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Anomalous diffusion phenomena occur on length scales spanning from intracellular to astrophysical
ranges. A specific form of decay at a large argument of the probability density function of rescaled
displacement (scaling function) is derived and shown to imply universal singularities in the normalized
cumulant generator. Exact calculations for continuous time random walks provide paradigmatic examples
connected with singularities of second order phase transitions. In the biased case scaling is restricted to
displacements in the drift direction and singularities have no equilibrium analogue.
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Scaling laws are at the basis of our understanding of
equilibrium systems at criticality and of the singularities
associated with second order phase transitions [1–3]. A key
role in this context is played by the scaling of probability
density functions (PDFs) of observables [4], like the spatial
span of a self repelling polymer at varying backbone
lengths [5–7] or the magnetization of a finite Ising model
for different system sizes [8,9].
PDFs with an analogous type of scaling, but with time t

replacing the chain length or system size, are also often met
outside of equilibrium. A paradigmatic example is that of
anomalous spatial diffusion, where the mean squared
displacement grows as hx2i ∼ t2ν with ν ≠ 1=2 (ν ¼ 1=2
provides Brownian diffusion [10]). At long times, the
associated PDF asymptotically satisfies

pðx; tÞ ∼ t−νfðx=tνÞ ð1Þ
where f is a non-Gaussian scaling function [11,12]. The
importance of this characterization follows from the
ubiquity of anomalous diffusion in nature, which can be
observed in a variety of experiments carried out on different
scales ranging from astrophysical to intracellular ones
[10,11,13–26]. The scaling function f is expected to decay
exponentially fast at large values with a power of the
argument linked to ν by a relation first established by
Fisher for polymers in equilibrium [6], and supported
by probabilistic arguments and numerical model calcula-
tions [11,12,27], simulations [28], and renormalization
group results [29].

Besides the polymer case, stretched exponential decays
of scaling functions have been conjectured or numerically
estimated also for equilibrium criticality, especially for the
PDF of the magnetization of finite Ising systems at the
Curie temperature and in zero magnetic field [8,9,30–32].
On the basis of these decays, analogies between magnetic
critical phenomena and anomalous diffusion were already
stressed in early work [11]. In the magnetic Ising case, the
power quantifying the stretching is expected to be directly
connected to the Kadanoff exponent determining the
magnetic field singularity of the free energy density [2,33].
In the attempt to deepen its connection with singularities
and other universal aspects of equilibrium criticality, this
type of stretched exponential decay, but also modulated by
a power law factor, was conjectured in Refs. [34,35].
However, such conjecture could never be proven or fully
confirmed numerically [36–40].
Progress in the understanding of nonequilibrium

dynamics largely relies on parallels one can draw with
equilibrium [41–43]. Thus, it is fundamental to investigate
the possible connections established by the scaling function
decays encountered in anomalous diffusion with the
singularities observed in equilibrium systems at criticality.
A characterization in this perspective of scaling and its
consequences for anomalous diffusion is also of interest for
general nonequilibrium theory.
In this Letter, we show that the scaling property of a

diffusing system implies a specific form of decay of the
scaling function, which determines power-law singularities
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in the scaled cumulant generating function of displacement.
Remarkably, we show that such singularities originate from
the same form of decay of the scaling function once
postulated for the magnetization of Ising systems, including
the modulating power law factor [34,35]. The singularities
propagate to the large deviation functions [41,42] and cause
divergences of a dynamical response function analogous to
a magnetic susceptibility in equilibrium. The Fisher rela-
tion is shown to follow from the property of extensivity in
time of the generator of cumulants. The universality of this
relation for equilibrium and nonequilibrium problems
emerges, in our approach, from its clear connection to
large deviation properties. We also address the case of
biased diffusion, obtaining singularities corresponding to
scaling forms that have no analogue in equilibrium sys-
tems. All this is verified by exact calculations for continu-
ous time random walks (CTRWs) and related fractional
drift-diffusion equations as generic models for anomalous
diffusion [10,13,14]. In this way we establish bridges
among three pillars of statistical mechanics: scaling,
anomalous diffusion, and large deviation theory.
We start by considering the general case of a particle

diffusing on a one-dimensional landscape, assuming that the
scaling hypothesis of Eq. (1) holds for some exponent
0 < ν < 1 [44]. The generating function is expressed in
terms of a Laplace transform asGðλ; tÞ ¼ Rþ∞

−∞ dxeλxpðx; tÞ.
For long enough times, on the basis of Eq. (1), it takes
the form

Gðλ; tÞ ∼
Z þ∞

−∞
dzeλt

νzfðzÞ ð2Þ

where we performed the variable change z ¼ x=tν. The
cumulants aregenerated by differentiationwith respect to λ at
λ ¼ 0 of the cumulant generator logG, which here we
assume to be linearly extensive in time. Hence, the scaled
cumulant generating function (SCGF) can be expressed
through the limit

εðλÞ ¼ lim
t→∞

1

t
logGðλ; tÞ: ð3Þ

It is already apparent how the existence of this finite limit
cannot exclude the possibility of a singularity of εðλÞ at
λ ¼ 0. Indeed fromEq. (1) it follows that, for a non-Gaussian
scaling function, the nth order cumulant grows as tnν,
implying a divergence to infinity for the cumulant scaled
by t for n > 1=νwhen t → ∞. Consistently, this can cause a
divergence of the nth derivative of the SCGF as soon as
n > 1=ν.
In the case of free diffusion the scaling function fðzÞ is

symmetric like that of the magnetization of an Ising system
at criticality. To the contrary, for biased diffusion we could
expect an asymmetry [46] or even a restriction of the
domain in which Eq. (1) holds. For both free and biased
diffusion, the dominant behavior of the integral in Eq. (2)
for large λtν with λ > 0 is determined by the decay of the

scaling function fðzÞ for z → þ∞ (throughout this Letter
when considering a bias we assume it to be in the positive
direction). Indeed, with f differentiable and monotonically
decreasing sufficiently fast to zero as z → þ∞, the inte-
grand in Eq. (2) reaches a maximum at some z̄ which
increases towards þ∞ as time grows. Applying Laplace’s
method [47] the leading contribution to G will come from
the integrand in Eq. (2) computed at the value z̄ satisfying
f0ðz̄Þ=fðz̄Þ ¼ −λtν, which maximizes the argument of the
exponential in terms of which one can write the integrand in
Eq. (2). Assuming that z̄ for long enough times grows
as ðλtνÞ1=δ for some δ > 0, we get that the differential
equation f0ðz̄Þ=fðz̄Þ ∼ −z̄δ asymptotically holds. It admits
the solution

fðz̄Þ ∼ z̄ψe−cz̄
δþ1 ð4Þ

for some positive constant c and any exponent ψ [48]. The
factor z̄ψ is introduced to allow the possibility of cancella-
tion of a term ∝ logðλtνÞ in logG, as shown below, and
implies a correction ∝ z̄−1 to the differential equation.
The exponent δ not only enters the tails of the scaling

function, but also determines the asymptotic dominant term
in ε. Indeed, substituting z̄ in Eq. (2) and using Laplace’s
method we get

logGðλ; tÞ∼λtνz̄−cz̄δþ1þ2ψþ1−δ

2
log z̄þ const ð5Þ

up to a correction ∝ z̄−1−δ [49]. Recalling that z̄δ ∼ λtν, we
find that the first two terms are proportional to the same
powers of t and of λ, the third term is a logarithmic
correction [disappearing only for ψ ¼ ðδ − 1Þ=2] and the
fourth is a time independent constant [49]. The term ∝
logðz̄Þ is the only one which actually allows us to split the λ
and t dependencies into the sum of two separate terms.
Therefore its presence would introduce a logarithmic
singular dependence on λ in the whole t-independent part
of logG, implying a divergence for λ ¼ 0. For such reason,
this dependence should be dropped by the above choice ofψ .
A contribution, extensive in t for logG, can result from

the first two terms. Since the exponent of t depends on both
ν and δ, Eq. (3) provides δ ¼ ν=ð1 − νÞ, known as the
Fisher relation [6]. We also find that Eq. (5) predicts a
singular dependence for εðλÞ ∼ λ1=ν at λ ¼ 0þ. Therefore,
the larger is δ, i.e., the faster the decay of f, the larger also ν
and thus the stronger the singularity in λ. The fact that it is
determined by the asymptotic rate of decay of f confers a
universal character to the singularity: different f’s can have
the same law of decay and thus cause the same singularity.
Below we demonstrate the existence of a critical singu-

larity in the SCGF of the CTRW in both free (subdiffusive)
and biased (subdiffusive and superdiffusive) regimes
[49–52]. Experimental evidence of systems described by
this model is found in many different contexts, such as
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charge-carrier transport in amorphous semiconductors [53],
dynamical chaos [54], transport in a groundwater aquifer
[55,56], cell biology [21,57–60], and finance [61–63], to
name a few. In this model, a particle jumps on a one-
dimensional lattice with spacing L with a rate r (l) to the
right (left) nearest neighboring site. The waiting times τ in
between the jumps occur according to a certain PDF ωðτÞ.
Anomalous diffusion occurs when this PDF decays to zero
as a power law [ωðτÞ ∼ τ−1−α with 0 < α < 1] for τ → ∞,
so that its first moment is infinite. We underline that the
freedom in the choice of α, together with the universal
character of the singularities, testifies the applicability of
our approach to a wide class of nonequilibrium scenarios.
The probability PiðtÞ to observe the particle on the ith

site at a certain time t evolves according to the generalized
master equation

∂
α
t PiðtÞ ¼ rPi−1ðtÞ þ lPiþ1ðtÞ − ðrþ lÞPiðtÞ ð6Þ

where ∂
α
t is the α-order Caputo fractional derivative

(implying that the unit of r and l is ½time�−α) which has
the integral representation [49,64]

∂
α
t PiðtÞ ¼

1

Γð1 − αÞ
Z

t

0

∂τPiðτÞ
ðt − τÞα dτ ð7Þ

where Γð� � �Þ is the complete Gamma function. With initial
condition Pið0Þ ¼ δi;0, the generating function Gðλ; tÞ ¼
ΣieλLiPiðtÞ satisfies

½∂αt − εBðλÞ�Gðλ; tÞ ¼ 0 ð8Þ
where εBðλÞ ¼ rðeLλ − 1Þ þ lðe−Lλ − 1Þ is the SCGF of
Brownian (α ¼ 1) diffusion [65,66]. The solution can be
found, passing to Laplace space [49], to be

Gðλ; tÞ ¼ Eα(εBðλÞtα) ð9Þ
where Eα is the one-parameter Mittag-Leffler function [67].
The asymptotics of this function are proportional to
eεBðλÞ1=αt and −1=εBðλÞtα for positive and negative argu-
ments, respectively.
Let us first address the unbiased case, with r ¼ l. We

find that εBðλÞ ¼ ð4rÞ sinh2ðLλ=2Þ ≥ 0. Therefore, taking
the long time limit provides us with the following SCGF:

εðλÞ ¼ ð4rÞ1=α sinh2=αðLλ=2Þ ∼ λ2=α þOðλ2þ2=αÞ: ð10Þ

Thus we get a leading singularity ∼λ2=α in the scaled
cumulant generating function at λ ¼ 0. This singularity is
qualitatively of the same type encountered for the free
energy density of Ising systems at criticality, with λ here
playing the role of magnetic field there [30]. The first
derivative of εðλÞ divergent at λ ¼ 0 is that of even order n
with n just exceeding 2=α. This derivative assumes the
meaning of a diverging dynamical response function
related to counting and analogous to the magnetic

susceptibility of an Ising model at criticality. The diver-
gence ∼jλjð2=αÞ−n of this derivative heralds the fact that for
large t the nth cumulant of the total displacement grows
as tnα=2.
The correctness of our general argument connecting the

singularity of the SCGF to a specific form of asymptotic
decay of the scaling function can be exactly verified in this
example. Indeed, in the case r ¼ l the continuum limit of
Eq. (6) yields the fractional diffusion equation [14,49]
regulating the PDF PiðtÞ=L → pðx; tÞ of observing the
particle at position iL → x at time t

∂
α
t pðx; tÞ ¼ D∂

2
xpðx; tÞ; ð11Þ

where rL2 → D is a diffusion constant, which to the
purpose of our further discussion can be assumed to be
equal to 1. The solution to this equation satisfies exactly
the scaling form of Eq. (1) for all x and t with ν ¼ α=2.
The scaling function can be expressed via the Fox H
function [68], M-Wright function [69], or the one-sided
Lévy stable density [70]. Choosing theM-Wright function,
we can express the generating function as in Eq. (2) with
Mα=2ðzÞ replacing fðzÞ. The tails of this scaling function
are given by [69,71]

MνðzÞ ∼ jzjν−1=21−ν e−
1−ν
ν jνzj1=ð1−νÞ ð12Þ

and have precisely the general form argued in Eq. (4). The
exponent δ is found to take the value ν=ð1 − νÞ, consistent
with the Fisher relation and implying that logG grows
linearly with time [from Eq. (5)]. The multiplicative power
factor with ψ ¼ ðν − 1=2Þ=ð1 − νÞ, which translates in
ψ ¼ ðδ − 1Þ=2, allows us to drop the possible logarithmic
dependence on z̄ for logGðλ; tÞ, and the leading singularity
is εðλÞ ∼ λ2=α, confirming the result in Eq. (10).
Let us now address the biased CTRW case, given by

Eq. (6) when r ≠ l. In such a scenario, the factor εBðλÞ
determining the lattice generating function Gðλ; tÞ has an
additional zero λ0 ¼ L−1 log l=r < 0 for r > l, as shown by
the yellow curve in Fig. 1(a). This implies for Gðλ; tÞ a
power-law asymptotic behavior ∝ −1=εBðλÞtα in the infin-
ite time limit for λ0 < λ < 0, while an exponential depend-
ence ∝ eεBðλÞ1=αt holds elsewhere. This causes the associated
SCGF to be identically zero in that interval, giving us

εðλÞ ¼
�
εBðλÞ1=α λ ≤ λ0 and λ ≥ 0

0 λ0 < λ < 0
ð13Þ

which shows a power law singularity ∼λ1=α for λ → 0þ [see
Fig. 1(a)]. An additional singularity ∼ðλ0 − λÞ1=α appears
for λ → λ−0 . The simultaneous presence of these singular-
ities is consistent with the fact that the SCGF satisfies the
Gallavotti Cohen identity, εðλÞ ¼ εð−λþ λ0Þ, making the
function symmetric with respect to the λ0=2 axis and
heralding validity of the fluctuation theorem. Both these
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singularities are totally asymmetric, since εðλÞ is identically
zero for λ0 < λ < 0. This asymmetry and the simultaneous
existence of two singularities have no counterpart in
equilibrium systems at criticality. Nevertheless, the singu-
larities can still be justified along the lines proposed here,
but in terms of a scaling which now holds only in the
positive x domain.
The continuum limit of Eq. (6) for r > l leads to the

fractional drift diffusion equation [49]

∂
α
t pðx; tÞ ¼ ½−K∂x þD∂

2
x�pðx; tÞ; ð14Þ

where ðr − lÞL → K defines the drift constant and
ðrþ lÞL2=2 → D the diffusion constant, implying that
Eq. (11) is immediately recovered in the case r ¼ l. As in
the free case, these limit prescriptions are justified by their
consistency with the scaling of the solution of the resulting
continuum equation. Local detailed balance [66,72,73]
allows us to link the coefficients to the rates of the
CTRW [49,74]. Since also in this case the actual values
of the constants do not affect our results, for simplicitywe set
K ¼ 1 andD ¼ 1 below.An asymptotic (t → ∞) solution of
Eq. (14) for the positive branch (x > 0) is found to be
t−αMαðx=tαÞ [71,74–76], with theM-Wright function play-
ing again the role of scaling function. Indirect evidence
of such scaling comes also from renormalization group
calculations [77].
The singularity implied by Eq. (13) at λ ¼ 0þ can again be

directly obtained by our asymptotic analysis, since the
behavior ofMνðzÞ given in Eq. (12) at large positive z holds
in thewhole0 < ν < 1 interval and is of the formproposed in
Eq. (4), now with z ¼ x=tα. Thus, our derivation shows that
also in this biased case the scaling function at large positive z
is consistent with εðλÞ ∼ λ1=α for λ → 0þ and with the Fisher
relation, for both subdiffusion (ν ¼ α < 1=2) and super-
diffusion (ν¼ α> 1=2). We notice that for 1< 1=α< 2
the second-order derivative of εðλÞ diverges, meaning that
the scaled variance of the displacement diverges for long

times as in the case of the total magnetization in Ising
criticality [2].
A remarkable feature of the biased case is that the solution

of Eq. (14) is not satisfying scaling in the t → ∞ limit for
x < 0. Indeed, for x < 0 one finds pðx; tÞ ∼ t−αex [49],
which also shows that the total probability of negative
displacements tends to annihilate in the limit. However, the
global behavior of εðλÞ can be exactly connected with the
solution pðx; tÞ of Eq. (14) on the whole x axis by switching
to Laplace transform in time for both p and G [49] and
exploiting results in [74]. The biased case provides a
remarkable example of the consequences for critical
singularities of a probability distribution exhibiting one-
sided scaling, outlining a scenario with no counterpart in
equilibrium.
Large deviation theory was recently employed to esti-

mate the propagator of CTRWs with exponential and
gamma waiting time distribution [78] and its asymptotics
in the fat-tailed case [79]. Integrating our results with the
framework of large deviation theory allows us to character-
ize direct implications on fluctuations [41]. Since εðλÞ is
convex and differentiable, for the PDF of the “velocity”
variable v ¼ x=t a rate function IðvÞ, satisfying for t → ∞

pðx=t ¼ v; tÞ ∼ e−tIðvÞ; ð15Þ

can be obtained by application of the Gärtner-Ellis theorem
[80,81] as the Legendre-Fenchel transform of ε [82]:

IðvÞ ¼ sup
λ∈R

½vλ − εðλÞ�: ð16Þ

This rate function is equal to zero at v ¼ 0, consistently
with the fact that there is no conventional current in biased
anomalous diffusion. Simple calculations [49] also show
that the branches of ε at λ ∼ 0þ and λ ∼ λ−0 determine,
respectively, IðvÞ ∼ v1=ð1−αÞ around v ¼ 0þ and IðvÞ ∼ −v
around v ¼ 0−. So, the two singularities of ε merge into a
single singular point at v ¼ 0, where IðvÞ is clearly
asymmetric [83]. Analogously, we find that also in the
unbiased case the rate function is singular for v ¼ 0. The
fact that this singularity is determined by the asymptotics of
the scaling function leads us to expect an analogous
behavior for the rate function of the magnetization in
Ising criticality, which was the subject of most recent
investigations [88].
The Gallavotti-Cohen symmetry of the SCGF in

Eq. (13) allows us also to show that IðvÞ − Ið−vÞ ¼ λ0v
for any v [49], confirming validity of the fluctuation
theorem [65,66,89] for biased anomalous diffusion, con-
sistently with earlier results in Ref. [74]. Remarkably, the
separate analysis of the branches of the rate function clearly
shows that only the negative branch—the one contrary to
the bias—is providing a linear contribution in v, which
ultimately ensures validity of the fluctuation theorem.

FIG. 1. (a) SCGF for a biased (r ¼ 2=3) subdiffusive random
walk [Eq. (13)] for different values of α: εðλÞ identically zero for
λ0 ≤ λ ≤ 0. The nonsingular case of Brownian diffusion (εB) is
also reported for reference (yellow). (b) The branches of the rate
functions exhibit a dependence ∼v1=ð1−αÞ for positive values,
while ∼ − v for negative values, which ensures validity of the
fluctuation theorem.
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The examples discussed above are of anomalous
diffusion satisfying the Fisher relation δ ¼ ν=ð1 − νÞ,
even in the biased case. This relation, which we could
clearly link to the requirement of standard extensivity in
time for the cumulant generator, is expected to be satisfied
by a large class of problems in which the diffusion step
does not depend on position in space [12]. This class
includes diffusion on fractals [29] and on percolation
clusters [28]. Still, if one gives up the requirement of
standard extensivity for logG our approach applies also to
problems belonging to the Richardson class [12,90,91]—
related to processes with position-dependent step sizes—
by enforcing the characterizing relation δ ¼ ð1 − νÞ=ν.
For this class our Eq. (5) foresees a nonstandard exten-
sivity in time, i.e., logG ∝ tν=ð1−νÞ, and a singularity ∝
λ1=ð1−νÞ for the consistently defined ε. We could verify [92]
these properties by exact calculations for a process of
anomalous diffusion in an inhomogeneous medium intro-
duced in [93]. Thus, our approach enables us to character-
ize anomalous diffusion belonging to both Fisher and
Richardson classes. Other directions we point out are
related to systems dealing with diffusion on fractals [94],
subdiffusion with static disorder [95], correlated CTRWs
[96], and superstatistical subdiffusion in viscoelastic
environments [97]. It would be of great interest to use
our methods to explore the existence of singularities in
the generating functions of such systems. A remarkable
feature of our analysis is also the possibility of its
application to other counting observables. An example
is that of the total entropy produced by the biased process
at a given time [89]. Using methods from [65,66] one can
realize that, while the zero “velocity” in such a model
implies a zero average rate of entropy production, critical
singularities determine a divergence of the scaled variance
for t → ∞. Thus, anomalously large fluctuations take
place for this quantity like for the total magnetization
of an Ising model at criticality [2]. We plan to investigate
the directions outlined above in a more extended work.
In summary we demonstrated the existence of power law

critical singularities for the SCGFs of paradigmatic models
of anomalous diffusion. Exact results fully support the link
we predict between these singularities and the decay of
the non-Gaussian scaling function of the displacement at
asymptotic absolute values of its argument. The Fisher
relation linking this decay to the diffusion exponent is
shown to follow from the extensivity in time of the
cumulant generator, while a peculiar power law prefactor
excludes corrections ∝ logðtÞ for this function. For biased
diffusion two singularities with extreme asymmetry simul-
taneously result from a PDF with one-sided scaling,
determining peculiar singular behavior in the rate function,
but not preventing validity of the fluctuation theorem. We
have also shown that the singularity generation mechanism
valid for anomalous diffusion is based on exactly the same
form of scaling function decay once postulated, but never

proved, for Ising systems in equilibrium [34,35]. This
suggests the possibility of a general probabilistic explan-
ation of this form in anomalous scaling.
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