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We propose a mean-field theory to describe the nonequilibrium phase transition to a spontaneously
oscillating state in spin models. A nonequilibrium generalization of the Landau free energy is obtained
from the joint distribution of the magnetization and its smoothed stochastic time derivative. The order
parameter of the transition is a Hamiltonian, whose nonzero value signals the onset of oscillations. The
Hamiltonian and the nonequilibrium Landau free energy are determined explicitly from the stochastic spin
dynamics. The oscillating phase is also characterized by a nontrivial overlap distribution reminiscent of a
continuous replica symmetry breaking, in spite of the absence of disorder. An illustration is given on an
explicit kinetic mean-field spin model.
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The emergence of spontaneous oscillations at a collec-
tive scale in large assemblies of interacting units is one of
the most striking features of nonequilibrium systems.
Beyond the now well-understood synchronization of
coupled oscillators [1,2], spontaneous oscillations also
appear in diverse systems of interacting units where indivi-
dual units do not oscillate in the absence of interactions,
making the onset of oscillations a genuinely collective
phenomenon. Such oscillations have been reported, for
instance, in biochemical clocks [3–5], populations of
biological cells [6,7], assemblies of active particles with
nonreciprocal interactions [8,9], nonequilibrium spin sys-
tems [10–12], as well as population dynamics [13,14] and
socioeconomic models [15,16].
In the thermodynamic limit, the onset of spontaneous

oscillations is described by a deterministic Hopf bifurca-
tion [17]. Yet, oscillations often occur in mesoscopic
systems like biochemical clocks for which fluctuations
play an important role [18], leading to a stochastic Hopf
bifurcation [19,20] and to a finite coherence time of
oscillations [21–25]. To provide a consistent theoretical
ground, the emergence of spontaneous oscillations in large
assemblies of interacting units has been characterized as a
nonequilibrium thermodynamic phase transition by iden-
tifying the entropy production as a generalized thermo-
dynamic potential whose derivative is discontinuous at
the transition [4,26–33]. Similar results have also been
obtained for the entropy production in population dynamics
[13] and for a nonequilibrium free energy in the context of
Turing pattern formation [34]. However, beyond singular-
ities of thermodynamic potentials, the equilibrium theory of
phase transitions and critical phenomena is based on the
key concepts of spontaneous symmetry breaking and of
associated order parameter [35]. Once the latter is identi-
fied, the generic Landau free energy can be determined
unambiguously to characterize the phase transition at

mean-field level. Recent nonequilibrium generalizations
of Landau’s theory include the description of relaxation
effects [36,37] or multiple heat baths and oscillations
driven by an oscillatory field [38].
In this Letter, we go beyond the thermodynamic

approach to phase transitions with spontaneously emerging
oscillations and show how to build a nonequilibrium
generalization of the Landau free energy in a class of
driven kinetic mean-field spin models based on the sponta-
neous breaking of spin-reversal symmetry and time-
translation invariance. The generalized Landau free energy
is obtained from the joint distribution of the magnetization
and its smoothed stochastic time derivative, at odds
with previous generalizations based on magnetization
only [36–38]. Close to the phase transition to an oscillating
phase, the nonequilibrium Landau free energy can be
expressed in terms of a single order parameter, which is
an effective Hamiltonian describing the oscillating dynam-
ics of the magnetization. In addition, by evaluating the
overlap distribution of spin configurations, we show that
the oscillating phase is also characterized by an analog of
the continuous replica symmetry breaking phenomenon
observed in disordered systems [39].
We consider a generic class of nonequilibrium mean-

field spin models with N spins si � 1 (and possibly
auxiliary variables) and define the magnetization m ¼
N−1PN

i¼1 si. We explore far-from-equilibrium regimes
where, for large N, the magnetization mðtÞ may exhibit
oscillations, leading to a limit cycle [10–12,40–42]. In
dynamical systems theory, a limit cycle may be generically
described in the plane of a variable and its time derivative.
We aim at building a generalized Landau theory describing
finite size fluctuations around the average limit cycle. Thus,
we need to characterize not only the fluctuations of
magnetization, but also of its time derivative. Yet, directly
considering the time derivative of mðtÞ leads to diverging,
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white-noise type fluctuations that are not appropriate to
build a Landau theory. Thus, rather, we aim at defining an
observable attached to each microscopic configuration
that would play the role of an appropriately smoothed
out derivative of the magnetization. We denote as C the
microscopic configuration of the system; C may corres-
pond to the spin configuration C ¼ ðs1;…; sNÞ [10,40], or
may include additional binary variables, C ¼ ðs1;…; sN;
h1;…; hMÞ, see below. For a Markov jump dynamics with
transition rate WðC0jCÞ from configuration C to configura-
tion C0, a stochastic derivative _mðCÞ of the magnetization
mðCÞ can be defined as (see Supplemental Material [43])

_mðCÞ ¼
X
C0≠C

½mðC0Þ −mðCÞ�WðC0jCÞ: ð1Þ

This definition is such that dhmi=dt ¼ h _mi, where the
average h…i is defined as hxi ¼ P

C xðCÞPðCÞ. The def-
inition Eq. (1) of the derivative _m is valid for any system
size N and leads to fluctuations on a scale comparable to
that of m.
To break detailed balance and possibly allow for oscil-

lations, the configuration C is split into two groups of
binary variables denoted as ski (k ¼ a, b) having different
single-spin-flip dynamics (see Ref. [43] for details). These
may correspond to two groups of spins in contact with
different heat baths [10,40,49] or to the spin and field
variables as in the explicit model described below. To detect
temporal oscillations, we use, as global observables, the
magnetization m and its stochastic time derivative _m
defined in Eq. (1). We consider the joint distribution
PNðm; _mÞ ¼ P

C∈Sðm; _mÞ PðCÞ, where Sðm; _mÞ corresponds
to the set of configurations C with mðCÞ ¼ m and
_mðCÞ ¼ _m. The coarse-grained transition rate correspond-
ing to flipping any spin ski ¼ �1 in group k ¼ a, b, starting
from a configuration C ∈ Sðm; _mÞ, is denoted as
NW�

k ðm; _mÞ. A global spin-reversal symmetry is assumed,
yielding W�

k ð−m;− _mÞ ¼ W∓
k ðm; _mÞ. Variations of m and

_m when flipping a spin ski ¼ �1 (k ¼ a, b) scale as 1=N:
ðΔm;Δ _mÞ ¼ �dk=N. The coarse-grained master equation
governing the evolution of PNðm; _mÞ reads

∂tPNðm; _mÞ ¼ N
X
k;σ

�
−Wσ

kðm; _mÞPNðm; _mÞ

þWσ
k

�
ðm; _mÞ− σdk

N

�
PN

�
ðm; _mÞ− σdk

N

��
:

ð2Þ

From the theory of Markov jump processes with vanishing
jump size [50], the stationary joint distribution PNðm; _mÞ
takes, for large N, a large deviation form [51]

PNðm; _mÞ ∼ exp ½−Nϕðm; _mÞ�; ð3Þ

which can be interpreted as a WKB approximation of the
solution of the master equation (2) [50]. Using the large
deviation form (3) in Eq. (2) and taking the limit N → ∞,
one ends up with the following equation for the steady-state
rate function ϕðm; _mÞ:

X
k;σ

Wσ
kðm; _mÞ½eσdk·∇ϕðm; _mÞ − 1� ¼ 0; ð4Þ

with ∇ϕ ¼ ð∂mϕ; ∂ _mϕÞ. We are interested in an expansion
of ϕðm; _mÞ close to its minimum (or minima) and, thus,
assume ∇ϕ to be small. At order j∇ϕj2, Eq. (4) reads

_m∂mϕþ Y∂ _mϕþD11ð∂mϕÞ2 þD22ð∂ _mϕÞ2
þD12ð∂mϕÞð∂ _mϕÞ ¼ 0; ð5Þ

where Y and D ¼ fDijg are defined as, using Eq. (1),

½ _m; Yðm; _mÞ� ¼
X
k;σ

σdkWσ
kðm; _mÞ;

Dðm; _mÞ ¼ 1

2

X
k;σ

Wσ
kðm; _mÞdk · dT

k : ð6Þ

At the transition to spontaneous oscillations, ϕðm; _mÞ
should change from a paraboloidlike shape to a
“Mexican-hat” shape. To identify the parameter controlling
the transition, we start with a quadratic approximation of
ϕðm; _mÞ for small m and _m, and look for a change of
curvature. At quadratic order in m and _m, Eq. (4) takes the
same form as Eq. (5), but with constant coefficientsDij ≥ 0

and a linear function Yðm; _mÞ ¼ −v0mþ u0 _m, assuming
v0 > 0 [Yð0; 0Þ ¼ 0 because Yð−m;− _mÞ ¼ −Yðm; _mÞ].
Assuming ϕðm; _mÞ ¼ ðγ1=2Þm2 þ ðγ2=2Þ _m2 þ γ3m _m with
small γi’s close to the transition, one finds γ3 ∼ γ21 ≪ γ1
and u0γ2 ¼ −ðD11γ

2
1=v0 þD22γ

2
2Þ < 0. Thus, the sign of

γ2 ¼ ∂
2ϕ=∂ _m2ð0; 0Þ is the opposite of the sign of u0.

Hence, u0 is the control parameter of the phase transition:
u0 ¼ 0 corresponds to the critical point, and time-trans-
lation invariance is broken for u0 > 0, when _m ¼ 0 is no
longer stable.
For u0 > 0, the quadratic approximation is not enough to

describe the minima of ϕðm; _mÞ, and higher order terms are
required. One could expand ϕðm; _mÞ as a power series inm
and _m, but this would not work for nonanalytic ϕ [see, e.g.,
Eq. (12)]. Instead, we use the Hamiltonian structure
close to the critical point. We no longer assume Yðm; _mÞ
to be linear, and split Yðm; _mÞ into the _m-independent part
Yðm; 0Þ≡ −V 0ðmÞ and a _m-dependent part Yðm; _mÞ−
Yðm; 0Þ≡ _mgðm; _mÞ. We define the control parameter
u0 as u0 ¼ ∂Y=∂ _mð0; 0Þ. We take u0 ∝ ε with ε a small
parameter. To perform a consistent small-ε expansion of
Eq. (4), we assume ∇ϕ ¼ OðεÞ, since quadratic terms in
∇ϕ have to balance the contribution in ε∂ _mϕ coming from
the term Y∂ _mϕ. Truncating Eq. (4) at order ε2, one recovers
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Eq. (5), where the full (m; _m)-dependence of the coeffi-
cients is kept. At order ϵ, Eq. (5) reduces to

_m∂mϕ − V 0ðmÞ∂ _mϕ ¼ 0: ð7Þ

The general solution of Eq. (7) reads

ϕðm; _mÞ ¼ fðHðm; _mÞÞ þ f0; ð8Þ

with

Hðm; _mÞ ¼ _m2

2
þ VðmÞ; ð9Þ

and where f is, at this stage, an arbitrary function,
satisfying for convenience fð0Þ ¼ 0, and the constant f0
ensures that the minimal value of ϕðm; _mÞ is zero. The
minimum value of VðmÞ is set to V ¼ 0, so that H ≥ 0.
Hðm; _mÞ is a Hamiltonian describing the ðm; _mÞ dynamics
at order ε as dm=dt ¼ ∂H=∂ _m, d _m=dt ¼ −∂H=∂m, and the
corresponding trajectories are iso-ϕ lines. Contributions of
order ε2 to Eq. (5) yield a condition determining the
derivative f0ðHÞ [43],

f0ðHÞ ¼ −

R
m2
m1

dm _mðm;HÞgðm; _mðm;HÞÞR
m2
m1

dm
_mðm;HÞ∇TH · D · ∇H ; ð10Þ

where m1 and m2 are such that Vðm1Þ ¼ Vðm2Þ ¼ H and
VðmÞ ≤ H for m1 ≤ m ≤ m2; _mðm;HÞ is determined from
Eq. (9). Note that a related method has been used to
determine nonequilibrium potentials in dissipative dynami-
cal systems [52–54].
Equations (8) and (10) provide a convenient description

of a mean-field phase transition to a state with temporal
oscillations. The function fðHÞ plays a role similar to the
Landau free energy at equilibrium. Let us denote as H� the
value of H which minimizes fðHÞ. The case H� ¼ 0
corresponds to usual time-independent phases, either para-
magnetic or ferromagnetic depending on whether VðmÞ is
minimum for m ¼ 0 or m ≠ 0, respectively. The case
H� > 0, instead, corresponds to the onset of spontaneous
oscillations, where ðm; _mÞ follow a limit cycle in the
deterministic limit N → ∞. Hence, H� may be considered
as the formal order parameter of the transition to an
oscillating state. Note that although the system exhibits
macroscopic temporal oscillations, the probability distri-
bution PNðm; _mÞ is time independent (in the long-time
limit), because it describes an infinite ensemble of systems
oscillating at the same frequency, but with uniformly
distributed phases.
In the simple yet generic case where VðmÞ ¼ 1

2
v0m2 and

gðm; _mÞ ¼ α0ε − α1m2 − α2m _m − α3 _m2, fðHÞ takes for
small H the generic form

fðHÞ ¼ −εaH þ bH2; ð11Þ

where a and b can be expressed in terms of the parameters
αi [43]. The case ε < 0 corresponds to a time-independent
phase (H� ¼ 0), while ε > 0 corresponds to an oscillating
phase, withH� ¼ εa=2b > 0. Thus, one finds a continuous
phase transition to temporal oscillations, with an elliptic
limit cycle whose size scales as ε1=2, i.e., m ∼ _m ∼ ε1=2,
or more precisely hm2i ∼ h _m2i ∼ ε. The two observables
hm2i and h _m2i constitute the practically measurable order
parameters, respectively, characterizing the paramagnetic-
ferromagnetic phase transition and the onset of sponta-
neous oscillations. From the expression (9) of the
Hamiltonian H, the oscillation period τ is given in the
case VðmÞ ¼ 1

2
v0m2 by τ ¼ 2π=

ffiffiffiffiffi
v0

p
and, thus, is inde-

pendent of ε. Yet, the scaling with ε of the different
observables may differ from the results given above.
Close to a tricritical point where the paramagnetic, ferro-
magnetic, and oscillating phases meet, one rather finds
VðmÞ ¼ 1

4
v1m4 (see explicit example below). In this case,

fðHÞ takes the nonanalytic form

fðHÞ ¼ −εaH þ cH3=2; ð12Þ

from Eq. (10) [43], and the scaling of H� is now H� ∼ ε2

instead of H� ∼ ε. As VðmÞ is proportional to m4, m and _m
have different scalings with ε: m ∼ ε1=2, while _m ∼ ε. The
limit cycle is no longer elliptic, but it flattens. This actually
corresponds to a period that diverges as τ ∼ ε−1=2.
The small fluctuations of m and _m around their zero

average value in the paramagnetic phase ε < 0 can be
characterized by generalized susceptibilities χm ¼ Nhm2i
and χ _m ¼ Nh _m2i, taking into account that hm2i ∼ h _m2i ∼
N−1 in the paramagnetic phase. When approaching
the phase transition to a limit cycle (ε → 0−), both gener-
alized susceptibilities χ _m and χm diverge as jεj−1. At the
critical point (ε ¼ 0), one finds a different scaling of
fluctuations with N: h _m2i ∼ hm2i ∼ N−1=2. As for the
finite-size fluctuations of H, we obtain that in the para-
magnetic phase, varðHÞ ∼ N−2, whereas in the oscillating
phase, varðHÞ ∼ N−1.
The rate function is a key tool for determining which

solution is the macroscopically observed one when two or
more solutions are present in the deterministic description.
This is the case, e.g., when fðHÞ ¼ aH − bH2 þ cH3,
with a, b, c > 0. Both H� ¼ 0 and H� ¼ ðbþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − 3ac

p
=3cÞ > 0 are local minima of fðHÞ, correspond-

ing to two solutions of the deterministic equations. The
macroscopically observed solution is the one with the
lowest fðHÞ. Thus, varying parameters, one observes a
discontinuous transition from a paramagnetic phase
(H� ¼ 0) to a limit cycle phase (H� > 0). An explicit
example is given below.
A fine characterization of the phase transition to an

oscillating state is obtained by considering the statistics
of the overlap qab ¼ N−1PN

i¼1 s
a
i s

b
i between two spin
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configurations fsai g and fsbi g. Identical (opposite) con-
figurations have an overlap qab ¼ 1 (qab ¼ −1), while
qab ¼ 0 for uncorrelated configurations. The overlap dis-
tribution PðqÞ can be evaluated for N → ∞ [43]. For
VðmÞ ¼ 1

2
v0m2, we obtain for ϵ > 0 (oscillating phase) the

scaling form PðqÞ ¼ q−1ε ψðq=qεÞ, with qε ¼ εa=bv0 [a
and b are introduced in Eq. (11)]; the scaling function ψðyÞ
is plotted in Fig. 1(a) (see Ref. [43] for its explicit
expression). PðqÞ has a logarithmic divergence in q ¼ 0,
and has a continuous support, a property usually considered
as a hallmark of continuous replica symmetry breaking in
disordered systems [39]. As in the latter, the presence of a
nontrivial overlap distribution can be traced back to an
average over many pure states [39,55].
As an explicit model, we introduce a generalization of

the kinetic mean-field Ising model with ferromagnetic
interactions (see, also, related models with two spin
populations [10,40] or with feedback control [11]). The
model involves 2N microscopic variables: N spins si ¼ �1
and N fields hi ¼ �1. We define the magnetization
m ¼ N−1PN

i¼1 si and the average field h ¼ N−1PN
i¼1 hi.

The stochastic dynamics consists in randomly flipping a
single spin si or a single field hi. The flipping ratesWs and
Wh depend only on m and h, Ws;h ¼ ½1þ expðβΔEs;hÞ�−1,
with β ¼ T−1 the inverse temperature and ΔEs;h the
variation of Es;h when flipping a spin si or a field hi,
where Es ¼ −N½ðJ1=2Þm2 þ ðJ2=2Þh2 þmh� and Eh ¼
Es þ μNhm. Detailed balance is broken as soon as
μ ≠ 0. The fluctuating derivative _m determined from
Eq. (1) reads _m ¼ −mþ tanh½βðJ1mþ hÞ�.
Depending on ðT; μÞ values, the model exhibits a para-

magnetic (high T), ferromagnetic (low T, low μ), or
oscillating (low T, high μ) behavior. We restrict the study
to J1 > −J2. An example of a phase diagram is shown in
Fig. 2(a) for J1 ¼ 1.4 and J2 ¼ −0.5. The boundary of the
ferromagnetic phase is obtained from the deterministic
equations [43]. Other lines are obtained using the pertur-
bative framework introduced in Eqs. (10) and (8) [43].
The three phases meet at a tricritical point ðTc; μcÞ, with

Tc ¼ ðJ1 þ J2Þ=2 and μc ¼ 1þ ½ðJ1 − J2Þ2=4�. For
μc < μ < μd, where μd ¼ 1 − ðJ1=J2Þ, a continuous
transition from paramagnetic to oscillating states (with
an elliptic limit cycle) is observed. An example of the
oscillations of the N spins si with time and mðtÞ ¼
N−1P

i si, obtained from Monte-Carlo simulations in the
oscillating phase, is plotted in Figs. 1(b) and 1(c). The rate
function numerically obtained from Eq. (10) is well
described by Eq. (11), with a reduced control parameter
ε ¼ ðTc − TÞ=Tc. Close to the tricritical point (μ≳ μc), an
elongated limit cycle is observed, with m ∼ ε1=2 and _m ∼ ε.
Here, the rate function is, instead, well described by the
nonanalytic form of fðHÞ obtained in Eq. (12) (the value of
c is given in [43]). For μ > μd, a discontinuous transition
from paramagnetic to oscillating states is observed. In the
hatched area of Fig. 2(a), both the paramagnetic (H� ¼ 0)
and limit cycle (H� > 0) states are local minima of fðHÞ.
The most stable solution at large but finite N is then
determined as the global minimum of fðHÞ, see Fig. 2(b). It
discontinuously changes from H� ¼ 0 (paramagnetic state)
to H� > 0 (oscillating state) when crossing the full line
inside the hatched area of Fig. 2(a). The rate function
ϕðm; _mÞ is plotted in Figs. 2(c) and 2(d) for the para-
magnetic and oscillating states, respectively. The metasta-
ble (oscillating or paramagnetic) states are also visible.
Note that the validity of the perturbative framework is
limited to small ðTc − TÞ=Tc and to either μc < μ < μd or
small ðμ − μdÞ=μd > 0. A detailed study of this model,
including a description of the transition between ferromag-
netic and limit cycle states, will be reported elsewhere [55].

FIG. 1. (a) The scaling function ψðyÞ of the overlap distribution
in the oscillating phase. The inset corresponds to a logarithmic x
axis. (b) Evolution of the N spins with time (si ¼ þ1 in white,
si ¼ −1 in black) obtained using Monte Carlo simulations of the
specific model described below, for ðTc − TÞ=Tc ¼ 0.3, μ ¼ 2,
and N ¼ 100. (c) The corresponding mðtÞ ¼ N−1 P si vs time t.

FIG. 2. (a) Phase diagram of the spin model in the ð−ε; μÞ
plane, with ε ¼ ðTc − TÞ=Tc, displaying the paramagnetic (P),
ferromagnetic (F), and oscillating (O) phases (J1 ¼ 1.4,
J2 ¼ −0.5). P and O phases coexist in the hatched area.
(b) fðHÞ for μ ¼ 5.7 and ε ¼ −3.5 × 10−2 (top curve), ε ¼
−3.0 × 10−2 (bottom curve). (c),(d) Corresponding rate function
ϕðm; _mÞ.
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To sum up, we have shown how the Landau theory of
phase transitions can be extended to describe phase
transitions to an oscillating phase in nonequilibrium spin
models. While previous nonequilibrium generalizations of
the Landau free energy were only based on magnetization
and did not address spontaneous oscillations [36–38], we
defined a generalized Landau free energy as the rate
function ϕðm; _mÞ associated with the joint distribution of
the magnetization m and its smoothed stochastic derivative
_m defined in Eq. (1). The order parameter of the Landau
theory is an effective Hamiltonian H, whose nonzero value
indicates the presence of oscillations. The expression of
Hðm; _mÞ and of the nonequilibrium Landau free energy
fðHÞ can be determined explicitly from the stochastic spin
dynamics. The expansion of fðHÞ is singular close to a
tricritical point where paramagnetic, ferromagnetic, and
oscillating phases meet. Beyond spontaneous breaking of
time translation invariance, the oscillating phase is char-
acterized by an overlap distribution reminiscent of con-
tinuous replica symmetry breaking, although no disorder is
present. Consistently with previous works [4,26–33], we
also recover that the entropy production density becomes
nonzero in the oscillating phase [43]. Future work will
notably aim at characterizing the transition to oscillating
states in finite-dimensional systems using renormalization
group methods.

L. G. acknowledges funding from the French Ministry of
Higher Education and Research.
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and R. Spigler, Rev. Mod. Phys. 77, 137 (2005).
[2] T. Risler, J. Prost, and F. Jülicher, Phys. Rev. Lett. 93,

175702 (2004).
[3] Y. Cao, H. Wang, Q. Ouyang, and Y. Tu, Nat. Phys. 11, 772

(2015).
[4] B. Nguyen, U. Seifert, and A. C. Barato, J. Chem. Phys.

149, 045101 (2018).
[5] L. Aufinger, J. Brenner, and F. C. Simmel, Nat. Commun.

13, 2852 (2022).
[6] K. Kamino, Y. Kondo, A. Nakajima, M. Honda-Kitahara, K.

Kaneko, and S. Sawai, Proc. Natl. Acad. Sci. U.S.A. 114,
E4149 (2017).

[7] S.-W. Wang and L.-H. Tang, Nat. Commun. 10, 5613
(2019).

[8] S. Saha, J. Agudo-Canalejo, and R. Golestanian, Phys. Rev.
X 10, 041009 (2020).

[9] Z. You, A. Baskaran, and M. C. Marchetti, Proc. Natl. Acad.
Sci. U.S.A. 117, 19767 (2020).

[10] F. Collet, M. Formentin, and D. Tovazzi, Phys. Rev. E 94,
042139 (2016).

[11] D. De Martino and A. C. Barato, Phys. Rev. E 100, 062123
(2019).

[12] P. Dai Pra, M. Formentin, and P. Guglielmo, J. Stat. Phys.
179, 690 (2020).

[13] B. Andrae, J. Cremer, T. Reichenbach, and E. Frey, Phys.
Rev. Lett. 104, 218102 (2010).

[14] D. Duan, B. Niu, and J. Wei, Chaos, Solitons and Fractals
123, 206 (2019).

[15] S. Gualdi, J.-P. Bouchaud, G. Cencetti, M. Tarzia, and F.
Zamponi, Phys. Rev. Lett. 114, 088701 (2015).

[16] S. D. Yi, S. K. Baek, G. Chevereau, and E. Bertin, J. Stat.
Mech. (2015) P11001.

[17] J. D. Crawford, Rev. Mod. Phys. 63, 991 (1991).
[18] C. Fei, Y. Cao, Q. Ouyang, and Y. Tu, Nat. Commun. 9,

1434 (2018).
[19] F. Sagués, J. M. Sancho, and J. García-Ojalvo, Rev. Mod.

Phys. 79, 829 (2007).
[20] H.-Y. Xu, Y.-P. Luo, J.-W. Wu, and M.-C. Huang, Physica

(Amsterdam) 411D, 132612 (2020).
[21] P. Gaspard, J. Chem. Phys. 117, 8905 (2002).
[22] A. C. Barato and U. Seifert, Phys. Rev. X 6, 041053 (2016).
[23] A. C. Barato and U. Seifert, Phys. Rev. E 95, 062409 (2017).
[24] L. Oberreiter, U. Seifert, and A. C. Barato, Phys. Rev. E 106,

014106 (2022).
[25] B. Remlein, V. Weissmann, and U. Seifert, Phys. Rev. E

105, 064101 (2022).
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