IR. All curves in (c) and the crosses
in (d) represent the loops with l1 inside ΩIR and l2 inside EIR.
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We now investigate the effect of loop shape on the
scaling of circulation SFs to quantify the applicability and
limitations of the area rule in a wide range of scales.
Figure 2(a) plots hΓ2

Ai1=2 versus A=l2f for four sets of
rectangular loops with different l1=l2. One sees that hΓ2

Ai1=2
is nearly independent of l1=l2 over a wide range of scales in
both EIR and ΩIR (0.01≲ A=l2f ≲ 30) for loops with
rectangular shape, i.e., simple loops [inset in Fig. 2(a)].
The variation of hΓ2

Ai1=2 with l1=l2 observed for small areas
(A=l2f ≲ 0.01) may result from the viscous effect or small-
scale three-dimensional flow effect [39,40,46,47], while for
large areas (A=l2f ≳ 30) it may be attributed to finite
sampling [9]. Nevertheless, one sees that the area rule
holds for simple loops to an excellent degree in both IRs.
Figure 2(b) plots the normalized hΓ2

Ai1=2 versus A=l2f for
four sets of figure-eight loops of different shapes. This type
of loop consists of two squares sharing a vertex, and its size
can be characterized by the scalar area A (¼ L2

1 þ L2
2) and

its shape by Lδ (¼ jL1 − L2j). It is seen that hΓ2
Ai1=2 is

independent of Lδ=lf for A=l2f ≥ 1 [inset in Fig. 2(b)]. This
suggests that the area rule also holds for the more
complicated loops in EIR, whereas in ΩIR hΓ2

Ai1=2
decreases with decreasing Lδ. Note that turbulent flows
in our system arise from the evolution of vortex lattice
generated by the array of magnets, and a typical vortex size
is of the order of OðlfÞ. Therefore, when the size of a

figure-eight loop is comparable with or smaller than the
size of a vortex, the subloops have opposite contributions to
the circulation. It is this cancellation that results in a smaller
value of circulation for small Lδ. Because of this, when
discussing the scaling exponents of the circulation SFs
below, we will consider only the simple square loops
(l1=l2 ¼ 1). There is thus no ambiguity when we speak
of Γr, because r ¼ A1=2.
From dimensional analysis, the scaling exponents of

circulation and velocity SFs should satisfy ζp ¼ χp þ p,
where hjΓrjpi ∝ rζp and hjδurjpi ∝ rχp . According to K41
arguments [2], for p ¼ 1, hΓ2

Ai1=2 in ΩIR should scale as
hΓ2

Ai1=2 ∝ r2 ∝ A1 (δur ∝ r1), while in EIR hΓ2
Ai1=2 ∝

r4=3 ∝ A2=3 (δur ∝ r1=3). Both scalings are clearly verified
in Fig. 2(a) for circulation around simple loops. As for the
figure-eight loops, one can also observe hΓ2

Ai1=2 ∝ A2=3 in
EIR. It indicates that the statistically relevant area for
the circulation in EIR is the scalar area enclosed by the
figure-eight loop, consistent with a previous study in 3D
turbulence [9].
Figures 3(a) and 3(b) plot the circulation SFs of orders

1–10 and their local scaling exponents. One sees that,
below lf, ζp varies with r=lf and a scaling range with a
constant ζp is not observed, whereas, in the range of
2 ≤ r=lf ≤ 6, ζp are nearly invariant. In Fig. 3(b), a valley
(indicated by the gray arrow) is seen (especially for high
orders), and it may be understood as a result of the
cancellation of circulation contributions from the counter-
rotating vortex pairs in loops with size ∼2lf [see the
cartoon in Fig. 3(b)]. Therefore, we obtain the absolute
scaling exponents ζp;E in the range of 2 ≤ r=lf ≤ 6 for EIR
and the relative scaling exponents ζp;Ω=ζ2;Ω in ΩIR using
the extended self-similarity (ESS) approach [48]. Integral

FIG. 2. hΓ2
Ai1=2 versus A for four sets of (a) simple loops and

(b) figure-eight loops. The inset in (a) plots the ratio of hΓ2
Ai1=2 for

l1=l2 ¼ 1 to that for l1=l2 ¼ 0.5. The inset in (b) plots the ratio of
hΓ2

Ai1=2 for Lδ=lf ¼ 0.104 to that for Lδ=lf ¼ 0.260.

FIG. 3. (a) Circulation SFs of orders 1–10 and (b) correspond-
ing local scaling exponents ζp as functions of r=lf. Also shown
are the integral kernels of circulation moments [hΛpi ¼R
PDFðΛÞΛpdΛ] at (c) r=lf ¼ 0.4 in ΩIR and (d) r=lf ¼ 2.2

in EIR for p ¼ 10 and 8 [the vertical scale for p ¼ 8 in (d) is
enlarged by 50 times].
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kernels in Figs. 3(c) and 3(d) show the high level of
convergence of high-order circulation SFs in the two IRs.
We similarly obtain the (relative) scaling exponents χp of
velocity SFs.
Figure 4 plots the exponents of velocity and circulation

SFs in ΩIR versus p. The linear relation ζp;Ω=ζ2;Ω ¼ p=2
clearly indicates that the circulation is nonintermittent.
However, the velocity increments in ΩIR seem to be
weakly intermittent, although the deviation from the linear
relation χp;Ω=χ2;Ω ¼ p=2 becomes apparent only for p ≥ 6.
This finding is consistent with results from a previous
study [39] that showed the relation χp;Ω=χ2;Ω ¼ p=2
was roughly satisfied for p ≤ 6. Note that the deviation
for high orders may also originate from the logarithmic
corrections [22,49].
The scaling behaviors for the circulation and velocity

SFs in EIR are distinctly different from those in ΩIR. For
the circulation SFs, Fig. 5(a) shows that ζp;E starts to
deviate from K41 predictions for p > 3, indicating the pre-
sence of intermittency. It is interesting that ζp;E for p > 3

can be fitted with a linear relation: ζp;E ¼ hpþ ð2 −D2Þ,
where h ¼ 1.14� 0.02 and the Hölder dimension
D2 ¼ 1.42. This suggests that the velocity circulation in
EIR of our quasi-2D turbulent flow is a bifractal. In
previous numerical studies of high-Re 3D turbulence [9]
and quantum turbulence [12], circulation was also found to
possess bifractality: a space-filling quantity for orders
p ≤ 3 and a monofractal with a Hölder dimension of 2.2
for orders p > 3 [inset in Fig. 5(a)]. The authors in Ref. [9]
inferred that the monofractal dimension for high orders was
due to moderately wrinkled vortex sheets rather than more
complex singularities. Following the arguments in Ref. [1],
the probability of the extreme events of circulation (i.e., the
manifestation of intermittency) has a scaling of PðΓrÞ ∝
ðr=r0Þd−D, where d is the dimension of the embedding
space, D the fractal dimension, and r0 the integral length
scale of turbulence. From dimensional analysis, the energy
flux can be expressed as ϵ ∝ Γ3

rr−4PðΓrÞ. In 2D turbulence,

it is a constant and independent of the scales in EIR.
This implies Γr ∝ rh, and the circulation SFs scale
as hΓp

r i ∝ Γp
rPðΓrÞ ∝ rζp with ζp ¼ hpþ ðd −DÞ and

3hþ ðd −DÞ ¼ 4. The fitting result in Fig. 5(a) for
p > 3 is perfectly consistent with the above theoretical
argument, i.e., 3hþ ðd −D2Þ ¼ 4.0, with h ¼ 1.14, d ¼ 2,
and D2 ¼ 1.42.
Figure 5(b) plots χp;E for velocity SFs in EIR. One sees

that δur exhibits a close-to-multifractal behavior. This
contrasts with previous numerical results for 2D turbulence
in which δur in EIR was nonintermittent [52] but agrees to
some degree with those from earlier quasi-2D experiments
[23,39,53,54]. It should be noted that our results are based
on the absolute scaling exponents for orders up to 10,
whereas in the earlier experiments the relative exponents
using ESS were reported due to the lack of a clear scaling
for hjδurjpi. As for the origin of intermittency in our quasi-
2D turbulence, it may be attributed to the thin-layer effect,
i.e., the imperfect two-dimensionality, and the presence of
coherent structures.
In summary, we have shown for the first time exper-

imentally in a quasi-2D turbulence that the statistical

FIG. 4. The relative scaling exponents for hjΓrjpi and hjδurjpi
within 0.05 < r=lf < 0.7. The insets plot, respectively, ζp=ζ2
and χp=χ2 versus r=lf for p ¼ 1–10 (from bottom to top).

FIG. 5. The scaling exponents for (a) hjΓrjpi and (b) hjδurjpi in
EIR. In (a), the high orders can be fitted by a monofractal model:
ζp;E ¼ 1.14pþ 0.58. Its inset displays bifractality observed in
3D turbulence [9], quantum turbulence [12], and present quasi-
2D turbulence, and the magenta line denotes the bifractal model
from Ref. [9]. In (b), the dashed line denotes the multifractal
model for 3D turbulence [50,51]. The upper inset plots the
compensated hjδurjpi for p ¼ 9 and 10 to show the scaling range,
and the lower inset compares the relative deviations of ζp;E and
χp;E from their respective K41 estimates.
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moments of circulation exhibit bifractal behavior in EIR,
whereas the velocity SFs behave like multifractals in EIR.
Moreover, the circulation around simple loops satisfies the
area rule in both the energy inverse cascade and enstrophy
forward cascade inertial ranges, which extends the previous
idea of area rule for IR of energy forward cascade in 3D
turbulence [9,11]. These results have several important
implications. That the bifractality is found in both the
energy inverse cascade of 2D turbulence and the energy
forward cascade of 3D turbulence indicates that this property
may be independent of the direction of energy transfer. Our
results are, thus, of relevance to geophysical flows where
cascades in both directions exist [55]. Moreover, a bifractal
circulation is much simpler in terms of analysis and under-
standing than the multifractal velocity and could lead to a
reduction in the complexity of the loop-space reformulation
of the Navier-Stokes equations [9,11,45]. That is, the elusive
intermittency effect in different types of turbulence, i.e., 3D
classical turbulence, quasi-2D classical turbulence, and 3D
quantum turbulence, can be manifested more simply by
circulation. It may, therefore, serve as a potential theoretical
metric for a unified description of turbulence.
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