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We study a one-dimensional gas of N Brownian particles that diffuse independently, but are
simultaneously reset to the origin at a constant rate r. The system approaches a nonequilibrium stationary
state with long-range interactions induced by the simultaneous resetting. Despite the presence of strong
correlations, we show that several observables can be computed exactly, which include the global average
density, the distribution of the position of the kth rightmost particle, and the spacing distribution between
two successive particles. Our analytical results are confirmed by numerical simulations. We also discuss a
possible experimental realization of this resetting gas using optical traps.
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While the properties of a gas of noninteracting particles
are well understood, those of an interacting gas, in
particular in the presence of a long-range interaction
between particles, are much less so. A notable exception
is the celebrated Dyson log gas in one dimension, that
appears in the spectral statistics of random matrix theory.
Indeed, the statistics of the eigenvalues of Gaussian random
matrices play a major role in several areas of science, from
nuclear physics, quantum chaos, and mesoscopic transport,
all the way to finance and information theory [1–4]. For
an N × N matrix (real symmetric, complex Hermitian, or
quaternionic symplectic) with independent Gaussian
entries, the joint probability distribution function (JPDF)
of the N real eigenvalues fxig can be expressed as a
Boltzmann weight P½fxig� ∝ expð−βE½fxig�Þ with the
energy given by E½fxig� ¼ 1

2

P
N
i¼1 x

2
i − 1

2

P
i≠j ln jxi − xjj,

where the Dyson index β ¼ 1, 2, 4 corresponds to the three
symmetry classes mentioned above [1,2]. Thus, the eigen-
values xi can be interpreted as the positions of N particles
on a line in the presence of a confining harmonic potential,
with pairwise logarithmic repulsion between them. This is
Dyson’s log gas [5], which has been a fundamental
cornerstone [2] in understanding the role of strong corre-
lations on several spectral observables such as the average
density of eigenvalues [6], the largest eigenvalue [7–10]
(i.e., the position of the rightmost particle in the gas), and
the spacing distribution between successive eigenvalues
[1,2,11]. These observables can be computed exactly for
the log gas, thanks to a special analytical structure of the
particular form of the JPDF [1,2]. Moreover, they have
been measured experimentally in a variety of systems, from
nuclear physics and quantum chaos [12] to liquid crystals
[13] and fiber lasers [14]. Unfortunately, there exist very
few long-ranged correlated gases, even in one dimension,

for which these observables can be computed, with perhaps
the exception of the 1D jellium model where the pairwise
repulsion is linear [15–21].
It is therefore natural to look for other experimentally

realizable long-ranged correlated particle systems for
which these observables can be computed analytically.
Motivated by the recent theoretical and experimental
advances in the field of stochastic resetting [22–25], in
this Letter, we propose a new many-particle model that,
despite the presence of strong correlations induced by
dynamics, is solvable for all the spectral observables
mentioned above.
A single particle subjected to stochastic resetting has

been studied extensively over the past decade [26–42].
Consider, for simplicity, a single Brownian particle diffus-
ing on a line with diffusion constant D, starting at the
origin. With rate r, the particle’s position is reset back to the
origin and the free diffusion restarts. This resetting move
breaks detailed balance and drives the system into a
nonequilibrium stationary state where the position distri-
bution becomes non-Gaussian [26,27]:

PstatðxÞ ¼
1

2

ffiffiffiffi
r
D

r
exp ð−jxj

ffiffiffiffiffiffiffiffiffi
r=D

p
Þ: ð1Þ

This simple analytical prediction has been verified in recent
experiments using holographic optical tweezers [39]. In
this Letter, we consider N independent Brownian particles
on a line, all starting at the origin, that are simultaneously
reset to the origin with rate r (this is different from
independently reset Brownian particles studied before
[26,43]). This simultaneous resetting makes the system
strongly correlated, and this correlation persists even in the
resulting many-body nonequilibrium stationary state at
long times. To see this, let us first compute the joint
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distribution Pr½fxig; t� of the positions xi of the particles at
time t (all starting at the origin), where the subscript r
denotes the resetting with constant rate r. For r ¼ 0, the
particles evolve as N independent Brownian motions
and their joint distribution just becomes a product of N
independent Gaussians, given by

P0½fxig; t� ¼
YN
i¼1

1ffiffiffiffiffiffiffiffiffiffiffi
4πDt

p e−x
2
i =4Dt: ð2Þ

To see how a nonzero r makes the particles correlated, we
proceed as follows. We consider the interval ½0; t� and see
how many resetting events occur in that interval. With a
probability e−rt there will be no resetting in ½0; t�—in that
case, the joint distribution at time t will be simply
P0½fxig; t�e−rt. When there is at least one resetting event
in ½0; t�, we remark that the state of the system at time t
depends only on the time elapsed since the last resetting
before t. This is because every resetting event brings back
all the particles to the origin and, hence, we only need to
keep track of the time since the last resetting. This idea is
illustrated in Fig. 1 where t is the observation time and t − τ
is the time at which the last resetting occurs before t. Since
the evolution between t − τ and t is free (i.e., without
resetting), clearly the joint distribution of the positions at
time t is simply P0½fxig; τ�. However, τ itself is a random
variable, with a probability density re−rτ, and τ can vary
from 0 to t. Hence we need to multiply P0½fxig; τ� by
re−rτdτ and integrate τ from 0 to t. Adding these two
contributions, i.e., no-resetting event and the multiple
resettings, we get the joint distribution at time t as

Pr½fxig; t� ¼ e−rtP0½fxig; t� þ r
Z

t

0

dτe−rτP0½fxig; τ�: ð3Þ

In the longtime limit, the first term in Eq. (3) drops out and
we obtain the exact JPDF in the stationary state:

Pstat½fxig� ¼ r
Z

∞

0

dτe−rτ
YN
i¼1

1ffiffiffiffiffiffiffiffiffiffiffi
4πDτ

p e−x
2
i =4Dτ: ð4Þ

This is one of our main results, which merits a few remarks.
We note that the joint distribution in the stationary state
does not factorize (even though the integrand inside the
integral has a factorized form), indicating that the particles
are correlated in the steady state. The physical origin of
these correlations can be traced back to the fact that, via
simultaneous resetting, the particles are pushed together
toward the origin, which creates an effective attraction
between the particles. Note that these correlations or the
effective interactions between particles in the steady state
have a purely dynamical origin and are not inherent
interactions between particles as in Dyson’s log gas or
in the 1D jellium model. The integral in Eq. (4) can, in fact,
be performed explicitly,

Pstat½fxig� ¼
�

r
2πD

�
N=2

Rð2−NÞ=2
N KN=2−1ðRNÞ; ð5Þ

where RN ¼ ffiffiffiffiffiffiffiffiffiffiffiffiðr=DÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ � � � þ x2N

p
and KνðzÞ is the

modified Bessel function of index ν. This makes the
correlated nature of the gas manifest, since the JPDF does
not factorize, though unlike the log gas the correlation is
not pairwise but rather “all to all.” Finally, to see that this
resetting gas indeed has long-range correlations, we com-
pute the two-point correlations from the JPDF in Eq. (4).
Noting that hxixji − hxiihxji ¼ 0 (for i ≠ j) trivially, the
first nontrivial correlator is given by

hx2i x2ji − hx2i ihx2ji ¼
4D2

r2
; ∀ i; j; ð6Þ

which manifestly demonstrates the long-range correlations.
Given the JPDF in Eq. (4), our goal, motivated by the

studies in the Dyson log gas, is to compute three natural
observables, namely, (i) the average density, (ii) extreme
statistics, and (iii) the spacing distribution between con-
secutive particles. The reason why these observables can be
computed exactly can be seen in the structure of the JPDF
in Eq. (4), where the integrand (modulo e−rτ) just corre-
sponds to a set of N independent and Gaussian distributed
random variables, parametrized by τ. For a fixed τ, we first
compute the statistics of these observables for N indepen-
dent and identically distributed Gaussian random variables
and then integrate over τ. We will see that this simple
mechanism leads to rather rich and interesting behaviors of
these observables.
We start with the first basic observable, namely, the

average density of particles in the stationary state, defined
by ρðx; NÞ ¼ ð1=NÞhPN

i¼1 δðx − xiÞi, where h� � �i denotes
the average over the stationary measure in Eq. (4). The
density ρðx; NÞ is normalized to unity and measures the

FIG. 1. Schematic trajectories of N ¼ 3 Brownian motions
undergoing simultaneous resetting to the origin at random times.
The observation time is marked by t and the time of the last reset
before t is marked by t − τ. During the last period τ, the particles
evolve independently as free Brownian motions.
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average fraction of particles in ½x; xþ dx�. Using the
invariance of the JPDF in Eq. (4) under exchange of i
and j, one sees that ρðx; NÞ is also the one-point function
ρðx; NÞ ¼ R∞

−∞ dx2 � � � dxN Pstatðx; x2;…; xNÞ. Then, given
the factorization property in Eq. (4), we find that ρðx; NÞ
coincides with the position distribution PstatðxÞ of a single
particle given in Eq. (1) and plotted in Fig. 2. However, this
does not mean that the particles are uncorrelated, as seen
from the fact the JPDF in Eq. (4) does not factorize. Thus,
ρðx; NÞ is independent of N and is supported over the full
line. This is in contrast with other models with long-range
pairwise repulsion, such as the Dyson log gas and the 1D
jellium model, where the average density is supported over
a finite interval. In the former case, it is the celebrated
Wigner semicircular law [6] while, for the jellium, the
average density is flat over a finite interval [15–18].
Moreover, from Eq. (1), one sees that the density

decreases exponentially over a length scale
ffiffiffiffiffiffiffiffiffi
D=r

p
where

most particles are concentrated in a typical sample (see
Fig. 2). Hence, the typical spacing between particles in the
bulk scales as ∼Oð1=NÞ for large N. While the average
density extends over the full space, in a typical sample, the
rightmost (or leftmost) particle is located at a distance of
order Oð ffiffiffiffiffiffiffiffiffi

lnN
p Þ from the center (see later). In addition, the

spacing between two particles near these extremes scales as
1=

ffiffiffiffiffiffiffiffiffi
lnN

p
≫ 1=N. Thus in a typical sample the gas is denser

near the center and sparser near the extremes, as illustrated
in Fig. 2.
Having computed the global density, we now probe the

gas at a local level by studying the statistics of the positions
of individual particles and the spacing between them.
For this, it is convenient to first order the positions
fx1;x2;…;xNg and label them as fM1>M2> ���>MNg,

where Mk denotes the position of the kth particle counted
from the right. ThusM1 ¼ maxfx1; x2;…; xNg denotes the
global maximum, i.e., the position of the rightmost particle.
This observable M1 is well studied when the underlying
random variables xi are uncorrelated and its distribution is
known to belong to the three famous universality classes,
namely, Gumbel, Fréchet, and Weibull depending on the
tails of the distribution of xi [44–47]. There has been a lot
of interest in computing the distribution of M1 in the case
where the random variables xi are strongly correlated, and
very few results are known in that case [47]. One well-
known example corresponds to the Dyson log gas, where
M1 represents the largest eigenvalue of a Gaussian random
matrix. In this case, the distribution of M1, appropriately
centered and scaled, follows the celebrated Tracy-Widom
distribution [7–10]. Another solvable example corresponds
to the 1D jellium model where the distribution is known to
be different from the Tracy-Widom law [18,19]. Similarly,
the statistics of the kth maximum have been studied for
Dyson’s log gas [7,8]. One of the main results of this Letter
is to compute exactly the distribution of Mk for all k in the
correlated resetting gas. Notably, for k ¼ 1, we find a new
extreme value distribution, which is different from the ones
mentioned above.
We start by computing the PDF of Mk, i.e., the kth

maximum of the ordered positions xi that are distributed via
the JPDF Pstat½fxig� in Eq. (4). As for the JPDF, it is
convenient to exploit the renewal structure in Eq. (3), also
depicted graphically in Fig. 1. It is clear, then, that in the
stationary state (t → ∞ limit), the PDF of Mk can be
expressed as

ProbðMk ¼ wÞ ¼ r
Z

∞

0

dτe−rτProb½MkðτÞ ¼ w�; ð7Þ

whereMkðτÞ is the kth maximum of a set of N independent
Brownian motions each of duration τ, i.e., drawn from the
Gaussian distribution exp ½−x2i =ð4DτÞ�= ffiffiffiffiffiffiffiffiffiffiffi

4πDτ
p

. The dis-
tribution of the kth maximum of N independent and
identically distributed Gaussian random variables is well
studied in the literature and is reproduced in the
Supplemental Material [48]. Here we just state the main
results. We set k ¼ αN and take the limit of large N,
keeping 0 < α < 1 fixed. In this limit, the distribution of
MkðτÞ approaches a Gaussian form with mean w� ¼ffiffiffiffiffiffiffiffiffi
4Dτ

p
erfc−1ð2αÞ and variance ∝ 1=N [here erfc−1ðzÞ is

the inverse of the complementary error function erfcðzÞ ¼
ð2= ffiffiffi

π
p Þ R∞

z e−u
2

du]. In the large N limit, the distribution
of MkðτÞ essentially approaches a δ function centered
at w�, i.e., Prob½MkðτÞ ¼ w� → δ½w −

ffiffiffiffiffiffiffiffiffi
4Dτ

p
erfc−1ð2αÞ�.

Substituting this behavior in Eq. (7), we arrive at

ProbðMk ¼ wÞ≈ 1

ΛðαÞf
�

w
ΛðαÞ

�
; fðzÞ ¼ 2ze−z

2

; ð8Þ

FIG. 2. The solid blue line shows the average density

ρðx; NÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr=4DÞp
e−

ffiffiffiffiffiffi
r=D

p
jxj. The positions of the particles in

a typical sample are shown schematically on the line with most
particles living over a distance

ffiffiffiffiffiffiffiffiffi
D=r

p
around the origin. The

typical spacing in the bulk ∼1=N, while it is of order ∼1=
ffiffiffiffiffiffiffiffiffi
lnN

p
near the extreme edges of the sample. The typical position of the
rightmost particle M1 ∼

ffiffiffiffiffiffiffiffiffi
lnN

p
for large N.
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with z ≥ 0 and ΛðαÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi
4D=r

p
erfc−1ð2αÞ. In the large N

limit, the scaling function fðzÞ is thus supported only over
z ≥ 0 and is universal; i.e., it is independent of α. For
α ¼ Oð1Þ, this gives us the behavior for the kth maximum in
the bulk, while setting α ¼ k=N with k ¼ Oð1Þ we can
probe the kth maximum near the global maximum M1. In
this limit, using erfc−1ð2k=NÞ ≈ ffiffiffiffiffiffiffiffiffi

lnN
p

to leading order for
large N (independently of k), we see that ΛðαÞ → LN ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4D lnðNÞ=rp

. However, the distribution ofMk has exactly
the same scaling function fðzÞ ¼ 2ze−z

2

θðzÞ as in Eq. (8)
except that the scale factor ΛðαÞ gets replaced by LN. These
results are confirmed in our numerical simulations as shown
in Fig. 3(a) for different values of α. Indeed the global
maximumM1, in particular, typically scales as LN ∼

ffiffiffiffiffiffiffiffiffi
lnN

p
for largeN. Thus, even though, on average, the gas is spread
over the full real line, in a typical sample, it is supported over
an interval with length LN ∼

ffiffiffiffiffiffiffiffiffi
lnN

p
.

The behavior of Mk in our correlated gas model is thus
very different from the Dyson log gas or the 1D jellium
model. In our model, the distributions of the kth maxima,
both in and out of the bulk, are described by the same
universal scaling function fðzÞ ¼ 2ze−z

2

θðzÞ. This is in
marked contrast to the Dyson log gas where the distribu-
tions of the maxima near the edge are similar to the Tracy-
Widom distribution while, in the bulk, they are Gaussian
[54]. Thus our result for fðzÞ is a new extreme value
distribution that was not encountered before.
We now turn to the distribution of the spacing (or gap)

between two consecutive particles dk ¼ Mk −Mkþ1. We
can exploit again the renewal structure in Eq. (3) and write

Probðdk ¼ gÞ ¼ r
Z

∞

0

dτe−rτ Prob½dkðτÞ ¼ g�; ð9Þ

where dkðτÞ ¼ MkðτÞ −Mkþ1ðτÞ is the kth gap of N
independent Brownian motions, each of duration τ. The

distribution of the gap dkðτÞ can be computed in the largeN
limit, by setting k ¼ αN and using a saddle point method,
detailed in Ref. [48]. We find that dkðτÞ has a simple
exponential distribution,

Prob½ðdkðτÞ ¼ g� ≈ bNffiffiffi
τ

p e−ðbN=
ffiffi
τ

p Þg; ð10Þ

where b ¼ exp f−½erfc−1ð2αÞ�2g= ffiffiffiffiffiffiffiffiffi
4πD

p
is just a constant,

independent of τ and N. Inserting this result in Eq. (9), and
performing the change of variable u ¼ ffiffiffiffiffi

rτ
p

, we obtain

Probðdk¼gÞ≈ 1

λNðαÞ
h

�
g

λNðαÞ
�
; λNðαÞ¼

1

b
ffiffiffi
r

p
N
; ð11Þ

where the normalized scaling function hðzÞ is given by

hðzÞ ¼ 2

Z
∞

0

due−u
2−z=u: ð12Þ

The scaling function hðzÞ → ffiffiffi
π

p
as z → 0 and has a stre-

tched exponential tail hðzÞ ∼ e−3ðz=2Þ2=3 for large z (see
Ref. [48]). Since α ¼ k=N, by choosing k ¼ 1; 2; 3;…, one
can probe the first, second, third gap, etc. In this case α ∼
Oð1=NÞ is small for large N. We show in Ref. [48] that in
this case, λNðαÞ → lNðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=ðrk2 lnNÞ

p
. While the

scale factor changes, the scaling function hðzÞ is universal,
i.e., independent of α. This universal result for hðzÞ is
verified in numerical simulations in Fig. 3(b). From
Fig. 3(b) it is clear that hðzÞ is a monotonically decreasing
function of z with a maximum at z ¼ 0. Thus two
consecutive particles are most likely to be next to each
other (with a zero gap), indicating an effective attraction
between the particles. This is in stark contrast with the
Dyson log gas case where, due to the pairwise repulsion
between eigenvalues, the spacing distribution vanishes as
the gap g → 0: this is the celebrated Wigner surmize for
the level repulsion in random matrix theory. In addition, in
the Dyson log gas as well as in the 1D jellium model, the
scaling functions of the spacing distribution are very
different in the bulk and at the edges, again in sharp
contrast with our result for the correlated resetting gas
where the gap scaling function hðzÞ in Eq. (12) is universal,
i.e., independent of the index k of the gap.
To summarize, we have presented the exact solution of a

resetting gas with long-range correlations in the steady state
and computed several observables of interest. This includes
the global average density, the distribution of the position
of kth rightmost particle, and the spacing distribution
between two consecutive particles. Our technique can be
easily extended to compute other observables, e.g., the full
counting statistics, i.e., the distribution of the number of
particles in a given interval (this is presented in Ref. [48]).
Our results can be generalized to higher dimensions in a
straightforward way. Apart from the celebrated log gas, this

(a) (b)

FIG. 3. (a) Scaled distribution of the position Mk of the kth
particle from the right: PðMkÞ ≈ Λ−1ðαÞf½MkΛ−1ðαÞ� with ΛðαÞ
given below Eq. (8). The symbols represent the results of
simulations, while the solid curve shows the scaling function
fðzÞ in Eq. (8). (b) Scaled distribution of the gap dk ¼ Mk −
Mkþ1 between the kth and the (kþ 1)th particle counted from the
right: numerical simulations are in perfect agreement with the
analytical scaling function hðzÞ in Eq. (12). We used the
parameter values D ¼ 0.5 and r ¼ 1.
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is one of the few solvable models with strong correlations.
In addition, this resetting gas is also experimentally
realizable. A single diffusing particle with resetting has
been recently realized in optical trap experiments [40,41],
where the particle is allowed to diffuse freely for a random
time after which a trap is switched on. The particle is
relaxed to its equilibrium in the trap using the “engineering
swift equilibration” technique [55]. This mimics the reset-
ting move of the particle to its equilibrium distribution. The
same protocol, via the engineering swift equilibration
technique, can possibly be implemented to simultaneously
reset many noninteracting particles in the same optical trap.
We thus hope that our analytical predictions will stimulate
further experimental studies of such a resetting gas.
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