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When a system’s parameter is abruptly changed, a relaxation toward the new equilibrium of the system
follows. We show that a crossing between the second and third eigenvalues of the relaxation operator results
in a singularity in the dynamics analogous to a first-order equilibrium phase transition. While dynamical
phase transitions are intrinsically hard to detect in nature, here we show how this kind of transition can be
observed in an experimentally feasible four-state colloidal system. Finally, analytical proof of survival in
the thermodynamic limit of a many body (1D Ising) model is provided.
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Our understanding of out-of-equilibrium systems pri-
marily developed through analogies with systems at ther-
mal equilibrium [1,2]. In equilibrium, phase transitions are
associated with a nonanalytic behavior of the free energy.
The singular character of phase transitions contributed to a
strong and rigorous consolidation of such parallels [3,4],
with universal features establishing profound connections
among apparently far and unrelated phenomena. Much
effort was invested throughout the last century in under-
standing first- and second-order equilibrium phase tran-
sitions. This study led to the advancement of several
important results, including the exact solution of the 2D
Ising model [5], the phenomenological Ginzburg-Landau
theory [6], the Yang-Lee zeros [7] and even the renorm-
alization group [8,9]. Many of these techniques were
developed due to an inherent difficulty associated with
phase transitions: short-range equilibrium systems do not
have any phase transition unless the thermodynamic limit
(where the number of particles goes to infinity) is taken,
and even then, they do not exist in one-dimensional or
noninteracting equilibrium systems [10].
Although phase transitions were originally studied in

equilibrium systems, similar phenomena also appear away
from thermal equilibrium. In fact, most equilibrium phase
transitions have a dynamical counterpart when the external
parameter changes across or is quenched through its critical
value [11–13]. Several nonequilibrium effects have similar
characteristics to equilibrium phase transitions. For exam-
ple, the same power law singularities of second-order phase
transitions observed in many equilibrium systems at criti-
cality can be found in generating functions of diffusing
systems [3,4,14]. Dynamical phase transitions [15–18] and
discontinuities in the large-deviation rate function [12,19–
21] also withstand similar analogies. In contrast to the
equilibrium case, a nonequilibrium phase transition might
have a constant flux across it [22]. These dynamical phase
transitions often have different characteristics than their
equilibrium counterpart. In addition, nonequilibrium

systems can have phase transitions even under conditions
that are incompatible with phase transitions at equilibrium,
for example in 1D systems [23–25].
In this Letter, we show how eigenvalue crossing between

the second and third eigenvalues of a Markovian operator
can induce a singularity in the long time limit approach to
equilibrium as a function of the bath temperature Tb. As in
dynamical phase transitions [15–18], here the long-time
limit t → ∞ replaces the thermodynamic limit N → ∞, but
unlike dynamical phase transitions, the discontinuity is not
in the probability of observing a rare event, but rather in the
average direction of the relaxation to equilibrium. Similar
to level crossing in quantum systems [26], this phase
transition requires some symmetry in the system, other-
wise, small perturbations make the exact crossing turn into
avoided crossing. However, even avoided crossing is a
sufficient condition to explain the appearance of other
anomalous relaxation phenomena, like the Mpemba effect
(ME) [27–40]. We demonstrate our results in two systems:
first, in the simplest system that can exhibit exact eigen-
value crossing—a four-state system with Arrhenius rates,
but where every perturbation results in avoided crossing.
Then we consider the 1D antiferromagnet Ising chain,
where the thermodynamic limit can be taken analytically,
showing that the effect exists even in macroscopic many-
body systems. Moreover, the two symmetries of the
antiferromagnet Ising model protect the crossing against
small perturbations.
It is instructive to start by considering why there are no

equilibrium phase transitions in finite systems. One way to
argue this is to use a detailed-balance Markovian rate
matrix R whose steady-state distribution is the Boltzmann
equilibrium distribution, e.g., using Glauber rates for the
dynamics [41]. In this case, the equilibrium distribution is
the eigenvector corresponding to the largest eigenvalue of
the matrix eRt for any t. The Perron-Frobenius theorem [42]
ensures that the largest eigenvalue of eRt is nondegenerate,
and therefore there cannot be an eigenvalue crossing for
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any value of the parameters. This implies that for rates that
are analytic in the external parameters, the steady state,
which is the null eigenvalue eigenvector of R, is also an
analytic function of these parameters, and there is no phase
transition in the system. This argument does not hold for an
infinite system since the Perron-Frobenius theorem cannot
be applied for the corresponding Markovian operator [42],
and hence a phase transition is possible in the thermody-
namic limit. A key point in our analysis is that for
relaxation processes, it is not the largest eigenvalue of
the Markovian matrix that controls the process (it only
controls the final state), but rather the rest of them.
Specifically, the long-time limit of the relaxation process
is controlled by the second eigenvalue, and as discussed
below, a crossing between the second and third eigenvalues
generates a singularity in the relaxation dynamics.
To observe eigenvalue crossing, we have to track how

they change as a function of some parameter. For con-
creteness, we choose to use here the external bath temper-
ature Tb, but a similar analysis can be performed for any
other external parameter. Limiting our discussion to dis-
crete setups for simplicity, the system is described by a
vector pi, indicating the probability of observing the
system in a certain microscopic configuration i. The
evolution of the system is stochastic, and the probability
distribution pi evolves by the master equation

∂tp⃗ðtÞ ¼ RðTbÞp⃗ðtÞ; ð1Þ

where RðTbÞ is the rate matrix containing all the specific
details of the system and its coupling to the bath. The off-
diagonal elements Rij are the jump rates from microstate j
to i, while Rii ¼ −

P
j≠i Rji represent the escape rates from

the state i. Assuming that R is irreducible and satisfies
detailed balance, the system eventually relaxes towards the
(unique) Boltzmann equilibrium πiðTbÞ ¼ e−Ei=Tb=ZðTbÞ,

where Ei is the energy of the microstate i, and ZðTbÞ ¼P
i e

−Ei=Tb is the partition function (we use units in
which kB ¼ 1). Formally integrating Eq. (1) with a
Boltzmann equilibrium at temperature T0 as initial con-
dition gives

p⃗ðt; Tb; T0Þ ¼ π⃗ðTbÞ þ
X
n>1

anðTb; T0ÞeλnðTbÞtv⃗nðTbÞ; ð2Þ

where v⃗n are the right eigenvectors of Rwith associated real
[43] eigenvalues 0 ¼ λ1 > λ2 ≥ λ3 ≥ … and the coeffi-
cients an correspond to the projections of the initial state on
the left eigenvectors. While λ1 ¼ 0 is granted to be non-
degenerate in such systems, the same does not apply to all
the remaining eigenvalues.
The second eigenvalue represents the slowest dynamics,

setting an exponential timescale of the relaxation ∝ 1=jλ2j.
Indeed, substituting the formal solution in the master
equation gives

e−λ2t∂tp⃗ðtÞ ¼ a2λ2v⃗2 þ
X
n>2

anλne−Δλ2;ntv⃗n ð3Þ

where we introduced the eigenvalue gaps Δλ2;n ¼
λ2 − λn ≥ 0. If λ2 is not degenerate and a2 ≠ 0, the final
stage of the relaxation is in the direction of v⃗2, and it
changes continuously with Tb. However, v⃗2ðTbÞ can
abruptly change at some temperature T� if at such temper-
ature there is an eigenvalue crossing, namely, λ2ðT�Þ ¼
λ3ðT�Þ as in Fig. (1). This eigenvalue crossing is algebrai-
cally identical to level crossing in the context of quantum
systems [44,45], though its implications are different: in the
t → ∞ limit, the crossing implies a jump in the final
direction of the approach to equilibrium; thus it can be
interpreted as a phase transition in the relaxation dynamics.
Referring to the eigenvalues and eigenvectors that

dominate the long-time dynamics before and after T� as

FIG. 1. (a) A small change in the bath temperature Tb drastically changes the approach to equilibrium direction in the presence of a
level crossing (c) like the one observed in the four-wells setup shown in panel (b). The system exhibits a phase transition in the dynamics
at T�

lc ¼ 1, marked by a singularity of the components of v⃗2 (numbered according to the four wells) shown in (f). The second and fourth
component overlap before the singularity at T�

lc, while the first and third are both zero after the crossing. (d),(g) Breaking the energy
degeneracy by setting E2 ¼ −0.6 smoothens the transition, providing an avoided crossing at T�

ac ∼ 0.93. In this case, the relative
eigenvalue difference δλ23 exhibits a minimum rather than a marked dip at the crossing temperature (e).
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λ�2 and v⃗�2 [Fig. 1(a)], we characterize the singular behavior
in the long-time limit of Eq. (3) as

v⃗2 ¼

8>><
>>:

v⃗−2 Tb < T�

a−2 v⃗
−
2 þ aþ2 v⃗

þ
2 Tb ¼ T�

v⃗þ2 Tb > T�
ð4Þ

where a�2 are coefficients determined by the initial con-
ditions. Note that this singularity is not detectable in the
equilibrium steady state but rather in the relaxation towards
equilibrium. This is why eigenvalue crossing can be linked
with anomalous phenomena arising in the relaxation
process [33,46,47].
In the original solution to the 2D Ising model, due to

Onsager, the phase transition temperature was found
through the point at which the largest eigenvalue of the
system’s transfer matrix becomes degenerate [5]. However,
this degeneracy is not a crossing: the largest eigenvalue is
degenerate for all temperatures below the critical one, and
the two degenerate eigenvectors correspond to the two
phases, as expected in a second-order phase transition.
Therefore, we interpret the eigenvalue crossing in the
relaxation dynamics as a first-order phase transition. In
detailed balanced matrices, the eigenvalues are always real
and analytic in the parameters [48], therefore a second
order phase transition where two eigenvalues coalesce is
not possible. However, it is possible to have a second-order
phase transition in systems with broken detailed balance
[49,50], when the rate matrix passes through an exceptional
point beyond which λ2 becomes complex valued and
hence Reðλ2Þ ¼ Reðλ3Þ.
Algebraically, eigenvalue crossing is not stable since the

dimension of matrices with level crossing is smaller than
the dimension of all relevant matrices. Thus, unless some
symmetry prevents perturbations in the rate matrix in the
direction that breaks the degeneracy, the singular phase
transition is not expected to be directly observed. However,
even in this case, the nondegeneracy of the second
eigenvalue induces a sharp—albeit nonsingular—transition
across T� in the approach to equilibrium direction [see
Fig. 1(d)]. The timescale of the slowest dynamics is then
regulated by the relative difference δλ23 ¼ −Δλ23=λ2 > 0,
as it can be easily seen by rescaling the time by λ2
in Eq. (3).
Let us present the minimal model that exhibits eigen-

value crossing in the dynamics: a four-state Markovian
system coarse-grained from an overdamped four-
well energy landscape [Fig. 1(b)]. Indeed, it can be
proven that any N-state system with an N − 1 degeneracy
of λ2 at a certain temperature T� necessarily extends to a
degeneracy for every bath temperature [51], ruling out
eigenvalue crossing in three-state systems. A general

representation of the rate matrix R is the Arrhenius
form [48,52]:

RijðTbÞ ¼
(
Γe−ðBij−EjÞ=Tb i ≠ j

−
P

k≠i Rki i ¼ j
ð5Þ

where Γ (¼ 1 for simplicity) is a rate constant and Bij ¼ Bji

denotes the energy barrier between state i and j, set to be
higher than the adjacent energy levels Efi;jg. Given the low
number of free parameters in a four-state system, one can
easily find an example with eigenvalue crossing, as
explained in the Supplemental Material [51]. In our specific
example, all transitions are permitted through finite barriers
with height Bij ¼ 0 except for B24, which separates
the second and fourth (degenerate) wells with energy
E2 ¼ E4 ¼ −1=2. Setting B24 ¼ þ∞ implies that there
are no transitions between these states. In addition we set
E1 ¼ −1, while E3 ¼ − logð4 ffiffiffi

e
p

− eÞ is determined by the
constraints of a crossing at T� ¼ 1. This example exhibits a
marked crossing [Fig. 1(c)] that induces a phase transition
in the relaxation dynamics at T�, as we can see through the
components of v⃗2 depicted in Fig. 1(f). The singularity can
also be characterized by the relative eigenvalue difference
δλ23, which exhibits a marked dip at the crossing temper-
ature [Fig. 1(e)].
A minor perturbation in the parameter values generally

converts the singularity into avoided crossing. For instance,
breaking the energy degeneracy by setting E2 ¼ −0.6
results in the avoided crossing shown in Fig. 1(d), which
nevertheless induces a sharp but continuous transition of v⃗2
[Fig. 1(g)] provided that the dimensionless timescale
δλ23 ≪ 1 [Fig. 1(e)]. This feature is fundamental when
considering experimental setups in which one might want
to detect this phenomenon. Indeed, the parameters can be
tuned only to within a certain precision depending on
specific details of the experimental apparatus. This result
not only increases the chances of observing the effect
considerably but also opens up the possibility of seeing it in
even simpler setups as a three-state system; see Ref. [51].
The sensitivity of the eigenvalue crossing to small

perturbations is not important in highly symmetric models
if the symmetry prevents perturbations that break the
degeneracy. An example of such a system is the 1D
Ising antiferromagnet chain. Consider a ring of N spins
σs ¼ �1, for which the Hamiltonian for any configuration
σ⃗ of the 2N possible microstates reads

Hðσ⃗Þ ¼ −H
XN
s¼1

σs − J
XN
s¼1

σsσsþ1 ð6Þ

where H is the magnetic field, J < 0 is the antiferromag-
netic coupling constant, and σNþ1 ≡ σ1. We implement
single-spin Glauber dynamics [41], namely, the rates
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connecting two microscopic configurations σ⃗fi;jg with
energies Efi;jg is

Rij ¼
δ1;dij

1þ eðEi−EjÞ=Tb
ð7Þ

where dij ¼
P

s δσis;−σjs and the Kronecker delta function
δ1;dij limits the transition to single-spin flips.
In the absence of magnetic field H ¼ 0, an explicit form

for all the eigenvalues and eigenvectors was derived by
Felderhof [53]. Introducing the sets Sþ ¼ fπ½ð2i − 1 −
NÞ=N�g and S− ¼ fπ½ð2i − NÞ=N�g with i ¼ 1;…; N,
and considering all the k combinations q⃗k ∈ ðS�k Þ where
Sþ (S−) is chosen for even (odd) values of k, we can express
the 2N − 1 eigenvalues regulating the dynamics as

λðq⃗kÞ ¼ −kþ γ
Xk
i¼1

cosðqk;iÞ ð8Þ

where γ ¼ tanh 2J=Tb. This system is invariant with
respect to symmetries that considerably reduce the number
of eigenvalues relevant to the dynamics. The set of all rate
matrices, under global flipping and cyclic shifts of the
microscopic configurations, is isomorphic to the Z2 ×DN
group [54]. Therefore, in the antiferromagnetic case
(J < 0), we find that the first eigenvalues of eigenvectors
with even parity with respect to such symmetry turn out to
be λ−2 ¼ −2þ 2γ cosf½ðN − 1Þ=N�πg and λþ2 ¼ −1þ γ,
highlighted in Fig. 2(a). The analytic expressions of the
eigenvalues enable us to formally study the phenomenon in
the thermodynamic limit: imposing λ−2 ¼ λþ2 , we find that
the crossing survives the N → ∞ limit, asymptotically
approaching T�

∞ ¼ 2=arctanhð1=3Þ [Fig. 2(b)]. The eigen-
value difference exhibits also an excellent finite-size multi-
scale collapse [55] against the reduced temperature

t ¼ ðT − T�Þ=T� with a dependence ∝ jtj1, while the
distance from the asymptotic crossing temperature T�

∞
decays quadratically.
The eigenvector directions associated with the crossing

eigenvalues have a clear physical meaning in this system.
The 2N-dimensional eigenvectors can be projected along
the magnetization and staggered magnetization vectors,
defined as ðm⃗Þi ¼

P
s σ

i
s and ðm⃗sÞi ¼ jPsð−1Þsσisj for a

given microscopic configuration σ⃗i [56]. In Fig. 3(a) we
show the projection of v⃗2 along such directions, finding that
it is identically zero before (after) the crossing temperature
along m⃗ (m⃗s). This indicates that the approach to equilib-
rium occurs along the staggered magnetization for bath
temperatures Tb < T� and along the magnetization for
Tb > T�, while at Tb ¼ T� it follows along some linear
combination of m⃗ and m⃗s depending on the initial con-
ditions. Any perturbation that does not break the two
symmetries associated with these eigenvectors—flipping
all the spins or translating the chain by a single spin
position—would not split the eigenvalue crossing. How-
ever, perturbing the system, for example, with a magnetic
field H > 0 breaks the singular behavior smoothing the
transition, which can nevertheless be arbitrarily sharp for
small enough magnetic fields [Fig. 3(b)].
The eigenvalue crossing is one of the possible mecha-

nisms by which the Mpemba parity index [29], which is a
topologically protected quantity, can nevertheless change.
Indeed, in many variants of the antiferromagnetic Ising
model at H ¼ 0 there is a sharp transition at some
temperature from zero to nonzero Mpemba index
[13,29,46,47]. This was already pointed out in Ref. [46],
where an exact coarse-graining procedure [57,58] enabled
to explore large-sized systems and to argue that the effect
survives in the thermodynamic limit. In Fig. 3(c) we plot
the eigenvalue difference δλ23 as a function of both bath

FIG. 2. (a) Spectrum of an N ¼ 8 Ising antiferromagnet at zero
magnetic field with Glauber dynamics [Eq. (7)]. Highlighted in
blue and red are the first two dominant eigenvalues which are
relevant for the dynamics. They cross at T�ðN ¼ 8Þ ∼ 5.45.
(b) Eigenvalue difference δλ23 as a function of the reduced
temperature t ¼ ðT − T�Þ=T�, exhibiting an excellent finite-size
collapse ∝ jtj1 around the crossing temperature. Inset: the
distance from the asymptotic crossing temperature T�

∞ ¼
2=arctanhð1=3Þ decays quadratically.

FIG. 3. (a) Projection of v⃗2 onto the magnetization m⃗ and
staggered magnetization m⃗s vectors. At H ¼ 0 the relaxation is
completely orthogonal to m⃗ (m⃗s) for all temperature below
(above) T�. (b) At H > 0 the transition becomes nonsingular.
(c) The eigenvalue difference δλ23 highlights the avoided crossing
(white curved line) induced on the system through a magnetic
field perturbation. The horizontal white line delimits the ferro-
magnetic phase (jHj < 2), where the ME is found to be allowed
in the right region, in which the projection of v⃗2 is larger on m⃗
than on m⃗s. The opposite holds for H > 2 (see Ref. [51]).
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temperature and magnetic field in the 1D antiferromagnetic
Ising model. The antiferromagnetic phase for J ¼ −1 is
delimited by jHj < 2 (horizontal white line), corresponding
to the region in which the external magnetic field is not
strong enough to overcome the negative nearest neighbor
interaction among the spins. The minima of δλ23 (curved
white line) partition the parameter space, showing that the
existence of the ME is limited to the region in which the
projection of v⃗2 is larger on m⃗ than on m⃗s. This is consistent
with the fact that for H < 2 the magnetization of an Ising
antiferromagnet at equilibrium is a nonmonotonous func-
tion of the temperature (see Refs. [29,46]). Having the
slowest relaxation occurring predominantly along the
magnetization vector m⃗ is therefore what enables geomet-
rically the emergence of relaxation shortcuts. Anomalous
relaxation effects can also be observed in a limited region
above jHj > 2, in the area in which v⃗2 has a larger
component along the staggered magnetization. Indeed,
for strong magnetic fields the roles are inverted [51]: it
is m⃗s that is nonmonotonous with respect to the bath
temperature. Still, the appearance of the ME for 1D systems
in this region is related to finite size effects and is therefore
not expected to survive the thermodynamic limit [46].
Summarizing, we have shown how eigenvalue crossing

can be interpreted as a phase transition in the dynamics of
stochastic systems. Such a transition can drastically change
the direction from which the system approaches the bath
temperature equilibrium, thereby explaining where anoma-
lous relaxation effects can be observed in terms of model
parameters. It was shown that eigenvalue crossing appears
in the paradigmatic 1D Ising antiferromagnet, and it
survives in the thermodynamic limit, with relaxation
occurring along the staggered (total) magnetization before
(after) the crossing. We have shown how an external
perturbation breaks the singularity in the dynamics but
nevertheless maintains a steep jump related to a marked
avoided crossing. This is important when attempting to
observe this phenomenon in simpler, single-body exper-
imental setups, where model parameters can be tuned only
up to some finite precision. The four-state example we
provided not only serves as a pedagogical example but also
provides the means to characterize this phenomenon in
small experimental setups, such as the colloidal systems in
which the ME was recently observed [34,35].
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