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We consider the quantum nonequilibrium dynamics of systems where fermionic particles coherently hop
on a one-dimensional lattice and are subject to dissipative processes analogous to those of classical
reaction-diffusion models. Particles can either annihilate in pairs, Aþ A → 0, or coagulate upon contact,
Aþ A → A, and possibly also branch, A → Aþ A. In classical settings, the interplay between these
processes and particle diffusion leads to critical dynamics as well as to absorbing-state phase transitions.
Here, we analyze the impact of coherent hopping and of quantum superposition, focusing on the so-called
reaction-limited regime. Here, spatial density fluctuations are quickly smoothed out due to fast hopping,
which for classical systems is described by a mean-field approach. By exploiting the time-dependent
generalized Gibbs ensemble method, we demonstrate that quantum coherence and destructive interference
play a crucial role in these systems and are responsible for the emergence of locally protected dark states
and collective behavior beyond mean field. This can manifest both at stationarity and during the relaxation
dynamics. Our analytical results highlight fundamental differences between classical nonequilibrium
dynamics and their quantum counterpart and show that quantum effects indeed change collective universal
behavior.
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Introduction.—In reaction-diffusion (RD) models,
classical reactants, or particles, are transported by diffusion
and react when they meet, see, e.g., Refs. [1–3]. These are
paradigmatic nonequilibrium systems displaying universal
dynamical properties and stationary-state transitions from
fluctuating phases to absorbing states, i.e., states that once
reached cannot be left. In one dimension, in particular,
spatial fluctuations of the particle number dominate the
kinetics and both exact analytical results [4–9] and
dynamical field-theory renormalization calculations [10–
16] have shown that the dynamical critical behavior is
universal and it is not captured by the mean-field approxi-
mation. This is especially true in the “diffusion-limited”
regime, i.e., when the diffusive mixing of the particles is not
too strong [4,6,17–19]. In the opposite “reaction-limited”
regime, where the diffusive motion is fast, the density of
reactants rapidly uniformize (leading to the alternative
name of well-stirred-mixture approximation) and one
recovers mean-field results [1,2,11,20,21].
Quantum effects can alter the universal properties of

absorbing-state phase transitions. This has been shown for
Markovian open quantum systems [22–30], for systems
with kinetic constraints [31–45], and for the quantum
contact process [38,46]. Quantum dissipative RD spin
chains, where the diffusive motion is replaced by coherent
hopping, have been investigated in Ref. [47]. However,
results in this and other works are limited to small systems,

due to the complexity of the numerical simulation of many-
body quantum dynamics. As a consequence, very little is
known about the impact of quantum effects on universal
aspects of RD dynamics and on absorbing-state phase
transitions.
In this Letter, we make progress in this direction,

deriving exact analytical results for the case of reaction-
limited open quantum RD processes in fermionic chains.
We consider a series of prototypical reaction processes,
such as annihilation Aþ A → 0, coagulation Aþ A → A,
and branching A → Aþ A (see Fig. 1), and show that the
reaction-limited regime of quantum RD models cannot be
described within a mean-field approach, in stark contrast to
the classical settings. We demonstrate that the presence of
quantum effects strongly affects the approach to stationarity
and the stationary state itself. For annihilation and coagu-
lation, the density of particles features an algebraic (power-
law) decay. This power law changes and may deviate from
the mean-field predictions when the initial state of the
dynamics features quantum coherence. In the presence of
the branching process, quantum RD models display an
absorbing-state phase transition. Here, annihilation proc-
esses that couple to coherent superpositions of adjacent
particle pairs lead to the emergence of dark states that are
locally protected against dissipation. These local dark
states, which are not captured by the mean-field approach,
establish quantum correlations between fermionic particles.
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Our analysis is performed by exploiting the time-
dependent generalized Gibbs ensemble method (TGGE)
[48–51], which naturally leads to large-scale Boltzmann-
like equations. The latter provides an exact description for
the reaction-limited regime in the thermodynamic limit.
Our analytical findings show that quantum effects lead to
rich nonequilibrium behavior, significantly different from
that of classical systems. Our results connect to the physics
of cold atoms, where losses are of central experimental
[52–59] and theoretical [60–67] relevance.
Quantum reaction-diffusion models.—We consider fer-

mionic quantum chains of length L. Each site j can be
either occupied njj � � � •j � � �i ¼ j � � � •j � � �i or empty

njj � � � ∘j � � �i ¼ 0, where nj ¼ c†jcj and the operators cj,

c†j obey the fermionic anticommutation relations

fcj; c†j0g ¼ δj;j0 . The fermionic statistics prevents double

occupancy of lattice sites, typically assumed in RD
classical models [1–3]. The dynamics is ruled by the
quantum master equation [68–70] (ℏ ¼ 1 henceforth)

_ρðtÞ ¼ −i½H; ρðtÞ� þD½ρðtÞ�: ð1Þ
Here, we assume that the diffusive motion of the particles in
classical RD models is replaced by coherent hopping,
which is accounted for by the quantum Hamiltonian

H ¼ −Ω
XL
j¼1

ðc†jcjþ1 þ c†jþ1cjÞ; ð2Þ

with Ω the hopping rate [cf. Fig. 1(a)]. Such Hamiltonian is
diagonalized with Fourier-space fermionic operators ĉk, ĉ

†
k,

where k is the quasimomentum, and the number operators
n̂k ¼ ĉ†kĉk [71]. It conserves the total numberN ¼ P

j nj ¼P
k n̂k of particles: ½H;N� ¼ 0. The irreversible reaction

processes are encoded in the dissipator D. It takes the
(Lindblad) form [68–70]

D½ρ� ¼
X
j;ν

�
Lν
jρL

ν
j
† −

1

2

n
Lν
j
†Lν

j; ρ
o�

; ð3Þ

where Lν
j are local jump operators. We consider four

different reactions, labeled by the parameter ν, which are
sketched in Fig. 1(a). The first is binary annihilation,
Aþ A → 0, of a pair of neighboring particles (rate Γα),
which is described by the jump operators

Lα
j ¼ Lα

j ðθÞ ¼
ffiffiffiffiffi
Γα

p
cjðcos θcjþ1 − sin θcj−1Þ: ð4Þ

The sum of the two terms, whose balance is controlled by
the angle θ ∈ ½0; πÞ, allows for the possibility that inter-
ference between two quantum mechanical amplitudes
contributes to the pair annihilation process. Such structure
naturally emerges in the Bose-Hubbard model subject to
strong two-body losses. In this limit, the model can be
mapped to free fermions (2) with weak, Γα ≪ Ω, two-body
losses (4), as shown in Refs. [52,60,62]. The classical-
incoherent annihilation process is recovered for θ ¼ 0, π=2.
The second reaction is coagulation, Aþ A → A, of a
particle upon meeting a neighboring one (rate Γγ=2), with
jump operators

Lγ�
j ¼

ffiffiffiffiffiffiffiffiffiffi
Γγ=2

q
cjnj�1: ð5Þ

The third reaction is one-body annihilation, A → 0,
(rate Γδ) with jump operators

Lδ
j ¼

ffiffiffiffiffi
Γδ

p
cj: ð6Þ

These three reactions break number conservation and,
due to continued particle loss, drive the system toward an
absorbing state devoid of particles. To establish a nontrivial

FIG. 1. Quantum RD dynamics in the reaction-limited regime.
(a) Quantum chain with sites that can either be occupied by a
fermion j � � � •j � � �i or empty j � � � ∘j � � �i. Particles can hop
between nearest-neighboring sites with hopping rate Ω,
Eq. (2). Dissipation consists of irreversible reactions at rate
Γν, Eqs. (4)–(6). The parameter θ controls coherent superposition
from pair annihilation events. (b) In the reaction-limited regime,
Γ ≪ Ω, reaction dynamics is slow and takes place on the
timescale ∼Γ−1. Fast hopping rapidly smooths out spatial
fluctuations (highlighted in red), due to local reactions, and
the state of the systems is described by a homogeneous GGEðτÞ
(blue horizontal lines) at any rescaled time τ ¼ Γt. (c) The total
particle density hniGGEðτÞ decays algebraically in rescaled time τ
(blue points) for annihilation or coagulation with exponent
dependent on initial-state coherence. When branching is in-
cluded, an absorbing-state phase transition to an active, finite
density of particles, state can occur. The latter displays correlation
when θ ≠ 0, π=2.
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steady state, we consider a fourth reaction, namely,
branching, A → Aþ A. This process allows for creation
of a particle in the neighborhood of an occupied site
(rate Γβ=2)

Lβ�
j ¼

ffiffiffiffiffiffiffiffiffiffi
Γβ=2

q
c†jnj�1: ð7Þ

The competition between the branching process and one-
body annihilation (as in the contact process [2,3]) gives rise
to a nonequilibrium absorbing-state phase transition, from
the empty state to a stationary active one with finite density
of particles. Coagulation (5) and branching (7) can be
experimentally implemented in the facilitation regime [72]
of cold-atomic gases dressed with Rydberg interactions
[73–75]. For convenience, in the following, when multiple
reactions are present, we rescale rates as Γν ¼ Γν, so that Γ
sets the timescale of the dissipation, while the dimension-
less parameters α, β, γ, and δ encode the relative strength of
the reactions [see Figs. 1(b) and 1(c)].
There are two important timescales in the dynamics: the

reaction time ∼Γ−1, which gives the typical time needed for
neighboring particles to react, and the hopping time (or
diffusion time in classical RD models) ∼Ω−1, which sets
the timescale for two reacting particles to meet. In classical
settings [1,2], the dynamics qualitatively changes depend-
ing on the ratio Γ=Ω. The regime with Γ=Ω ≫ 1 is named
“diffusion limited,” as the propagation of particles is the
limiting factor for reactions to occur. In this regime, spatial
fluctuations are relevant and in one dimension the total
particle density hniðtÞ ¼ hNiðtÞ=L decays algebraically as
hniðtÞ ∼ ðΩtÞ−1=2 [4–9,17–19], which is slower than the
corresponding mean-field prediction hniMFðtÞ ∼ ðΓtÞ−1
(note the different rescaling of time).
The opposite regime, Γ=Ω ≪ 1, is the “reaction-limited”

one. Here, spatial fluctuations are irrelevant, as fast motion
makes the particle density homogeneous in space. For
classical systems [1,2,11,20,21] this regime is described by
law of mass action rate equations, which assert that the rate
of change of reactants is proportional to the product of their
global densities. This approach disregards spatial correla-
tions among particles and it indeed reproduces the mean-
field result hniMFðtÞ ∼ ðΓtÞ−1. In what follows, we consider
the quantum analog of this regime, see Figs. 1(b) and 1(c).
As we show, this regime is much richer than its classical
counterpart, as coherent effects give rise to collective
behavior and quantum correlations beyond mean field.
Reaction-limited TGGE.—For our quantum RD models,

the reaction-limited [55] regime Γ=Ω ≪ 1 is equivalent to a
weak dissipation limit, which can be analyzed with the
recently proposed time-dependent generalized Gibbs
ensemble (TGGE) of Refs. [48–51]. Because of fast
hopping, one can consider the state of the system ρðtÞ to
be relaxed with respect to the stationary manifold of the
Hamiltonian, ½H; ρðtÞ� ¼ 0, at any time t. The dynamics of

ρðtÞwithin this manifold is set by the timescale Γ−1 and it is
determined by the dissipation. This aspect is pictorially
shown in Fig. 1(b). The TGGE approach then makes an
ansatz among the set of relaxed states of the Hamiltonian,
which is the GGE, see, e.g., Refs. [76,77]. In the specific
case of the Hamiltonian (2), the GGE can be written as

ρGGEðtÞ ¼
1

ZðtÞ exp
�
−
X
k

λkðtÞn̂k
�
; ð8Þ

where ZðtÞ ¼ Q
k½1þ e−λkðtÞ�. The GGE state (8) describes

averages h…iGGEðtÞ of local observables in the thermody-
namic limit. It is entirely fixed from the knowledge of the
Lagrange multipliers λkðtÞ or, equivalently, of the occupa-
tion functions hn̂qiGGEðtÞ ¼ CqðtÞ, which obey the equa-
tions [62–64,67]

dCqðtÞ
dt

¼
X
j;ν

hLν
j
†½n̂q; Lν

j �iGGEðtÞ; ∀q: ð9Þ

The solution CqðτÞ of this equation clearly depends on the
rescaled time τ ¼ Γt, consistent with the above discussion
on the reaction-limited regime. The equation of motion (9)
describes the large-scale dynamics of the system and it has
a structure akin to the Boltzmann equation. The right-hand
side can be, crucially, exactly computed in the GGE state
(8) through Wick’s theorem. To explore the impact of
quantum-coherent effects on the RD dynamics, we consi-
der two different initial conditions for Eq. (9). The first is
the coherent Fermi-sea (FS) state with density filling
0 < n0 ≤ 1: Cqðt ¼ 0Þ ¼ 1 if q ∈ ½−πn0; πn0�, and
zero otherwise. The second is the incoherent state
ρ0 ¼ expð−λNÞ=Z0, with a flat initial distribution in
momentum space, Cqð0Þ ¼ n0.
Annihilation and coagulation.—In Fig. 2(a), we plot,

from Eq. (9) (see Supplemental Material [78]), the particle
density as a function of time for the pair annihilation
reaction only (Γγ ¼ Γβ ¼ Γδ ¼ 0), Eq. (4) with θ ¼ 0, so
that interference effects are excluded. The density decays as
hniGGEðτ ¼ ΓαtÞ ∼ ðΓαtÞ−1=2 for the FS initial state for any
filling n0 ≠ 1. The 1=2 decay exponent does not neces-
sarily require considering pure states. It also occurs for
initial mixed states with an inhomogeneous in q initial
occupation function Cqð0Þ [78]. In contrast, for the initial
state ρ0 and any n0, the law of mass action is recovered and
the density is exactly given by mean field, hniMFðτÞ∼
ðΓαtÞ−1. This shows the relevance of coherent effects in the
critical dynamics of the model, since the algebraic decay of
the density in the reaction-limited regime is not described
by the mean-field approximation whenever the initial state
is quantum coherent. In the latter case, the decay of the
particle density is slower than in the classical counterpart of
the model, where only incoherent initial states are possible
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and the long-time behavior of the density is independent on
the initial density n0 [79–81].
In Fig. 2(b), we plot the particle density as a function of

time for the coagulation reaction only (Γα ¼ Γβ ¼ Γδ ¼ 0),
Eq. (5) [78]. We find that hniGGEðτ ¼ ΓγtÞ ∼ ðΓγtÞ−1 both
for the incoherent state ρ0 and for the FS state. For all initial
conditions, we see mean-field-like decay [82], which is
different from the situation for pair annihilation at θ ¼ 0,
Fig. 2(a). This difference between annihilation and coagu-
lation processes is in stark contrast with classical RD
models, where both processes belong to the same univer-
sality class and decay in the same way independent of
initial conditions [5,6,18,80,81,83–85].
For quantum RD, only when starting from the incoherent

initial state ρ0 annihilation and coagulation behave in a
similar way. In fact, the densities hniannGGEðτ; n0Þ and
hnicoagGGEðτ; n0Þ obey

hnicoagGGEðτ; n0Þ ¼ 2hniannGGEðτ; n0=2Þ; ð10Þ

for Γα ¼ Γγ. Equation (10) is proved noting that the
dynamics from the incoherent state ρ0 according to
Eq. (9) remains at all times fully incoherent and the
quantum master equation (1) can then be mapped onto a
classical master equation (see Supplemental Material [78]).
For the coherent FS initial state, off-diagonal elements of
the density matrix ρðtÞ are relevant, the quantum master
equation does not reduce to its classical counterpart, and
Eq. (10) does not apply. This shows that the quantum RD
annihilation and coagulation processes do not generically
belong to the same universality class and they can display
different asymptotic behavior.

Contact process.—We now consider the contact process
(CP) with pair annihilation, cf. Eqs. (4)–(6) with Γν ¼ Γν
(ν ¼ α, β, δ) and Γγ ¼ 0 and Fig. 1(c). In Fig. 2(c), we plot
the density as a function of the rescaled time τ ¼ Γt. We
find a phase transition between an absorbing and an active
state: the stationary-state density hnistatGGE becomes nonzero
when β > βc, with βc ¼ δ independent of α and θ. This βc
is the same as that of the mean-field classical CP [2,3].
Furthermore, we find that the associated critical exponents
for the stationary density hnistatGGE ∝ ðβ − βcÞ1 and for
the decay of the density at the critical point βc,
hniGGE ∼ ðΓtÞ−1, are those of the (mean-field) directed
percolation universality.
Interestingly, however, the stationary state is strongly

affected by the quantum coherence introduced by the
annihilation reaction in Eq. (4), beyond what can be
predicted by a mean-field approach. The inset of Fig. 2(c)
shows that the different quasimomenta q are not evenly
populated in the stationary state. This applies when θ ≠ 0,
π=2. The nontrivial structure of Cstat

q implies that the
stationary state has spatial correlations. To quantify this,
we compute the two-point fermionic correlation function
Gstatðx − y; θÞ ¼ hc†xcyistatGGE, which for the mean-field
(product) state would be zero unless x ¼ y. We find that
Gstatðl; θÞ is nonzero at even distances l ¼ 2; 4; 6… with a
dominant contribution at l ¼ 2. The value of Gstatð2; θÞ as a
function of θ is shown in Fig. 2(d) and is approximately
equal to AðθÞ ¼ ε sinð2θÞ=2. Considering only these dom-
inant next-to-nearest-neighbor correlations, we can identify
the (approximate) Lagrange multipliers λstatq for the sta-
tionary GGE ρstatGGE expanding to first order in AðθÞ [since ε
is small as shown in Fig. 2(d)]. One obtains λstatq ¼ λMF þ
λ2 cosð2qÞ and therefore ρstatGGE ∝ e−λMFN−λ2Q2=2, with

FIG. 2. Dynamics and active phase in quantum reaction-limited RD systems. (a) Log-log plot of the particle density hniGGEðτÞ as a
function of the rescaled time τ ¼ Γαt for the binary annihilation reaction (4) with θ ¼ 0. In the top-blue curve, the initial state is the
coherent Fermi sea (FS) state with filling n0 ¼ 0.7. The density decays asymptotically as a power law hniGGEðτÞ ∼ τ−1=2. Inset: the black
dashed curve is a power-law fit hniGGEðτÞ ¼ aτ−b performed over the time window τ ∈ ½106; 107�, with the resulting fitting parameter for
the exponent being b ¼ 0.50025� 5 × 10−5. In the red dashed curve, the initial state is the incoherent state ρ0 with the same mean
density n0 ¼ 0.7. In this case, the density is exactly described by the mean-field (MF) law of mass action and
hniGGEðτÞ ¼ hniMFðτÞ ∼ τ−1. (b) Log-log plot of the density of particles hniGGEðτÞ as a function of τ ¼ Γγt for the coagulation
reaction (5). The top blue curve corresponds to the FS initial state at filling n0 ¼ 0.3, while the red dashed one corresponds to the
incoherent state ρ0 at the same filling. For the FS state, the asymptotic exponent hniGGEðτÞ ∼ τ−1 is the same as in MF. (c) Log-log plot of
the density as a function of τ ¼ Γt for the CP with pair annihilation Eqs. (4)–(6) and Γγ ¼ 0, from the FS initial state at n0 ¼ 0.7. For
β > δ an active stationary state is reached. The associated stationary momentum distribution function Cstat

q is shown in the inset as a
function of q. (d) Stationary correlationsGstatð2; θÞ at distance 2 (left, blue axis) and dark state contributionGdarkðθÞ ¼ sinð2θÞ=2 (right,
red axis) in the CP as a function of θ. Parameters are β ¼ α ¼ 1, δ ¼ 0.5.
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Q2 ¼
P

jðc†jcjþ2 þ c†jþ2cjÞ. The contribution λMF ¼
logð1=hnistatGGE − 1Þ represents the mean-field component
of the state, while λ2 ¼ −AðθÞ=½hnistatGGEð1 − hnistatGGEÞ�
accounts for deviations from it. We show in the
Supplemental Material [78] that ρstatGGE can be written in
terms of an incoherent state plus a coherent correction,
where projectors onto the “local dark states”

jψidark;∘=•j ¼ � cos θj•ð∘=•Þj∘i þ sin θj∘ð∘=•Þj•i; ð11Þ
emerge out of the uncorrelated mean-field state. The states
jψidark;∘=•j are both dark with respect to the annihilation

process (4) centered in j, i.e., Lα
j ðθÞjψidark;∘=•j ¼ 0.

Moreover, jψidark;•j is dark to branching (7) in j and is
connected through one-body annihilation (6) in j to the
state jψidark;∘j . These local dark states determine the
correlations Gstatð2; θÞ in ρstatGGE, as shown in Fig. 2(d).
Summary.—We provided a fully analytical treatment of

quantum many-body RD systems in their reaction-limited
regime, where the irreversible reaction rates are much
smaller than the coherent hopping rate. While for classical
RD models, this regime is well described by a mean-field
approach, we have shown that quantumRD displays instead
much richer behavior. In particular, for annihilation, quan-
tum coherence in the initial state can give rise to an algebraic
density decay whose power-law exponent differs from the
mean-field one. Furthermore, we have shown that quantum
annihilation and coagulation do not belong to the same
universality class. For the contact process plus pair anni-
hilation, we have found that the stationary state can feature
correlations, which emerge as a consequence of destructive
interference. This inherently quantum feature gives rise to
locally protected and correlated dark states. The RD systems
discussed here connect the soft-matter physics of chemical
reactions to that of cold atoms, where reactions translate into
dissipative particle losses or creations [53–67], which can
be implemented via Rydberg dressing [73–75]. Quantum
reaction-diffusion systems are an ideal benchmark to
investigate the impact of quantum effects on large-scale
universal properties via numerical methods [38,39,46] and
dynamical Keldysh-field theory [86,87].
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Bouganne, J. Beugnon, F. Gerbier, and L. Mazza, Phys. Rev.
A 103, L060201 (2021).

[63] L. Rosso, A. Biella, and L. Mazza, SciPost Phys. 12, 44
(2022).

[64] I. Bouchoule, B. Doyon, and J. Dubail, SciPost Phys. 9, 44
(2020).

[65] I. Bouchoule and J. Dubail, Phys. Rev. Lett. 126, 160603
(2021).

[66] I. Bouchoule and J. Dubail, J. Stat. Mech. (2022) 014003.
[67] L. Rosso, A. Biella, J. De Nardis, and L. Mazza, Phys. Rev.

A 107, 013303 (2023).
[68] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math.

Phys. (N.Y.) 17, 821 (1976).
[69] G. Lindblad, Commun. Math. Phys. 48, 119 (1976).
[70] H.-P. Breuer and F. Petruccione, The Theory of Open

Quantum Systems (Oxford University Press on Demand,
New York, 2002), 10.1093/acprof:oso/9780199213900.001
.0001.

[71] F. Franchini, An Introduction to Integrable Techniques for
One-Dimensional Quantum Systems (Springer, New York,
2017), 10.1007/978-3-319-48487-7.

[72] I. Lesanovsky and J. P. Garrahan, Phys. Rev. A 90,
011603(R) (2014).

[73] M.M. Valado, C. Simonelli, M. D. Hoogerland, I.
Lesanovsky, J. P. Garrahan, E. Arimondo, D. Ciampini,
and O. Morsch, Phys. Rev. A 93, 040701(R) (2016).

[74] R. Gutiérrez, C. Simonelli, M. Archimi, F. Castellucci, E.
Arimondo, D. Ciampini, M. Marcuzzi, I. Lesanovsky, and
O. Morsch, Phys. Rev. A 96, 041602(R) (2017).

[75] T. Wintermantel, M. Buchhold, S. Shevate, M. Morgado, Y.
Wang, G. Lochead, S. Diehl, and S. Whitlock, Nat.
Commun. 12, 103 (2021).

[76] F. H. Essler and M. Fagotti, J. Stat. Mech. (2016) 064002.
[77] L. Vidmar and M. Rigol, J. Stat. Mech. (2016) 064007.
[78] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.130.210402 for the de-
tails of the calculations.

[79] R. Kroon, H. Fleurent, and R. Sprik, Phys. Rev. E 47, 2462
(1993).

[80] M. Henkel, E. Orlandini, and G. Schutz, J. Phys. A 28, 6335
(1995).

[81] M. Henkel, E. Orlandini, and J. Santos, Ann. Phys. (N.Y.)
259, 163 (1997).

[82] For the FS initial state, initial coherences approximately
rescale time by an n0 dependent factor without altering the
asymptotic mean-field decay.

[83] K. Krebs, M. P. Pfannmüller, B. Wehefritz, and H.
Hinrichsen, J. Stat. Phys. 78, 1429 (1995).

[84] H. Simon, J. Phys. A 28, 6585 (1995).
[85] D. Ben-Avraham and É. Brunet, J. Phys. A 38, 3247 (2005).
[86] A. Kamenev, Field Theory of Non-Equilibrium Systems

(Cambridge University Press, Cambridge, England, 2023),
10.1017/CBO9781139003667.

[87] L. M. Sieberer, M. Buchhold, and S. Diehl, Rep. Prog. Phys.
79, 096001 (2016).

PHYSICAL REVIEW LETTERS 130, 210402 (2023)

210402-6

https://doi.org/10.1103/PhysRevE.90.042147
https://doi.org/10.1103/PhysRevE.90.042147
https://doi.org/10.1103/PhysRevE.94.052108
https://doi.org/10.1103/PhysRevLett.116.245701
https://doi.org/10.1103/PhysRevB.95.014308
https://doi.org/10.1103/PhysRevA.96.041602
https://doi.org/10.1103/PhysRevA.98.062117
https://doi.org/10.1103/PhysRevA.98.062117
https://doi.org/10.1103/PhysRevLett.123.100604
https://doi.org/10.1103/PhysRevLett.123.100604
https://doi.org/10.1088/1367-2630/ab43b0
https://doi.org/10.1088/1367-2630/ab43b0
https://doi.org/10.1103/PhysRevLett.125.100403
https://doi.org/10.1103/PhysRevLett.125.100403
https://doi.org/10.1103/PhysRevLett.124.070503
https://doi.org/10.1103/PhysRevLett.124.070503
https://doi.org/10.1038/s41586-019-1908-6
https://doi.org/10.1038/s41586-019-1908-6
https://doi.org/10.1103/PhysRevResearch.3.043167
https://doi.org/10.1103/PhysRevResearch.3.043167
https://arXiv.org/abs/211.05352
https://doi.org/10.1103/PhysRevB.106.094315
https://doi.org/10.1103/PhysRevB.106.094315
https://doi.org/10.1103/PhysRevResearch.3.013238
https://doi.org/10.1103/PhysRevResearch.3.013238
https://doi.org/10.1103/PhysRevE.91.032132
https://doi.org/10.1103/PhysRevE.91.032132
https://doi.org/10.1103/PhysRevB.97.165138
https://doi.org/10.1103/PhysRevB.97.165138
https://doi.org/10.1103/PhysRevX.9.021027
https://doi.org/10.1103/PhysRevX.9.021027
https://doi.org/10.1038/s41467-016-0009-6
https://doi.org/10.1038/s41467-016-0009-6
https://doi.org/10.1103/PhysRevB.97.024302
https://doi.org/10.1103/PhysRevB.97.024302
https://doi.org/10.1126/science.1155309
https://doi.org/10.1126/science.1155309
https://doi.org/10.1103/PhysRevA.96.023429
https://doi.org/10.1103/PhysRevA.96.023429
https://doi.org/10.21468/SciPostPhys.8.4.060
https://doi.org/10.1103/PhysRevA.79.060702
https://doi.org/10.1103/PhysRevLett.101.233002
https://doi.org/10.1103/PhysRevLett.95.190406
https://doi.org/10.1103/PhysRevLett.95.190406
https://doi.org/10.1007/s003400050805
https://doi.org/10.1103/PhysRevLett.92.190401
https://doi.org/10.1103/PhysRevLett.92.190401
https://doi.org/10.1088/1367-2630/11/1/013053
https://doi.org/10.1088/1367-2630/11/1/013053
https://doi.org/10.1103/PhysRevB.90.134306
https://doi.org/10.1103/PhysRevB.90.134306
https://doi.org/10.1103/PhysRevA.103.L060201
https://doi.org/10.1103/PhysRevA.103.L060201
https://doi.org/10.21468/SciPostPhys.12.1.044
https://doi.org/10.21468/SciPostPhys.12.1.044
https://doi.org/10.21468/SciPostPhys.9.4.044
https://doi.org/10.21468/SciPostPhys.9.4.044
https://doi.org/10.1103/PhysRevLett.126.160603
https://doi.org/10.1103/PhysRevLett.126.160603
https://doi.org/10.1088/1742-5468/ac3659
https://doi.org/10.1103/PhysRevA.107.013303
https://doi.org/10.1103/PhysRevA.107.013303
https://doi.org/10.1063/1.522979
https://doi.org/10.1063/1.522979
https://doi.org/10.1007/BF01608499
https://doi.org/10.1093/acprof:oso/9780199213900.001.0001
https://doi.org/10.1093/acprof:oso/9780199213900.001.0001
https://doi.org/10.1007/978-3-319-48487-7
https://doi.org/10.1103/PhysRevA.90.011603
https://doi.org/10.1103/PhysRevA.90.011603
https://doi.org/10.1103/PhysRevA.93.040701
https://doi.org/10.1103/PhysRevA.96.041602
https://doi.org/10.1038/s41467-020-20333-7
https://doi.org/10.1038/s41467-020-20333-7
https://doi.org/10.1088/1742-5468/2016/06/064002
https://doi.org/10.1088/1742-5468/2016/06/064007
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.210402
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.210402
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.210402
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.210402
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.210402
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.210402
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.210402
https://doi.org/10.1103/PhysRevE.47.2462
https://doi.org/10.1103/PhysRevE.47.2462
https://doi.org/10.1088/0305-4470/28/22/010
https://doi.org/10.1088/0305-4470/28/22/010
https://doi.org/10.1006/aphy.1997.5712
https://doi.org/10.1006/aphy.1997.5712
https://doi.org/10.1007/BF02180138
https://doi.org/10.1088/0305-4470/28/23/013
https://doi.org/10.1088/0305-4470/38/15/001
https://doi.org/10.1017/CBO9781139003667
https://doi.org/10.1088/0034-4885/79/9/096001
https://doi.org/10.1088/0034-4885/79/9/096001

