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By using the worldline Monte Carlo technique, matrix product state, and a variational approach à la
Feynman, we investigate the equilibrium properties and relaxation features of the dissipative quantum Rabi
model, where a two level system is coupled to a linear harmonic oscillator embedded in a viscous fluid. We
show that, in the Ohmic regime, a Beretzinski-Kosterlitz-Thouless quantum phase transition occurs by
varying the coupling strength between the two level system and the oscillator. This is a nonperturbative
result, occurring even for extremely low dissipation magnitude. By using state-of-the-art theoretical
methods, we unveil the features of the relaxation towards the thermodynamic equilibrium, pointing out the
signatures of quantum phase transition both in the time and frequency domains. We prove that, for low and
moderate values of the dissipation, the quantum phase transition occurs in the deep strong coupling regime.
We propose to realize this model by coupling a flux qubit and a damped LC oscillator.
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In 1936 Rabi introduced a model describing the simplest
class of light-matter interaction, i.e., the dipolar coupling
between a two-level quantum system (qubit) and a classical
monochromatic radiation field (unidimensional harmonic
oscillator) [1]. In its quantum version [2–4], i.e., the so-
called quantum Rabi model, the radiation is specified by a
quantized single-mode field. In general, the interaction
between an atom and the electromagnetic field inside a
cavity allows us to get not only a deep understanding of the
light-matter interaction, but it also plays a significant role in
different quantum technologies, including lasers and many
quantum computing architectures [5,6] like ultrafast gates
[7], quantum error correcting codes [8], remote entangle-
ment generation [9], cold atoms, and trapped ions [10].
Recently, the coherent coupling of a single photon mode
and a superconducting charge qubit has been extensively
studied both from theoretical [11–15] and experimental
points of view [16–20]. Nowadays, the realization of
strong, ultrastrong, and deep strong coupling [21,22]
between artificial atoms and cavities is possible, for
instance, by inductively coupling a flux qubit and an LC
oscillator via Josephson junctions [20]. Indeed, an impor-
tant feature of the flux qubit is its strong anharmonicity: the
two lowest energy levels are well isolated from the higher

levels. In the most interesting regime, the deep strong
coupling one, where the coupling strength becomes as large
as the atomic and cavity frequencies, the energy eigenstates
of the qubit-resonator system are highly entangled. On the
other hand, one of the central problems is the full under-
standing of all the physical properties of such quantum
systems when the interaction with environmental degrees
of freedom, inducing decoherence and dissipation, is
explicitly taken into account. Specifically, the questions
we want to address in the present Letter are does the
dissipative quantum Rabi model exhibit a quantum phase
transition (QPT), and what is its signature in linear response
measurements?
In the literature the existence of a QPT has been

addressed in the Dicke model [23–26] and the resistively
shunted Josephson junction [27–31]. In the former case,
describing a collection of N two-level atoms interacting
with a single bosonic mode via a dipole interaction, it has
been proved that the system undergoes a transition from
quasi-integrability to quantum chaos, and that this tran-
sition is caused by the precursors of the QPT, occurring
when N → ∞. In the latter case, where a Josephson
junction and its capacitor, analogous to a massive particle
in a washboard potential, are coupled to a bath of harmonic
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oscillators that provides viscous damping, the existence of
a QPT has given rise to a long-standing controversy [27].
Indeed, the absence of QPT, in the parameter regime
predicted theoretically, has been reported [27]. In a simpler
case, the spin-boson model, where a system with only two
energy levels is coupled to an Ohmic environment, QPT
existence has been well established [32]. Indeed, by
increasing the interaction between the qubit and the bath,
QPT occurs.
Recently it has been shown that the Rabi Hamiltonian

exhibits a QPT despite consisting only of a single-mode
cavity field and a two-level atom [33,34]. It appears when
the cavity frequency ω0, in units of the qubit gapΔ, tends to
zero, i.e., QPT takes place in the classical limit for the
harmonic oscillator. In particular, it has been proved that
(i) the number of spins in the Dicke model and the ratio
Δ=ω0 in the Rabi model play an identical role and (ii) the
open Rabi model exhibits a mean field second-order
dissipative phase transition [35]. These predictions have
been experimentally observed [36].
In this Letter, we show that in the fully quantum limit,

i.e., ω0=Δ ≠ 0, the dissipative Rabi model exhibits another
and completely different QPT: by increasing the qubit-
resonator interaction a Beretzinski-Kosterlitz-Thouless
(BKT) QPT occurs. In particular, we prove that this is a
not perturbative result. Indeed, QPT takes place for any
fixed, but nonvanishing, value of the coupling between the
cavity and the bath. First, by using the worldline
Monte Carlo (WLMC) method [37–39], based on the path
integrals, and a variational approach à la Feynman [37–
39,50], we investigate the equilibrium properties of the
dissipative quantum Rabi model. We prove that, in the
Ohmic regime, a BKT QPT occurs by varying the coupling
strength between the two level system and the oscillator,
even for extremely low dissipation magnitude. In particular,
by indicating with αcav the strength of the coupling between
the cavity and the bosonic bath, we show that QPT sets in
when 4g2αcav ≃ ω2

0, i.e., for low and moderate values of the
dissipation, αcav ≲ 0.25, QPT occurs in the deep strong
coupling regime that, nowadays, can be experimentally
reached. Furthermore, by using matrix product state sim-
ulations (MPS) [39,51–55], and combining the Mori
formalism [39,56] and a variational approach à la
Feynman, we investigate also the relaxation processes
towards the thermodynamic equilibrium. They allow us
to identify the signatures of the QPT both in the time and
frequency domains, establishing a relation between the
order parameter and a typical linear response measurement
like the magnetic susceptibility.
The model.—The Hamiltonian is written as

H ¼ HQ−O þHI; ð1Þ

where (i) HQ−O ¼ −ðΔ=2Þσx þ ω0a†aþ gσzðaþ a†Þ
describes the qubit-oscillator system, Δ being the tunneling

matrix element, a (a†) standing for the annihilation
(creation) operator for the bosonic field with frequency
ω0, and g representing the strength of the coupling and
(ii) HI ¼

P
N
i¼1 ½ðp2

i =2MiÞ þ ðki=2Þðx − xiÞ2� describes
the environmental degrees of freedom and their interaction
with the resonator. The bath is represented as a collection
of harmonic oscillators with frequencies ω2

i ¼ ðki=MiÞ,
and coordinates and momenta given by xi and pi,
respectively; furthermore, x denotes the position operator
of the resonator with mass m: x ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=2mω0Þ

p ðaþ a†Þ.
Units are such that ℏ ¼ kB ¼ 1. We emphasize that,
in Eq. (1), σx and σz are Pauli matrices with eigen-
values 1 and −1. The dissipative environment is mode-
led as a strictly Ohmic bath with spectral density:
JðωÞ ¼ P

N
i¼1ðkiωi=2mω0Þδðω − ωiÞ ¼ αcavωθðωc − ωÞ.

Here the adimensional parameter αcav measures the
strength of the coupling and ωc is a cutoff frequency.
By means of the unitary transformation that diagonalizes
the Hamiltonian of the cavity and its environment, the
model can be mapped [12,14,39] to the Hamiltonian of a
single two level system, with gap Δ, interacting, through
σz operator, with a structured bosonic bath. The effective
spectral density function, JeffðωÞ ¼

PNþ1
i¼1 l2i δðω − ω̃iÞ, is

given by

JeffðωÞ ¼
2g2ω2

0αcavωθðωc − ωÞ
½ω2 − ω2

0 − hðωÞ�2 þ ðπαcavω0ωÞ2
; ð2Þ

ω̃i being the frequencies of the N þ 1 bosonic normal
modes stemming from the diagonalization of the cavity-
environment Hamiltonian, li the couplings with σz, and
hðωÞ ¼ αcavω0ω log ½ðωc þ ωÞ=ðωc − ωÞ�. We emphasize
that JeffðωÞ features a Lorentzian peak at the oscillator
frequency ω0 with width παcavω0, and, at low frequencies,
ω ≪ ω0, exhibits an Ohmic behavior, JeffðωÞ ≃ ðαeff=2Þω,
with αeff¼4g2αcav=ω2

0. In the following we set αcav ¼ 0.2,
ω0 ¼ 0.75Δ, and ωc ¼ 10Δ.
QPT evidences at the thermodynamic equilibrium.—We

investigate the equilibrium properties by using two differ-
ent approaches. The first one is a variational approach à la
Feynman at finite temperature [37–39]. The other one is
WLMC method, based on the path integrals [37–39]. Here
the elimination of the structured bath degrees of freedom
leads to an effective Euclidean action [32,39,57,58]:

S ¼ 1

2

Z
β

0

dτ
Z

β

0

dτ0σzðτÞKeffðτ − τ0Þσzðτ0Þ; ð3Þ

where β ¼ 1=T (T is the system temperature),
and the kernel is expressed in terms of the spectral
density JeffðωÞ and the bath propagator: KeffðτÞ ¼R
∞
0 dωJeffðωÞfcosh ½ωðβ=2 − τÞ�= sinh ðβω=2Þg. The prob-
lem turns out to be equivalent to a classical system of
spin variables distributed on a chain with length β, and
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ferromagnetically interacting with each other with strength
Keffðτ − τ0Þ (τ and τ0 label the spins on the chain). The
functional integral is done with Poissonian measure adopt-
ing a cluster algorithm [57,59], based on the Swendsen-
Wang approach [39,60]. In particular, if ω0 is kept constant
and β → ∞, Keff has the asymptotic behavior: KeffðτÞ ¼
ðαeff=2τ2Þ. We will prove that it determines the onset of a
BKT QPT.
In Fig. 1 we plot hHQi, in units of Δ, with HQ ¼

−ðΔ=2Þσx, i.e., the two-level system Hamiltonian, and qu-
bit squared magnetization, M2 ¼ ð1=βÞ R β

0 dτhσzðτÞσzð0Þi,
as a function of g=Δ, for different temperatures, from
T ¼ 10−1Δ to T ¼ 10−3Δ. The plots point out the suc-
cessful agreement between the two proposed approaches.
As expected, by increasing g=Δ, hHQi increases, indicating
a progressive reduction of the effective tunneling.
Interestingly, we emphasize that hHQi is always different
from zero, even for extremely large values of g=Δ, and
slightly depends on the temperature.
On the other hand, M2 increases from 0 to about 1, in a

steeper and steeper way by lowering T, signaling an
incipient QPT, that is a BKT QPT. Indeed, in a BKT
transition, the quantityM2 should exhibit a discontinuity at
a critical value of g=Δ and T ¼ 0 [61,62]. In order to get a
precise estimation of the critical value of the coupling, i.e.,
gc, and then critical value of αeff , i.e., αc, we adapt the
approach suggested by Minnhagen et al. in the framework
of the XY model [63–65]. In the present context, the roles
of the chirality and the lattice size are played by squared
magnetization and inverse temperature β, respectively.
Defining the scaled order parameter Ψðαeff ; βÞ ¼ αeffM2,
the BKT theory predicts for large values of β, i.e.,
asymptotically: ½Ψðαc; βÞ�=ðΨcÞ ¼ 1þ ½1=2ðln β − ln β0Þ�,
where β0 is the only fitting parameter and Ψc ¼ Ψðαc;
β → ∞Þ is the universal jump that is expected to be equal
to 1. In this scenario, the function Gðαeff ; βÞ ¼
½1=Ψðαeff ; βÞ − 1� − 2 ln β should not show any depend-
ence on β at αeff ¼ αc. In Fig. 2(a) we plot the function
Gðαeff ; βÞ, as a function of β, for different values of g=Δ,
and then αeff . The plots clearly show that there is a value of
αeff such that G is independent on β asymptotically. This
determines αc. In the presence of a purely Ohmic bath, i.e.,
JðωÞ ¼ ðα=2ÞωΘðωc − ωÞ, the critical value of α is about

1.05 at ωc ¼ 10Δ [37]. In Fig. 2(b) we plot gc=Δ vs ω0=Δ
compared with that obtained by taking into account only
the low-frequency contribution of the spectral density
function, i.e., by imposing αc ¼ 4g2cαcav=ω2

0 ¼ 1.05. The
successful agreement clearly shows that QPT is driven by
the asymptotic behavior of the spectral density, i.e., by the
long range interaction of the mapped spin system that
decays as 1=τ2. In order to further corroborate this
observation, we take into account also the direct influence
of the environment on the qubit, i.e., we add another
contribution in the spectral density function of Eq. (2):
ðαq=2ÞωΘðωc − ωÞ. It stems from the interaction between
an Ohmic bath and the qubit through the operator σz. In
Fig. 2(c) we compare gc=Δ vs αq, computed by means of
MC technique at ω0=Δ ¼ 0.75, with that obtained by
retaining only the low-frequency contribution in the bath
spectral density, i.e., by imposing αq þ αeff ¼ 1.05. The
plot, also in this case, points out the robustness of the
previously discussed hypothesis. It is worth noting that
the equation determining the QPT onset, i.e., αc ¼
4g2cαcav=ω2

0 ¼ 1.05, proves that, for αcav ≲ 0.25, the quan-
tum transition occurs in the deep strong coupling regime.
We also emphasize that, within the BKT QPT scenario, i.e.,
ω0 is finite and β → ∞, gc is proportional to ω0. On the
other hand, when ω0 → 0 and β → ∞, with ω0β → 0, the
kernel in Eq. (3) is independent of τ, so that a mean field
transition occurs [33,34,39]. It is controlled by the adimen-
sional parameter λ ¼ ðg2=ω0ΔÞ with λc ¼ 1

4
, i.e.,

gc ∝
ffiffiffiffiffiffi
ω0

p
. In the Supplemental Material [39] we also

investigate the physical consequences on the resonator of
the BKT QPT occurrence. Starting from the resonator

(a) (b)

FIG. 1. hHQi=Δ (a) and M2 (b) vs g=Δ at different temper-
atures: comparison between WLMC method and the variational
approach (MC and Var in the figure).

(a) (b)

(c) (d)

FIG. 2. (a) The function G vs βΔ at g ≃ gc by using WLMC
technique; gc=Δ vs ω0=Δ (b) and αq (c) comparison between
WLMC method and an effective theory based only on the low
frequency contribution of the spectral density [ω0=Δ ¼ 0.75
in (c)]; (d) the qubit effective gap at two different temperatures:
comparison between WLMC technique and variational approach
(MC and Var in the figure).
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Green’s function, DðτÞ, relative to resonator position
operator x, we find an exact relation between X2 ¼
ð1=βÞ R β

0 dτhxðτÞxð0Þi and M2. We prove that both these
physical quantities exhibit a discontinuity in the BKT QPT,
whereas they increase linearly with λ − λc in the mean field
transition [39].
QPT evidences from relaxation function and magnetic

susceptibility.—Let us suppose that the system at t ¼ −∞ is
at the thermal equilibrium. The response of the system to a
perturbation, adiabatically applied from t ¼ −∞ and cutoff
at t ¼ 0, can be calculatedwithin theMori formalism and the
linear response theory [66]. In particular, in the presence of a
small magnetic field h along the z axis, ∀ t ≥ 0 the most
important physical quantity is the qubit relaxation function
ΣzðtÞ ¼ ðhσzðtÞi=hσzð0ÞiÞ (calculated in the absence of h,
being t ≥ 0). Within the Mori formalism [39,56], where
the inner product between two operators is defined by
ðA;BÞ ¼ ð1=βÞ R β

0 hesHA†e−sHBids, it is possible to prove
that ΣzðtÞ ¼ f½σzð0Þ; σzðtÞ�=½σzð0Þ; σzð0Þ�g.
Furthermore ΣzðzÞ, the Laplace-transformed relaxation

function, is strictly related to the magnetic susceptibility
χðzÞ ¼ −i

R
∞
0 eizth½σzðtÞ; σzð0Þ�idt, where z lies in the

complex upper half plane, i.e., z ¼ ωþ iϵ, with ϵ > 0.
Indeed, ΣzðzÞ¼ if½χðzÞ−χðz¼0Þ�=M2βzg, that is the ana-
log of the relation between the optical conductivity and
the current-current correlation function in solids [67]. By
using the eigenbasis of the interacting system Hamiltonian
and the commutation relation ½σz;H�¼−iΔσy, it is straight-
forward to deduce the following two very interesting
properties:

M2β ¼ −
2

π

Z
∞

0

I½χðωÞ�
ω

dω; ð4Þ

and

ΣzðzÞ ¼
i
z
þ ðσy; σyÞ

ðσz; σzÞ
Δ2ΣyðzÞ: ð5Þ

Equation (4) shows that the behavior of the magnetic
susceptibility at low frequencies is directly related to the
order parameter of QPT. Note that M2β, when β → ∞,
tends to a finite constant depending on g for g < gc,
whereas, at g ≥ gc, diverges. On the other hand, Eq. (5),
which establishes a connection between ΣzðzÞ and ΣyðzÞ,
i.e., between the two relaxation functions along z and
y axes, allows us to define an effective gap: Δ2

eff ¼
½ðσy; σyÞ=ðσz; σzÞ�Δ2. In particular it restores the bare qubit
gap Δ at g ¼ 0 ¼ αcav. In Fig. 2(d) we plot the effective
gap, in units of Δ, as function of g=Δ at two different
temperatures. We emphasize that this important physical
quantity provides a precise indication of the onset of QPT,
being related to M2. Indeed ðσz; σzÞ ¼ M2 and ðσy; σyÞ ¼
ð2hσxi=βΔÞ. It is worth noticing that simple, but not

accurate, variational approaches, based on polaronic uni-
tary transformations [12], provide a discontinuity in the
quantity hHQi that is generally associated to the onset of
QPT. We highlight that this jump is an artifact of this kind
of approximate methods, indeed it is present neither in
WLMC technique nor the variational approach à la
Feynman as previously discussed. It confirms that Δeff ,
and then M2, and not hHQi represents the right order
parameter of QPT.
In a previous paper [38,67] we have proved that ΣyðzÞ

can be exactly expressed in terms of a weighted sum
contributions associated to the eigenstates of the interacting
system, each characterized by its own frequency-dependent
relaxation time:

ΣyðzÞ ¼
X

n

Pn
i

zþ iMnðzÞ
; ð6Þ

with
P

n Pn ¼ 1. We emphasize that so far there is no
approximation. Here, we combine, for the calculation of
ΣyðzÞ, the short-time approximation, typical of the memory
function formalism [56], and the approach à la Feynman,
by replacing, in MnðzÞ, the exact eigenstates of H with the
ones of HM, whose parameters are variationally deter-
mined. Indeed, since the commutator between σy and H
involves a contribution proportional to the qubit-boson
coupling, the short-time approximation can be more easily
implemented for the calculation of the relaxation function
ΣyðzÞ [38]. Once ΣyðzÞ is known, Eq. (5) allows us to
obtain ΣzðtÞ. In Fig. 3 we compare ΣzðtÞ with that obtained
through MPS approach [39], where a standard matrix
product operator representation of the time evolution
operator Uðtþ dt; tÞ ¼ expð−iHdtÞ [52] is implemented
using the ITensor library [54]. This method allows us to
simulate the non-equilibrium dynamics of long-ranged
model Hamiltonians starting from a generic initial state.
In our case the initial state is the ground state of H in the
presence of a small magnetic field along z axis, as
previously discussed.
The plots in Fig. 3 show that, at weak coupling, the

dynamics is characterized by Rabi oscillations, whose
amplitude and frequency reduce by increasing the strength
of the coupling g=Δ. By further increasing g=Δ, the
relaxation becomes exponential: this is the analog of the
Toulouse point in the spin-boson model. Then the relax-
ation time gets longer and longer, and, at g ≥ gc, the system
does not relax, i.e., ΣzðtÞ ¼ 1 independently on time t,
signaling the occurrence of QPT. The behavior of the
relaxation function in the frequency domain sheds further
light on the relaxation processes. In the weak coupling
regime, the real part of ΣzðωÞ exhibits only a peak centered,
essentially, at the bare qubit gap Δ. At g ¼ 0.28Δ, the
effective gap turns out to be equal to the resonator
frequency: the spectrum presents avoided crossings, giving
rise to the so called vacuum Rabi splitting [68]. By
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increasing g=Δ, there is a transfer of spectral weight
towards lower frequencies. In particular, when ΣzðtÞ
exhibits an exponential behavior,R½ΣzðωÞ� is characterized
by a peak centered at zero frequency. As shown in Fig. 4,
the width of this structure becomes narrower and narrower,
and, at g ¼ gc, R½ΣzðωÞ� exhibits a delta function centered
at zero frequency: it signals the onset of QPT.
Starting from an inductive coupling between a flux qubit

and an LC oscillator via Josephson junctions as in [20], for
the experimental observation we propose to introduce a
dissipative element in the LC circuit. Following Devoret
[69,70] we replace it with a continuum of harmonic
oscillators as in the Caldeira-Legget model [71]. By using
the values measured in Ref. [20], the resistance turns out to
be R ≃ ð0.24=αcavÞ kΩ, so that αcav ≃ 0.2 corresponds to
R ≃ 1.2 kΩ. Then, for moderate values of the dissipation, R
is of the order of kΩ and QPT occurs for values of
gc=ω0 ≃ 1, i.e., gc lies in the deep strong coupling regime
that can be experimentally reached [20].

Conclusions.—We proved that the open quantum Rabi
model exhibits a QPT by varying the strength of the
coupling between the qubit and the resonator, even in
the presence of extremely low dissipation magnitude. We
characterized QPT unveiling its signatures both at and out
of thermodynamic equilibrium by using typical linear
response measurements.
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