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Modeling Explosive Opinion Depolarization in Interdependent Topics
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Understanding the dynamics of opinion depolarization is pivotal to reducing the political divide in our
society. We propose an opinion dynamics model, which we name the social compass model, forinterdependent
topics represented in a polar space, where zealots holding extreme opinions are less prone to change their
minds. We analytically show that the phase transition from polarization to consensus, as a function of
increasing social influence, is explosive if topics are not correlated. We validate our theoretical framework
through extensive numerical simulations and recover explosive depolarization also by using initial opinions

from the American National Election Studies, including polarized and interdependent topics.
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The presence of opinion polarization—i.e., two groups
holding opposite and possibly extreme opinions in a pop-
ulation—has been extensively observed with respect to
several controversial topics, ranging from religion [1] and
race [2] to climate change [3] and political ideology [4].
Polarization may contribute to deepening the political divide
in our society [5], hampering the collective resolution of
important societal challenges [6], and even fostering the
spreading of misinformation and conspiracy theories [7].
Consequently, an interest toward a theoretical understanding
of the emergence of opinion polarization has arisen in several
disciplines, from statistical physics to social and computer
science.

Models that reproduce polarization are based on different
opinion dynamics mechanisms, such as homophily [8,9],
bounded confidence [10-12], or opinion rejection [13,14].
Modeling the process of reducing opinion polarization
among the population, or depolarization [15], has also been
the object of recent work [16-18]. In most cases, such
modeling efforts address the simplest case of one-dimen-
sional opinions with respect to a single topic [19,20].
However, the process of opinion formation may invest
multiple topics at the same time [21,22], requiring a proper
multidimensional modeling framework for opinion dynam-
ics [23-26]. When multiple topics are taken into account, a
crucial feature can often be observed: issue alignment
[27,28], i.e., the presence of correlations between opinions
with respect to different topics, especially along the so-
called left-right dimension [29,30]. For instance, individ-
uals with strong religious beliefs are more likely to oppose
abortion legalization [31], while other nontrivial correla-
tions can emerge [22,28,32]. However, many multidimen-
sional opinion models proposed so far failed to reproduce
opinion polarization [33-35], neglecting the interdepend-
ence among different topics [36,37].

In this Letter, we aim to fill this gap by proposing an
analytically tractable model of opinion dynamics in a space
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of two interdependent topics. We represent this space in the
polar plane, where the angle represents the orientation of an
individual with respect to both topics, and the radius
expresses the attitude strength (referred to as conviction
in the literature [38]). This polar representation allows us
naturally to formulate the key assumption of the model: i.e.,
zealots with extreme opinions (large conviction) may be
less prone to change their opinion than individuals with
small conviction, in line with experimental psychology
[39,40]. We observe that this model, which we name the
social compass model, exhibits a phase transition from an
initial polarized state to a depolarized or consensus one, as
a function of increasing social influence. We analytically
show, at the mean-field level, that the nature of such
transition depends on the correlation between initial opin-
ions: uncorrelated opinions trigger a first-order, or explo-
sive, depolarization to consensus, while correlated initial
opinions lead to a second-order, continuous transition. We
test our theoretical framework by using real data of
polarized initial opinions with respect to interdependent
topics.

We start by defining a representation of opinions in polar
space. Let us consider N individuals, each agent i holding
opinions (x;,y;) toward two distinct topics X and Y,
respectively, that are assumed to be normalized in the
interval x;,y; € [-1,1]. The combined opinion of each
individual with respect to the two topics can be represented
in polar coordinates by its conviction p; = \/x7 + y? and
its orientation ¢; = arctan (y;/x;), with ¢; € [-=, z]. For
instance, two agents i and j holding extreme and opposite
opinions, x; = y; = 1,x; = y; = —1, will be represented in
the polar plane with the same, maximum conviction p; =

pj= V2 and opposite orientations ¢; = z/4 and
@; = —3n/4. Note that representing individuals in a plane
defined by two major axes, such as libertarian versus
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authoritarian within a social context, and left versus right
within an economic context, is not novel in political
science [41].

To support this polar representation, we consider empiri-
cal opinions from the American National Election Studies
(ANES) [42]; see Supplemental Material, Sec. I (SM 1)
[43]. The angular distribution P(¢) obtained from the
ANES dataset for different pairs of topics shows a rich
phenomenology. We highlight four interesting cases,
reported in Fig. SF 1 of Supplemental Material SM 1A
[43]. First, there can be no consensus with respect to either
topic, with opinions roughly uniformly distributed, so that
P(¢p) will also be a uniform distribution; see Fig. SF 1(a).
Second, a consensus around both topics may emerge,
indicated by the P(¢) distribution peaked around a certain
consensus value ¢* = arctan(y*/x*), where y* and x* are
the consensus opinions of topics Y and X, respectively; see
Fig. SF 1(b). Third, opinions with respect to both topics can
be polarized; i.e., both one-dimensional opinion distribu-
tions are characterized by two well-separated peaks. Here
we can distinguish two different cases: opinions can be
polarized but not correlated, for which the P(¢) distribution
will be characterized by four peaks (quadrimodal distribu-
tion), representing, for example, the four extreme combi-
nations (x;,y;) = (+1,+1), (+1,-1), (-1, +1), (=1, -1);
see Fig. SF 1(c). Finally, opinions can be polarized and
strongly correlated, shown in Fig. SF 1(d). In this case, one
can observe only two peaks in the P(¢) (bimodal distri-
bution), corresponding to two ideological combinations
like (x;,y;) = (+1,+1),(-=1,-1).

Within this context, we study how social influence can
affect the initial opinions of individuals, by proposing the
social compass model, which is inspired by the Friedkin-
Johnsen model [44]. For each individual i, we focus on the
time evolution of their orientation, represented by 6;(1),
provided their initial orientation 6;(0) = ¢, and that their
conviction p; will not change over time. We rely on only
two key assumptions: (i) agents exert a certain degree of
social influence on their peers and (ii) each agent i has a
tendency to maintain their initial opinion ¢; proportional to
their conviction p; (i.e., agents with high conviction are
more stubborn). We operationalize this simple theoretical
framework in the following set of N ordinary differential
equations,

0:(1) = pisin [g; 0,(1) = 6:(n)], (1)

E sm

where 4 is a coupling constant that quantifies the strength of
social influence. In a real-world scenario, social influence,
indicating the tendency of individuals to adjust their behavior
to meet the expectations of their peers, could be empirically
quantified by surveys. We assume that each individual can
interact with all other individuals, which allows us to solve
the model through a mean-field approach. Since opinions are

described by angles, it is natural to model consensus
formation as the alignment of the agents’ orientations
[11,45,46], with a phase coupling inspired in the
Kuramoto model [47].

The social compass model exhibits a phase transition
at a threshold value A, of the coupling constant, separating
a polarized from a depolarized (consensus) phase. This
transition can be characterized in terms of the order
parameter 7, defined by [48]

| &
2 _ }: i0,(
. Nj:l . )

where 6;(4) is computed at the steady state of Eq. (1) and
w(A) is the average orientation in the population. In the
absence of social interactions (4 = 0), Eq. (1) leads to the
steady state 0; = ¢;. In accordance with the empirical
evidence presented above, we are interested in initial states
with polarized orientations following bimodal or quadri-
modal P(¢) distributions. For this polarized state, we have
r(A=0)=0 provided that (cos(¢p)) = (sin(g)) =0,
where (---) denotes the average value. For sufficiently
large 4, a consensus state leads to r ~ 1, meaning that all the
agents have the same average orientation ¢; ~ y.

Given that the initial opinions are distributed according
to uncorrelated probability densities P(p) and P(¢), a
general solution of the model can be found by the self-
consistent equation r = I(r,y) (see Supplemental Material

SM 11 [43]) [48], with

(r, d/
v / g \/ +2/1rpCOS(co w)+p°
(3)

which translates into the pair of equations r = Re{I(r,y)}
and 0 = Im{/(r,w)} for the real and imaginary parts of
I(r,y), respectively. The equation for the imaginary part is
used to identify the average orientation y, which, plugged
into the equation for the real part, allows us to compute the
order parameter r as a function of 4. We can establish a
threshold condition for the depolarized state considering
the instability of the solution r = 0, which translates into
the condition oRe{l(r,w)}/dr|,_, > 1. This leads to a
depolarized state for 4 > 1. with (see SM IIA)

Pg)lir + pel@¥)

de = 1 : (4)
Jio dp™2) [7. dgP(p)sin? (g — y)

We tested the validity of this theoretical result by using
empirical data from the ANES opinion polls as values of
the initial orientation and conviction, P(p) and P(p),
respectively. We focused in particular on correlated polar-
ized opinions represented by bimodal P(¢), reported in
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FIG. 1. Order parameter r(1/4.), by using different initial

opinion distributions from ANES data (topics described in
Supplemental Material, Fig. SF 3 [43]). The theoretical threshold
Ao 1s computed numerically from Eq. (4), by using the empirical
distributions P(p) and P(¢); see Supplemental Material SM IIB.

Fig. SF 3 [43]. As we can see in Fig. 1, in all cases we
observe numerically a depolarization transition at a thresh-
old that is approximately described by the theoretical
prediction Eq. (4).

To address analytically the nature of the observed
depolarization transition, we consider specific forms of
the conviction and orientation distributions. From the
ANES dataset, the conviction distribution shows in general
an increasing trend; see SM IB. We thus model it as a
power-law form,

P(p) = (a+1)p% (5)

where a = 0 corresponds to a uniform distribution, and
the limit @ — oo represents the case constant conviction,
P(p)=6(p—pPmax)- We arbitrarily fix p,.=1. Regarding
the orientation distribution, we choose the general form,

P(p) =~ 16(p — @o) +6(p — o + 7))

+ B

-

[6(¢ + o) + 6@ +po—n)], (6

fulfilling the initial polarized state condition (cos(¢)) =
(sin(¢)) = 0. For symmetry reasons, we restrict ¢q €
[0,7/4] and consider separately the cases of correlated
(bimodal distribution, ¢, = 0) and uncorrelated (quadri-
modal distribution, ¢, > 0) polarization. The analysis of
the equation 0 = Im{I(r,y)} leads in both cases to an
average orientation w = +x/2 independent of A (see
Supplemental Material, Secs. SM III and SM IV [43]),
which we will impose in the following analysis. We note
that the average orientation y in the depolarized phase falls
exactly at the middle point between the two peaks.
Therefore, the consensus emerges as a positive solution
where no initial opinion dominates over the other.
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FIG. 2. Order parameter r(A/4.) for different values of a. The
initial orientation distribution P(¢) is polarized and correlated
[(a) ¢y = 0] or fully uncorrelated [(b) ¢, = z/4]. Points (solid
lines) represent numerical simulations (theoretical predictions).
System size N = 10°. For the uncorrelated case, backward
continuation (blue) is plotted in empty symbols. Curves of
forward continuation (red) for different a collapse for 1 < A,
while they are identical to backward continuations for 1 > 4.

In the case of correlated and polarized initial opinions,
corresponding to a bimodal P(¢), the function Re{/(r,w)}
can be integrated analytically, yielding the self-consistent
equation,

l a+1 a+3 1

'":2F1<§, 42_ ; ; 3T > (7)
where ,F(a, b; ¢; z) is the Gaussian hypergeometric func-
tion [49]. To study the behavior in the vicinity of the
depolarization transition, we perform a leading order
expansion of the hypergeometric function around r =0
and solve the ensuing equation (see SM IIIA). We obtain
that the transition is continuous, with the typical behavior
of the order parameter (1) ~ (1 —A.)?, with a threshold
and an exponent f depending on « as

o« [ Va ifa<2
Aela) =227 ﬁ(a)_{uz ifa> 2.

The particular values @ =1 and @ - oo can be solved
analytically, recovering the asymptotic result of Eq. (8) (see
SM IIIA1). Figure 2(a) shows numerical simulations of r
compared with the theoretical prediction from the numeri-
cal or analytical solution of Eq. (7). The match obtained is
perfect, confirming a continuous transition in this case. We
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TABLEI. Numerical exponent f for a system size N = 10° and
different values of «, estimated from a linear regression of a
double logarithmic plot of r as a function of 4 — 4. in the vicinity
of the threshold. Numerical estimation is in good agreement with
the theoretical prediction given by Eq. (8). Deviations from it (as
for a = 1/3) could be ascribed to finite size effects.

a 1/3 1/2 1 2 3 ®
B 274(1) 1.96(1) 0.99(1) 0.57(1) 0.51(1) 0.50(1)

estimated the values of the exponent f by performing
a linear regression of r as a function of A — A, in the
vicinity of the transition. The values obtained, reported
in Table I, confirm the validity of our theoretical
approach.

For polarized, but not correlated, initial opinions, P(¢)
corresponds to a quadrimodal distribution given by Eq. (6)
with ¢y > 0. The resulting integral of Re{/(r,y)} does not
allow an analytical treatment, so we resort to solving
numerically the corresponding self-consistent equation;
see SM IVA [43]. Figure 2(b) shows numerical simulations
of r (symbols) compared with the corresponding numerical
solution (lines) of the self-consistent equation for the
quadrimodal symmetric case with ¢, = z/4. For small
values of a, we observe a continuous transition, as in the
bimodal case. However, for sufficiently large «, the
transition becomes discontinuous; i.e., we observe an
explosive depolarization. The first-order nature of the
transition is reflected in the presence of hysteresis observed
when performing forward and backward continuation
experiments; see SM V.

We further explore the nature of this discontinuous
transition by focusing on the case in which all agents hold
maximum conviction (@ = oo0). From Eq. (4), we can
compute analytically the transition threshold 1, depending
on the symmetry of the initial orientation distribution P(¢),
namely the angle ¢:

1

- cos’ ()

The nature of the transition can be uncovered by perform-
ing a Taylor expansion on the right-hand side of the self-
consistent equation r = Re{l(r,y)} for r small in the
vicinity of A.(¢), and solving for the analytic continuation
of the solution r = 0. A nonzero solution for A > A, is
indicative of a continuous transition, while the solution for
A < A, corresponds to the unstable branch of a discontinu-
ous transition. This analysis shows the presence of a
threshold angle ¢, = arcsin (1/+/5), such that for g, < ¢,
the transition is continuous, whereas it is explosive for
@o > @. (see SM IVB for details [43]).

In Fig. 3 (inset) we show the perfect match between the
numerical simulations of r (symbols) and the numerical
solution of » = Re{I(r,y)} (lines) for different values of

2.0
L0
1.8 F o
< o5
— 16
s 0.0
= 0 1 2
~ 14 A
Forward -------
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1.0 " .
0 /12 /6 /4
0
FIG. 3. Inset: Order parameter (1) in a forward continuation for

different values of ¢,. Points (solid lines) represent numerical
simulations (theoretical predictions). Main: Threshold value 4. as a
function of ¢,. We compare it by following a forward (dashed line,
A.) and backward (solid line, 4,) continuations in A of the phase
transition, obtained as the theoretical prediction given by Eq. (9)
and numerical simulations, respectively. The plot is colored in red
(blue) for ¢y < @. (@y > @.), signaling the theoretical separation
between continuous and explosive transitions. System size
N = 103, constant conviction p = 1 (a = o0).

@y of a quadrimodal P(g). One can see that the nature
of the transition changes from continuous, for small values
of ¢, to discontinuous, or explosive, for large values of ¢.
In Fig. 3 (main) we further check this change, by plotting
the instability threshold A, of the upper branch of the
solution, as obtained by a backward continuation simu-
lation; see SM V [43]. As we can see in Fig. 3 (main), for
@o < @, the threshold of the upper branch 4, coincides
with the threshold A, for the instability of the zero solution
obtained by a forward continuation, indicative of a con-
tinuous transition. For ¢y > ¢,., on the other hand, 4, < 4.,
signaling the hysteresis typical of explosive, discontinuous
transitions.

Interestingly, the theoretical predictions of the model are
also recovered by starting with an initial opinion distribu-
tion extracted from empirical ANES data. If it is polarized
and correlated (approximately bimodal P(¢)), the depo-
larization is continuous. For instance, Fig. 4(a) shows the
topics “religion providing guidance in day-to-day living”
and “business owners are allowed to refuse services to
same-sex couples if they violate their religious beliefs.” If
instead topics are polarized but uncorrelated, represented
by a quadrimodal P(¢), we observe an explosive depo-
larization with hysteresis. Figure 4(b) considers topics
“children of unauthorized immigrants born in the U.S.
should automatically get citizenship” and “the U.S.
should send troops to fight Islamic militants.” These results,
in full agreement with the theoretical analysis, are
confirmed by other examples of polarized initial opini-
on distributions from the ANES dataset, detailed in
SM VI [43].
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FIG. 4. Main: Order parameter r(4) including both forward
(red) and backward (blue) continuations in A. We consider
correlated (a) and uncorrelated (b) empirical opinions from
ANES data as P(p). Inset: Initial orientation distributions
represented in polar coordinates at A = 0. These empirical
distributions are obtained neglecting all individuals with con-
viction lower than the median of P(p), approaching then the case
a — .

Here we investigated how social influence can counter
polarization, by proposing a simple analytically tractable
mean-field opinion dynamics model. In our model, an
initial polarized state undergoes a depolarization transition
to a consensus state, whose nature depends on the initial
correlations between opinions: the depolarization is explo-
sive (first order) when the initial opinions are uncorrelated.
Our theoretical calculations are confirmed by numerical
simulations based on real opinion patterns as the initial
polarization collected from the ANES dataset. The model
we propose represents a first step toward understanding the
evolution of polarization in interdependent topics, in a very
simple and intuitive setting.

Our Letter, however, is not exempt from limitations. We
considered a mean-field setting in which all individuals
interact with everyone else. While this setting can be
realistic for small interacting groups, interactions between
agents are usually mediated by social networks: Future
work should be dedicated to extending our analysis to
networked substrates. Furthermore, we assumed the con-
viction of individuals to be constant in time, while it is
reasonable that individuals change their conviction while
changing orientation with respect to the two topics. Finally,
the social compass model could be easily extended to n
topics, mapped in terms of spherical coordinates in n
dimensions, where the key assumption of the model (i.e.,

the stubbornness of individuals proportional to their con-
viction) still holds.
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