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The experimental measurement of correlation functions and critical exponents in disordered systems is
key to testing renormalization group (RG) predictions. We mechanically unzip single DNA hairpins with
optical tweezers, an experimental realization of the diffusive motion of a particle in a one-dimensional
random force field, known as the Sinai model. We measure the unzipping forces Fw as a function of the trap
position w in equilibrium and calculate the force-force correlator ΔmðwÞ, its amplitude, and correlation
length, finding agreement with theoretical predictions. We study the universal scaling properties since
the effective trap stiffness m2 decreases upon unzipping. Fluctuations of the position of the base pair at the
unzipping junction u scales as u ∼m−ζ , with a roughness exponent ζ ¼ 1.34� 0.06, in agreement with the
analytical prediction ζ ¼ 4

3
. Our study provides a single-molecule test of the functional RG approach for

disordered elastic systems in equilibrium.
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Introduction.—Heterogeneity and disorder pervade
physical and biological matter [1–3]. Since Schrödinger’s
conception of the gene as an a-periodic crystal [4], disorder
is recognized as a crucial ingredient for life [5]. The
readout of the genetic information encoded in DNA can be
modeled with polymers in random potentials, such as
Sinai’s model [6]. The latter describes the dynamics of a
particle diffusing in a one-dimensional random-force field, a
suitable model for the mechanical unzipping of the DNA
double helix into single strands. Sinai’s model is a special
case (d ¼ 0) of the universal field theory of disordered
elastic systems in d dimensions, where one can analytically
calculate force correlations. The latter were measured in
contact-line depinning (d ¼ 1) [7], Barkhausen noise
(d ¼ 2) [8], and RNA-DNA peeling (d ¼ 0) [9]. While
these experiments are for depinning, i.e., nonequilibrium, an
experimental test of the equilibrium universality class is
lacking. Here we test universality of equilibrium-force
correlations as predicted by Sinai’s model in DNA unzip-
ping. The model parameters are naturally changed during
the experiment, allowing us to monitor the functional
RG flow.
In the experiment, a DNA hairpin of 6.8 k base pairs

(bps) is held between two beads. One is fixed at the tip of a
micropipette, the other is optically trapped [Fig. 1(a) and
Supplemental Material [10], Sec. A]. By moving the
optical trap at a speed v ≈ 10 nm=s, the double-stranded
DNA (dsDNA) is mechanically pulled and converted into
two single strands (ssDNA). The measured force-distance
curve (FDC) shows a sawtooth pattern characteristic of

stick-slip dynamics [Fig. 1(b), red curve]. The hairpin
unzips at a critical mean pinning force fc ≈ 15 pN,
fluctuating in the range 12–17 pN. Once the hairpin is
unzipped, the reverse process starts [Fig. 1(b), blue curve]:
the optical trap moves backward and the hairpin refolds
into the dsDNA native conformation. The absence of
hysteresis between rezipping and unzipping FDCs and
the fact that there is a single reaction coordinate, implies
that the system is in equilibrium.
During unzipping, the base pair at the junction sepa-

rating dsDNA from ssDNA is subject to random forces
generated by the neighboring monomers, and modeled by
the motion of a single particle (d ¼ 0) in a random
potential that belongs to Sinai’s universality class [6].
The number of unzipped bps is a well-defined reaction
coordinate. Opening (closing) one bp can be seen as a
particle hopping to the right (left). We changed salt
concentration from 10 mM to 1000 mM NaCl, Fig. 1(c),
modulating the strength of bp interactions.
The model.—The motion of the base pair at the junction

can be modeled by a Langevin equation (see Supplemental
Material [10], Sec. B for the derivation)

∂u
∂t

¼ m2ðw − uÞ þ FðuÞ þ ηuðtÞ; ð1Þ

where uðtÞ is the extension of the molecular construct, w
the relative trap-pipette position [Fig. 1(a)], and m2 the
effective stiffness of the molecular construct. The random
force is FðuÞ ¼ −V 0ðuÞ, where VðuÞ is the free energy
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stored in the partially hybridized hairpin. FðuÞ acts at the
hairpin junction and is determined by hydrogen bonding
and stacking interactions between consecutive base pairs.
Using the nearest-neighbor model one can show that these
forces are random, and that their distribution is roughly a
Gaussian (Supplemental Material [10], Sec. C). In equi-
librium, ð∂u=∂tÞ ≈ 0, so the force FðuÞ applied to the
hairpin in Eq. (1) is counteracted by the force Fw exerted on
the bead by the optical trap. For a fixed trap position w, Fw,
and u fluctuate due to the thermal noise and the bp
breathing dynamics. The equilibrium force correlations
are defined as

Δm;Tðw − w0Þ ¼ FwFw0c ¼ FwFw0 − Fw Fw0 ; ð2Þ

where ð…Þ stands for a double thermal and disorder
average. Correlations depend on the value of m2, through
the m dependence in Eq. (1). They also depend on
temperature T, which leads to a rounding of Δm;TðwÞ at
small w (see below).
The FDCs in Figs. 1(b) and 1(c) show a sawtooth pattern

characterized by segments of increasing force Fw, followed
by abrupt drops caused by the cooperative unzipping of
groups of base pairs in the range of 10–100 base pairs [13].
The slope of each segment, equivalent to the effective

stiffnessm2, decreases with w, permitting us to measure the
scaling of Δm;TðwÞ with m2. In fact, m2 depends on the
combined effects of the optical trap, and the elastic
response of the molecular construct (ssDNA and dsDNA
handles). It can be written as [see Supp. Mat. Eq. (B27)]

1

m2
¼ 1

kb
þ w
z1k1

; ð3Þ

with kb the trap stiffness, and z1, k1 the mean extension
and stiffness of one nucleotide at the unzipping force.
Modeling the elastic response of the hairpin [14] shows

that k1 ≈ 130 pN=nm and z1 ≈ 0.45 nm at the unzipping
force fc ≈ 15 pN, which gives a slope of about
ðz1k1Þ−1 ≈ 0.02 pN−1. Equation (3) implies that the larger
the length of the unpaired DNA, the lower the effective
stiffness m2. To verify this, we split the FDCs into four
regions (inset of Fig. 2). While smaller regions have smaller
variations inm2, regions must be taken sufficiently large for
a reliable statistics. Equation (3) agrees with the exper-
imental data shown in Fig. 2.
Force correlations in Sinai’s model can be framed in

terms of the functional renormalization group (FRG). The
FRG arises as the field theory of disordered systems for
interfaces [15–27], generalizing the d ¼ 0 case described
by the Sinai model. The FRG predicts two universality

FIG. 2. Variation of the effective stiffness m2 versus w
according to Eq. (3). The points correspond to the measured
values of 1=m2 for the four FDC regions (each one shown with a
different colour in the inset). The fit to data (dashed line) and the
extrapolation to w ¼ 0 gives the stiffness of the optical trap,
kb ¼ 0.05� 0.01 pN · nm−1. The inset illustrates the four studied
regions in a FDC at 1M NaCl.

FIG. 1. (a) Experimental setup. (b) Unzipping (red) and rezipping (blue) FDC’s demonstrating equilibrium behavior. The residual
hysteresis at the end of the FDC is due to the DNA end-loop that slows down the initiation of stem formation upon reconvolution.
(c) Experimental FDC’s, Fw, for various salt concentrations. The mean pinning force varies between 12–17 pN, and is nonuniversal.
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classes, critical depinning (nonequilibrium) and equilib-
rium (considered here). In equilibrium, the T → 0 limit of
Δm;TðwÞ in Eq. (2), can be written as

ΔmðwÞ ¼ m4ρ2mΔ̃ðw=ρmÞ; ρm ∼m−ζ; ð4Þ

with Δ̃ðwÞ the shape function, ζ the roughness exponent,
and w ¼ w=ρm the rescaled dimensionless distance. The
FRG allows for observables to be computed perturbatively
in an expansion around the upper critical dimension,
parameterized by ε ¼ 4 − d. The shape function Δ̃ðwÞ is
the fixed point of the FRG flow equation

0¼ ðε− 2ζÞΔ̃ðwÞ þ ζwΔ̃0ðwÞ− 1

2
∂
2
w½Δ̃ðwÞ− Δ̃ð0Þ�2 þ…

ð5Þ

The dots represent higher-loop corrections in ε, currently
known up to 3-loop order [21–23,25,26,28]. For the
equilibrium random field, ζ ¼ ð4 − dÞ=3, which gives
ζ ¼ 4=3 for d ¼ 0. This result is derived by integrating
Eq. (5) from w ¼ 0 to w ¼ ∞. It is exact to all orders in the
loop expansion. Equation (5) predicts that Δ̃ðwÞ has a cusp
at w ¼ 0 which is rounded at finite T. Generalization of the
FRG equation (5) to finite T allows us to estimate the size
of the rounded region. An explicit relation between ΔmðwÞ
and Δm;TðwÞ was derived in [15–17],

Δm;TðwÞ≈NΔmð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2þ t2
p

Þ; t¼ 6m2kBT
εjΔ0

mð0Þj
: ð6Þ

It has been shown that the RG flow (5) preserves the area
under Δm;TðwÞ for all T [28]. Therefore, we can use the
measured Δm;TðwÞ and Eq. (6) to determine the normali-
zation factorN andΔmðwÞ. Details about the procedure are
given in Supplemental Material [10], Sec. D.
For the Sinai model, the shape function Δ̃ in Eq. (5) is

known analytically [15,29],

Δ̃ðwÞ ¼ −
e−

w3
12

4π
3
2

ffiffiffiffi

w
p

Z

∞

−∞
dλ1

Z

∞

−∞
dλ2e−

ðλ1−λ2Þ2
4w

× ei
w
2
ðλ1þλ2Þ Ai

0ðiλ1Þ
Aiðiλ1Þ2

Ai0ðiλ2Þ
Aiðiλ2Þ2

×

�

1þ 2w

R∞
0 dVewVAiðiλ1 þ VÞAiðiλ2 þ VÞ

Aiðiλ1ÞAiðiλ2Þ
�

:

ð7Þ

Here Ai is the Airy function, and ζ ¼ 4=3 as in FRG.
Data analysis.—We analyzed 33 FDCs obtained by

unzipping a 6.8 kBP DNA hairpin in a broad range of
salt conditions from 10 to 1000 mM NaCl at T ¼ 298 K.
As illustrated in Fig. 2, we divided each FDC into four
regions measuring the force correlations (2) for each

region. Force correlations are equal within the experimental
resolution for all salt conditions, as shown in Supplemental
Material [10], Fig. 7. Although the effective stiffness of the
molecular construct m2 changes with salt, it changes much
less than it does over the different unzipping regions for a
fixed salt condition. To enlarge statistics we averaged
Δm;TðwÞ over all salts. Results for the first region are
shown in Fig. 3 (red line with red strip for error bars).
To recover Δm;TðwÞ in Eq. (6) we must subtract two

sources of thermal noise, which are visible as a short-range
correlated peak at w ≈ 0: Brownian fluctuations of the bead;
and the breathing dynamics (opening and closing) of the
DNA base pairs at the junction. First, bead-noise subtraction
reduces the peak’s amplitude Δm;Tðw ¼ 0Þ from ≈0.6 pN2

(red in main plot of Fig. 3) to ≈0.5 pN2 (magenta line in the
inset). Second, we estimated the effect of the breathing
dynamics from numerical simulations of Sinai’s model [28].
This reduces the peak from ≈0.5 to ≈0.35 pN2 with a dip of
amplitude ≈0.3 pN2 for w < 1 nm (cyan curve in the inset).
This dip is also seen in simulations [28]. From Δm;TðwÞ we
derive the T ¼ 0 force correlations, ΔmðwÞ, by plotting the
experimental data versus

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2 þ t2
p

, see Eq. (6), with t given
there (T ¼ 298 K, ε ¼ 4, m2 from Fig. 2). We initially
estimate Δ0

mð0Þ by extrapolation of the raw data. This gives
ΔmðwÞ for w > t ≈ 7 nm (black continuous line in Fig. 3).
The extrapolated ΔmðwÞ for w < t (dot-dashed region) is
obtained by fitting a second-order polynomial (black dot-
dashed line in Fig. 3). The whole procedure is iterated
until convergence of ΔmðwÞ is reached. As a consistency
check we used the T ¼ 0 theory prediction ΔmðwÞ together
with Eq. (6) to calculate Δm;TðwÞ for all regions, see
Supplemental Material [10], Fig. 8.
Force correlations in Eq. (6) are described by three

parameters: the correlation length ρm in the w direction, the

FIG. 3. Measured Δm;TðwÞ for the first region (red). 1σ error is
shown as a pink strip. Deconvolution (black solid) and extrapo-
lation to w ¼ 0 (black dot-dashed). The inset shows Δm;TðwÞ at
short range with subtraction of the peak at w ¼ 0, as explained in
the main text.
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stiffnessm2 of the molecular construct, and the temperature
T. With the measured value of m2 (Fig. 2) and kBT ¼
4.11 pN · nm we use Eq. (6) to predict t [ε ¼ 4 and Δ0

mð0Þ
obtained from the small-w extrapolation in Fig. 3].
According to Eqs. (4) and (6), the scale ρm is the only
fitting parameter, which we report on the table in Fig. 5 for
all four regions. Its value increases with w indicating that
FDCs become progressively less rough as unzipping
progresses: For the first region, ρm¼ 26.8 nm, which
corresponds to 33 base pairs [14], the typical size of
avalanches that can be resolved in the FDC at the beginning
of the unzipping process.
We now check two predictions of the theory: the

result (7) and the FRG scaling relation (4). In particular,
the scaling function Δ̃ only depends on the dimensionless
combination w=ρm ∼ wmζ, and its amplitude is universal.
The inset of Fig. 4 showsΔmðwÞ for the four regions where
ρm increases while the molecule is unzipped and m2

decreases. In Fig. 4 we test the scaling law (4) with
ζ ¼ 4=3, as predicted for Sinai’s model. We can also
determine the value of ζ independently of the collapse in
Fig. 4. In Fig. 5 we show results for the scaling of the
correlation length ρm and amplitude Δmð0Þ with m. We
get ζ ¼ 1.41� 0.10 and ζ ¼ 1.29� 0.08 from the scaling
of ρm and Δmð0Þ, respectively, giving an average of
ζ ¼ 1.34� 0.06 in agreement with the expected
value ζ ¼ 4=3. Details are given in Supplemental
Material [10], Fig. 8.
We can go one step further: In random-field systems, the

correlations of the potential VðuÞ grow linearly at large u

distances, 1
2
½VðuÞ − Vðu0Þ�2 ≃ σju − u0j. The constant σ is

related to the force correlator Δm by

σ ¼
Z

∞

0

Δ∞ðuÞdu≡
Z

∞

0

ΔmðwÞdw: ð8Þ

This relation holds for the microscopic Δ∞ðuÞ and the
measured ΔmðwÞ, as the area under ΔmðwÞ is preserved by
the RG flow, as previously discussed. A constant σ in
Eq. (8) implies ζ ¼ 4=3 for all m in Eq. (4). Equation (8)
then yields the analytic prediction

ρm ¼
�

R

w>0Δ∞ðwÞ
m4

R

w>0 Δ̃ðwÞ

�

1=3

: ð9Þ

In Supplemental Material [10], Sec. C, we discuss how the
microscopic correlator Δ∞ðwÞ can be obtained from the
binding energies, using our estimate of Δ∞ð0Þ≈
10ð2Þ pN2, which decays to half this value for bp distance
1, and to 0 for bp distance 2, corresponding to 1.6 nm. A
linear interpolation of Δ∞ðuÞ between these values gives
σ ¼ 8ð2Þ pN2 · nm in Eq. (8). Using

R

w>0 Δ̃ðwÞ ¼ 0.252
from Eq. (7), and substituting in Eq. (9) gives ρm ¼
29ð3Þ nm for region 1 in agreement with the value
previously obtained (ρm ≈ 27 nm for m2 ¼ 0.036 pN=nm
in Fig. 5). In Fig. 4 (main) we show the predicted force
correlator (black curve) with the predicted ρm ¼ 29ð3Þ nm.
Conclusions.—We tested Sinai’s model of equilibrium

force correlations and their universality in DNA unzipping
experiments. In DNA the binding energies between base
pairs are correlated up to two base pairs, making it a
suitable realization of Sinai’s model. We experimentally
measured the roughness exponent ζ finding agreement with
Sinai’s prediction, ζ ¼ 4=3. While predictions for critical
exponents are commonplace, far more difficult is to predict

FIG. 4. Inset: The function ΔmðwÞ for the four regions changes
with the measured m (see Fig. 5). Main: Collapse of ΔmðwÞ
according to Eq. (4) with ζ ¼ 4=3. In black we show the
theoretical ΔmðwÞ, with ρm ¼ 29ð3Þ nm as predicted by the
microscopic disorder.

FIG. 5. Top: Properties of the force correlator for the four
regions in Fig. 2. The correlation length ρm ¼ CΔmð0Þ=Δ0

mð0Þ,
with C ¼ Δ̃mð0Þ=Δ̃0

mð0Þ ¼ 1.36, see Eq. (7). Bottom: The scal-
ing with m of ρm (red, solid), ζ ¼ 1.41� 0.10, and Δmð0Þ (blue
dashed), ζ ¼ 1.29� 0.08. Their mean ζ ¼ 1.34� 0.06 agrees
with the expected value, ζ ¼ 4=3.
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the amplitude and the correlation length of correlation
functions in critical phenomena. Here we show that the
amplitude of force correlations and its correlation length
can be predicted from the effective stiffness of the molecu-
lar construct m2 and the energy parameters of the nearest-
neighbor model in DNA thermodynamics [30,31]. We get
experimental values for ρm that are within 10% of the
predicted ones: e.g., for region 1, ρm ≈ 27 nm (measured)
versus ρm ≈ 29 nm (predicted).
It is interesting to compare our unzipping experiment to

the peeling of complementary RNA-DNA strands [9].
Peeling is a highly irreversible process belonging to the
depinning universality class. It is characterized by a
significantly larger effective stiffness m2, and a larger
correlation length of about 186 bp as compared to the
26 to 77 bp of DNA unzipping. The high energies required
for DNA peeling make the T ¼ 0 nonequilibrium depin-
ning transition relevant there, whereas for DNA unzipping
thermal fluctuations occur in equilibrium.
Our study can be extended to DNA with chemically

modified bases and RNA [32]. It would also be interesting
to study DNA sequences with long-range correlations [33]
and with periodically repeated motifs, a physical realization
of periodic disorder relevant for charge-density waves.
Finally, one could consider dynamical effects, e.g., upon
temperature changes [34] using a temperature-jump optical
trap [35]. Overall, single-molecule unzipping offers excit-
ing possibilities to experimentally investigate critical phe-
nomena in random polymers.
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