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We investigate the response of the near-equilibrium quark-gluon plasma (QGP) to perturbation at
nonhydrodynamic gradients. We propose a conceivable scenario under which sound mode continues to
dominate the medium response in this regime. Such a scenario has been observed experimentally for
various liquids and liquid metals. We further show that this extended hydrodynamic regime (EHR) indeed
exists for both the weakly coupled kinetic equation in the relaxation time approximation (RTA) and the
strongly coupled N ¼ 4 supersymmetric Yang-Mills (SYM) theory. We construct a simple but nontrivial
extension of Müller-Israel-Stewart (MIS) theory—namely MIS*—and demonstrate that it describes the
EHR response for both the RTA and SYM theory. This indicates that MIS* equations can potentially be
employed to search for QGP EHR via heavy-ion collisions.
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Introduction.—The properties of many-body QCD sys-
tems, particularly their behavior at different scales, have
fascinated high-energy nuclear physicists for decades. One
prominent example of such a system is quark-gluon plasma
(QGP) that is created in a heavy-ion collision (HIC) [1].
The remarkable and nontrivial agreement between hydro-
dynamic modeling and many results of HIC [2,3] indicates
that the asymptotically free QGP behaves as a near-perfect
fluid at long distances. However, much less is known about
its properties at the intermediate scale, where the character-
istic length is too short for a fluid description and is too
long to be treated perturbatively [4].
One central question, which we shall concentrate on, is

how an equilibrated QGP responds to an external disturb-
ance with varying gradients. When the perturbation varies
slowly in space and time, the hydrodynamic modes, such as
sound and shear modes, dominate the response after a
sufficiently long time. In this hydrodynamic regime (HR),
the medium’s behavior is described by viscous hydro-
dynamics. The description beyond the HR, in general, can
be exceedingly complex. It is commonly assumed that
dynamics in such situations involve a tower of nonhydro-
dynamic excitations [5].
Nevertheless, an alternative scenariomay and does exist in

condensedmatter systems. Since the seminalmeasurement in
Ref. [6], there is mounting empirical evidence showing that a
variety of liquids and liquidmetals, such as liquid zinc [7] and
liquid K-Cs alloys [8], can sustain sound modes extending
from the HR to wavelengths comparable to interatomic
separations; seeRefs. [9,10] for reviews.Though the physical
origins of those so-called “high wave vector” sound modes
are still under intensive investigation, they are found to be
essential for understanding the properties of the material at
nonhydrodynamic wavelengths (see, e.g., Ref. [8]).

The above observations exemplify the situation in which
the damping rate of hydrodynamic excitations remains
smaller than other excitations up to some critical wave
number qc beyond HR. In such an extended hydrodynamic
regime (EHR), hydrodynamic modes still dominate the
response at a timescale longer than the inverse of the gap (in
damping rate), despite the fact that viscous hydrodynamics
is not expected to describe their dispersion (see also
Ref. [11]). As we shall see explicitly below, an EHR exists
in representative microscopic theories such as the kinetic
theory under the relaxation time approximation (RTA) and
the strongly coupled N ¼ 4 supersymmetric Yang-Mills
theory in the large-Nc limit (SYM), indicating the general-
ity of the EHR regardless of the coupling strength.
In this Letter, we propose an EHR as a conceivable

scenario for QGP; i.e., sound modes may dominate the
near-equilibrium response at a significant gradient. What
would we learn about QGP if such an EHR existed? First, if
we suppose so, the characterization of QGP at intermediate
scales is simplified, since we can describe medium proper-
ties in the EHR with a few parameters such as effective
sound velocity and attenuation rate. Second, it will fill the
gap in our knowledge about the emergence of QGP liquid
from asymptotic parton gas.
Can we test the EHR scenario of QGP experimentally?

In HIC, the azimuthal asymmetries in the flow of produced
hadrons vn have been measured and are commonly
interpreted as the response to the initial eccentricity. In
smaller colliding systems, eccentricities are dominated by
shorter-scale fluctuations, and the EHR response can be
responsible for vn generation. In fact, describing observed
collectivity in those small colliding systems from non-
hydrodynamic transport has already attracted considerable
attention [5,12]. Besides this, the medium response to jet
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propagation can be another channel to probe the EHR
behavior. In Refs. [13–15], it was found that energy and
momentum deposited by fast partons cause large gradient
perturbations, and the excited medium response is corre-
lated nontrivially with jet production.
A phenomenological investigation of the QGP EHR

requires extending the standard hydrodynamic modeling of
HIC to incorporate the EHR response. To date, no serious
attempt to construct such a model has been made. We shall
propose a simple but nontrivial extension of Müller-Israel-
Stewart (MIS) theory, which we call MIS*, for this
purpose. As we shall demonstrate, MIS* can successfully
describe the EHR response for different microscopic
theories for the static and Bjorken expanding background.
We believe our construction to be an essential first step
toward the experimental search for an EHR.
EHR in weakly and strongly coupled theories.—We now

demonstrate the presence of an EHR for two representative
microscopic theories—namely,RTAkinetic theory andSYM.
In the RTA kinetic theory, the distribution function

fðt; x; pÞ obeys

pμ
∂μf − Γλ

ασpαpσ ∂f
∂pλ ¼ −

u · p
τR

ðf − feqÞ: ð1Þ

Here, Γλ
αβ denotes the metric connection. The relaxation

time τR controls the timescale at which f approaches the
equilibrium distribution feq ¼ eβp·u, where β and uμ denote
inverse temperature and fluid velocity, respectively. For a
conformal liquid, τR ∝ ϵ−1=4, with ϵ being the local energy
density. The dispersion of the sound mode can be obtained
from solving [16]

ðq2 þ iCπwÞ þ
iCπ

2q
½q2 þ 3wðiCπ þwÞL� ¼ 0: ð2Þ

Here, we use the dimensionless frequency w≡ ων and
wave vector q ¼ νq, where ν ¼ 4η0=3ðϵ0 þ p0Þ, with η0
being the shear viscosity, ϵ0 the energy density, and p0

the pressure of the background. L ¼ ln ðw − qþ iCπ=
wþ qþ iCπÞ, and the dimensionless ratio Cπ ≡ τπ=ν is
related to the shear relaxation time τπ . For RTA kinetic
theory, ν ¼ 4τR=15 and Cπ ¼ 15=4 [16], while for SYM,
ν ¼ β=3π, Cπ ¼ 3ð2 − log 2Þ=2 [17].
Turning to SYM, we employ the AdS=CFT correspon-

dence, which maps the correlator in the quantum field
theory in d-dimensional space-time into a classical general
relativity calculation in dþ 1 dimensions. The excitations
in the sound channel can be found by solving [18,19]

Z00 −
3w2ð1þ u2Þ þ q2ð2u2 − 3u4 − 3Þ
uð1 − u2Þð3w2 þ q2ðu2 − 3ÞÞ Z0 þ 4

9
×
3w4 þ q4ð3 − 4u2 þ u4Þ þ q2ð9u5 − 9u3 þ 4u2w2 − 6w2Þ

uð1 − u2Þ2ð3w2 þ q2ðu2 − 3ÞÞ Z ¼ 0; ð3Þ

where ZðuÞ depends on the radial coordinate u of the
extra dimension. Equation (3) has to be solved with
the infalling wave boundary condition Z ∼ ð1 − uÞ−iw=3,
as u → 1 (horizon). Near the boundary u ¼ 0, ZðuÞ∼
Aðq;wÞð1þ � � �Þ þ Bðq;wÞu2 þ � � �, where the dots de-
note higher powers of u. The Dirichlet boundary condition
Aðq;wÞ ¼ 0 determines the dispersion relation of excita-
tions, which we obtained from the public Mathematica
code given by Ref. [20].
In Fig. 1, we present the sound dispersion relation

w�ðqÞ ¼ �vðqÞq − iΓðqÞ in RTA kinetic theory (left)
and SYM (right). The phase velocity v and sound attenu-
ation rate Γ are shown in red solid curves in the upper and
lower panels, respectively. Also shown are representative
nonhydrodyamic excitations in the black dashed curve. For
comparison, we consider the dispersion of excitations in the
sound channel in MIS theory [21,22]:

w2 − c2sq2 þ
iwq2

ð1 − iCπwÞ ¼ 0; ð4Þ

where sound velocity c2s ¼ 1=3 for the two theories studied
in this section. In the limit Cπ → 0, Eq. (4) reduces to
the familiar expression in first-order hydrodynamic
w2 − c2sq2 þ iwq2 ¼ 0. Sound dispersion in first-order

hydrodynamics and MIS, obtained by solving Eq. (4) with
Cπ ¼ 0 and fixed Cπ , are shown in blue dotted and green
dashed curves, respectively, in Fig. 1. Plotting them at a
nonhydrodynamic gradient will tell us the regime where
conventional hydrodynamic theories cease to be a good
description of the response.
For RTA kinetic theory, the sound modes are gapped

from the quasiparticle excitations with damping rate τ−1R , up
to a critical value qc ¼ 1.2 [16]. Far below qc, the sizable
difference from first-order hydrodynamics is seen in the
damping rate, and even more so in the phase velocity, even
for q > 0.2. Therefore, 0.2 < q < 1.2 may be viewed as an
EHR for RTA kinetic theory.
As for SYM, the gap between sound modes and non-

hydrodynamic excitations, a tower of quasinormal modes,
remains open for any q under study (see also Refs. [19,23]).
The first-order hydrodynamics fails to describe the dis-
persion, notably for the phase velocity at q > 0.3. So, we
conclude that the EHRalso exists in SYMand corresponds to
q > 0.3. Besides this, an EHR can be identified in other
strongly coupled theories—e.g., Ref. [24]. For the effective-
ness of the hydrodynamic description of the nonequilibrium
bulk evolution in the same SYM theory, see Refs. [25–29].
Note that previous works on SYM dispersion [30–32]
consider the collision of complex hydrodynamic modes with
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nonhydrodynamic ones at some complexq, while the present
Letter analyzes the gap in the decay rate (the imaginary part
of the frequency) at real q.
We summarize features that kinetic and SYM theory

share in the EHR. First, the phase velocity, or the “effective
stiffness,” becomes supersonic, v ≥

ffiffiffiffiffiffiffiffi
1=3

p
. Second, the

damping rate ΓðqÞ is always smaller than that of the first-
order hydrodynamics at fixed q. These behaviors may be
anticipated on physical grounds as follows: As gradient q
grows, more and more d.o.f.’s fall out of equilibrium and
cannot respond to the compression, resulting in larger
stiffness—i.e., a larger effective sound velocity. At the
same time, those off-equilibrium d.o.f.’s would not con-
tribute to the dissipative process, leading to a smaller
damping rate relative to that of the first-order hydrody-
namics. The above picture is admittedly speculative, but it
illustrates that studying sound propagation can be instru-
mental in characterizing medium properties in an EHR.
Dynamical models for an EHR.—Building dynamical

models with an EHR response is necessary for searching
for an EHR through data-modeling comparison. The
commonly used MIS theory or other variants of second-
order hydrodynamics are not suitable for the present
purpose. As shown in Fig. 1, MIS results only show
a modest improvement compared with first-order hydro-
dynamics but generically underestimate the attenuation
in the EHR. Adding higher-order gradient terms [30–34]
(see also Refs. [35–37] for other attempts to improve

hydrodynamics) is systematic in principle, though it would
proliferate input parameters.
Instead, we aim at constructing a model such that (a) it

reduces to viscous hydrodynamics in the long-wavelength
limit, and (b) for a given microscopic theory, it could
describe sound propagation in EHR (or part of it) with a
minimum number of model parameters. Below, we propose
an extension of the MIS equation, MIS*, containing
two key additional model parameters as compared with
first-order hydrodynamics and demonstrate that it serves
the purpose. Our construction is partly inspired by the
Hydroþ framework [38].
MIS*.—Consider the decomposition of the stress-energy

tensor Tμν¼Tμν
ð0Þþπμν, where Tμν

ð0Þ ¼ϵuμuνþpΔμν denotes
the ideal fluid part with Δμν ¼ gμν þ uμuμ. In viscous
hydrodynamics, the nonequilibrium corrections to Tμν,
πμν, become πμνð1Þ ¼ ησμν, where σμν ¼ ∂

μ
⊥uν þ ∂

μ
⊥uν −

ð2=3ÞΔμνθ, with θ ¼ ∂ · u; ∂μ⊥ ≡ Δμν
∂ν. For simplicity,

we shall consider a uncharged and conformal fluid so that
πμν is traceless. The MIS theory treats πμν as a dynamical
variable which relaxes to πμνð1Þ at timescale τπ . However, in

an EHRwhere the timescale can be shorter than τπ , πμν falls
out of equilibrium and does not contribute to the dissipa-
tion. As a result, the EHR sound is underdamped in MIS.
To describe sound propagation better, in MIS*, we

divide πμν into two parts:

πμν ¼ πμνs þ πμνf ; ð5Þ

and we evolve πs, πf at different relaxation times τ0π; τ00π . By
design, we require τ0π ≫ τ00π such that in an EHR regime, the
typical timescale is comparable to or shorter than τ0π but is
much longer than τ00π . Consequently, in the EHR, π

μν
f should

approach a fixed form, which we take to be η0σμν. Here,
η0 < η controls the effective viscosity in the EHR.
Explicitly, we propose the following equations:

ðu · ∂Þπμνs ¼ −
πμνs þ ðη − η0Þσμν

τ0π
þ R; ð6Þ

ðu · ∂Þπμνf ¼ −
πμνf þ η0σμν

τ00π
; ð7Þ

where R ¼ − 4
3
πμνs θ þ � � � denotes other possible second-

order gradient terms which do not contribute to the sound
dispersion. We may practically fix R by requiring Eq. (6) to
become BRSSS second-order hydrodynamics [17] or its
variants in the limit η0 ¼ 0.
Equations (6) and (7) together with ∂μTμν ¼ 0 constitute

MIS* equations. In a timescale longer than τ0π , πμνs →
ðη − η0Þσμν, πμνf → η0σμν, R → 0, and hence MIS* reduces
to the first-order fluid dynamics. If we take the limit
τ00π → 0, πμνf becomes η0σμν and is no longer dynamical.
This is the limit we shall use below for illustration, though

FIG. 1. Sound phase velocity (the upper panel) and damping
rate Γ (the lower panel) as a function of gradient q for RTA kinetic
theory (left) and strongly coupled SYM (right). The damping rate
of representative nonhydrodynamic excitations is shown in black
dotted curves. The gap between those excitations and sound
modes at a nonhydrodynamic gradient indicates the existence of
an extended hydrodynamic regime (EHR). The first-order hydro-
dynamic and MIS results, shown in blue dotted and green dashed
curves, respectively, fail to capture the key features of sound
modes in an EHR. In contrast, for a given range of model
parameters (red bands), MIS* efficiently describes EHR sound
propagation up to some value qc (the dashed horizontal lines in
the lower panel).
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in a realistic simulation of MIS*, a finite τ00π is needed to
ensure causality.
Sound mode in MIS*.—The excitations in the sound

channel are given by

w2 − c2sq2 þ i

�
δþ ð1 − δÞ

ð1 − iγCπwÞ
�
wq2 ¼ 0; ð8Þ

where ðδ; γÞ ¼ ðη0=η; τ0π=τπÞ. Note that for ðδ; γÞ ¼ ð0; 1Þ,
Eq. (8) reduces to Eq. (4). Similarly to MIS theory, the
excitations of MIS* in the sound channel include a pair of
sound modes and a dissipative mode. The boundary of the
EHR is determined by the “level-crossing point” q0c, where
the sound damping rate equals that of the dissipative mode.
In Fig. 1 in the Supplemental Material [39], we show the
dependence of dispersion on δ, γ and find that by tuning
them, MIS* has the flexibility and capability of describing
a class of sound propagation up to q0c.
The comparison between sound dispersion in MIS* and

that in RTA and SYM theory, as shown in Fig. 1, is
encouraging. For 0.2 < δ < 0.3, 0.7 < γ < 0.9, MIS*
describes the RTA sound mode well up to q∼q0c ¼ 0.95.
For a SYM system, a different range—0.1 < δ < 0.2,
0.65 < γ < 0.85—provides a reasonable description up
to q0c ¼ 0.7. Given its simplicity, we do not anticipate
the MIS* covering the full EHR in the two microscopic
theories. Notwithstanding, MIS* extends the description
from the HR to a significant part of the EHR in both cases.
Bjorken expansion.—One advantage of MIS* is that

once its model parameters are fixed by matching to sound
dispersion, it can readily be applied to an expanding
background. Now, we consider a linearized response
for a boost-invariant Bjorken expanding background speci-
fied by the evolution of ϵ0ðτÞ vs Bjorken time τ. For
simplicity, we assume that perturbations only depend on y,
the spatial vector lying in the plane transverse to the
z direction (longitudinal direction). The response of Tμν

is characterized by several independent response func-
tions [40]. Below, we focus on the energy-energy response
function Gϵϵ which evolves the initial energy perturbation
δϵðτ0; y0Þ to

δϵðτ; yÞ ¼
Z

d2y0Gϵϵðr; τ; τ0Þδϵðτ0; y0Þ; ð9Þ

where r≡ y − y0. To obtain Gϵϵ in RTA theory, we expand
the distribution function fðτ; y; pÞ ¼ f0ðτ; pÞ þ δfðτ; y; pÞ.
Since the plasma starts equilibrating for τ > τR (cf. Fig. 1 in
Ref. [41]), we first determine the background solution
f0ðτ; pÞ with a relaxation time τRðτÞ ∝ ϵðτÞ−1=4 starting
from τ0 ¼ τRðτ0Þ [corresponding to τ0T=ð4πη=sÞ ¼ 0.40].
Then, the linearized RTA equation [Eq. (1)] is solved
numerically to obtain Gϵϵðq; τ; τ0Þ in Fourier space. Because
of the large-q spurious wave behavior in MIS theory, a
smearing function exp f−q2=½2ð4=τ0Þ2�g is applied when
transforming q-space results back to the y space.
In Fig. 2, we take τ0 ¼ 2τ0, meaning we are considering

the near-equilibrium rather than the far-from-equilibrium
expanding plasma [41], and we show Gϵϵ at three repre-
sentative timesΔτ ¼ 2; 8; 16τ0 as a function of r=Δτ where
Δτ ¼ τ − τ0. The RTA response functions are then com-
pared to first-order, MIS, and MIS* theory; see our forth-
coming paper for further details. The hydrodynamic curves
approach the kinetic ones at a very late time, say τ ¼ 16τ0,
but their differences are significant earlier. Particularly, the
peak of Gϵϵ,ðr=ΔτÞpeak approaches cs ¼

ffiffiffiffiffiffiffiffi
1=3

p
as τ grows,

but it is always larger than cs, in accordance with the
supersonic nature of EHR sound propagation. Rather than
improving the description at early times, the MIS theory
introduces spurious shocks; see also Ref. [42]. This can be
understood from Fig. 1, where we see that MIS under-
estimates the sound attenuation in the EHR. Remarkably,
with the same range of δ, γ as used to reproduce the EHR

FIG. 2. The left three panels show the real-space energy-energy response function GϵϵðrÞ [defined in Eq. (9) and multiplied by
ðτ=τ0Þ2r)] plotted as a function of r=Δτ for the Bjorken expanding plasma. RTA kinetic theory, first-order hydrodynamics, and MIS
theory results are shown by the solid, dotted, and dashed curves, respectively. The MIS* results, computed from the same range of model
parameters δ, γ as used in the left panels of Fig. 1 (left), are plotted in the red band. Three values of Δτ are chosen to represent the
response function at early, intermediate, and late time (from left to right). In the hydrodynamic limit, the peak location of GϵϵðrÞ should
approach cs ¼ 1=

ffiffiffi
3

p
. In the fourth panel, we compare the q-space energy-energy response function of the RTA theory and MIS*.
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sound dispersion, MIS* response functions generally agree
with RTA results from early to late times. For a reference,
the comparison between MIS* and RTA in the q space is
shown in the rightmost panel of Fig. 2. Equally impressive
agreement is seen for several other energy-momentum
response functions; see Fig. 3 in the Supplemental
Material [39]. This convincingly indicates that describing
EHR sound propagation is key to characterizing system
response beyond the conventional hydrodynamic regime,
and MIS* serves that purpose.
Summary.—We consider the extended hydrodynamic

regime (EHR) scenario for QGP, where sound modes are
gapped from other excitations at a nonhydrodynamic
gradient. We construct hydrodynamic-like equations,
MIS*, and demonstrate that they describe sound propaga-
tion in RTA and SYM theories in the EHR. This indicates
that MIS*, with suitable refinement, can be employed in
future quantitative studies of small colliding systems [43]
and jet-medium response [13–15] and in the empirical
search of the EHR. In parallel, the EHR scenario can be
directly tested for weakly coupled QGP by examining the
sound mode in the QCD effective kinetic theory [44].
The current study concentrates on the sound channel. In

the Supplemental Material [39], we briefly demonstrate that
the notion of the EHR can be equally applied to the shear
channel for both RTA kinetic theory and SYM. In the
future, one may consider the effects of hydrodynamic noise
and the situations where there are additional nonhydrody-
namic slow modes in HR.
Compared to the intensive studies of far-from-equilib-

rium hydrodynamics and the associated attractor behavior
in the early-stage bulk evolution of heavy-ion colli-
sions [45,46], the present work focuses on the linearized
response of large-gradient perturbations in a near-equilib-
rium medium. In the view that a large 1=τ at early times
implies a large gradient, a connection between the bulk-
evolution attractor and the EHR is worthy of exploring. For
example, one may investigate if MIS* can describe far-
from-equilibrium response function [40,41]. We leave
those for the future.
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