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We argue that spin- and valley-polarized metallic phases recently observed in graphene bilayers and
trilayers support chiral edge modes that allow spin waves to propagate ballistically along system
boundaries without backscattering. The chiral edge behavior originates from the interplay between the
momentum-space Berry curvature in Dirac bands and the geometric phase of a spin texture in position
space. The edge modes are weakly confined to the edge, featuring dispersion that is robust and insensitive
to the detailed profile of magnetization at the edge. This unique character of edge modes reduces their
overlap with edge disorder and enhances the mode lifetime. The mode propagation direction reverses upon
reversing valley polarization, an effect that provides a clear testable signature of geometric interactions in
isospin-polarized Dirac bands.
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Stoner ferromagnetism is a correlated electron order
ubiquitous in topological materials of current interest,
including moiré graphene [1–6] and nontwisted graphene
bilayers and trilayers [7–11]. Yet, the fundamental proper-
ties of this state, especially those governed by Berry
curvature in k space, are presently poorly understood.
Here we predict that this state hosts chiral spin excitations.
These excitations are confined to system edges and domain
boundaries between different valley-polarized regions,
propagating along them in a manner resembling quantum
Hall (QH) edge states, as illustrated in Fig. 1. The micro-
scopic origin of this behavior is the geometric phase of
carrier spins tracking magnetization along carrier trajecto-
ries. Carrier spin rotation by a position-dependent mag-
netization generates a Berry phase in direct space that
serves as a spin-dependent magnetic vector potential that
couples to the orbital dynamics of carriers [see Eqs. (4) and
(5)] [12–15]. Chiral edge behavior arises due to coupling
between this geometric magnetic field and the orbital
magnetization due to Berry curvature in k space. The
geometric character of this interaction ensures robust chiral
edge physics even in “vanilla” spin-polarized Fermi seas,
such as those seen in Refs. [7–11].
The band magnetism of carriers exhibiting orbital

magnetization is a broad framework applicable to a diverse
range of systems. This includes, in particular, the QH
ferromagnets [16–19] and correlated excitonic phases in
QH bilayers [20–24]. Orbital magnetization in these
systems exists due to Landau levels rather than the k-space
Berry curvature, and in QH bilayers, the layer index plays
the role of spin in our analysis. Here we focus on chiral
edges in spin-polarized metals and, afterward, comment on
possible extensions to the QH systems.
In graphene multilayers [7–11], the predicted chiral edge

behavior is sensitive to valley polarization. In a valley- and

spin-polarized phase (identified as a quarter metal in
Refs. [7–11]), the band orbital magnetization exhibits
opposite signs in valleys K and K0. As a result, the chirality
(i.e., the propagation direction) of edge modes flips upon
reversing the valley imbalance. A very different behavior is
expected in a valley-unpolarized but spin-polarized phase
(half-metal in the nomenclature of Refs. [7–11]). In this
case, the two valleys host Stoner metals with the band
orbital magnetization of opposite signs. In this phase, the
edges will host pairs of counterpropagating chiral edge
modes, one for each valley. These two modes together

FIG. 1. (a) Schematic band structure of a fully spin-polarized
Stoner phase in a valley-polarized graphene bilayer or trilayer
band. Only the valley populated by carriers is shown. (b) The
spin-wave edge mode dispersion obtained for a step in orbital
magnetization M1 ≠ M2 induced by a gate, Eq. [12]. The mode
(red) is positioned outside the bulk magnon continuum (blue).
The group velocity vg ¼ dω=dq of a constant sign indicates the
chiral character of the mode. The edge-to-bulk scattering (black
arrow) is blocked by the energy and momentum conservation.
(c) Schematic of the spatial dependence of the edge mode. The
mode is confined to the step and propagates along it without
backscattering.
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respect the orbital time reversal symmetry, unbroken in the
half-metal phase, i.e., the system is nonchiral.
The exceptional cleanness of graphene multilayers

makes them an appealing system to probe this behavior.
Spin lifetimes as long as 6 ns measured in large bilayer
graphene (BLG) systems by a nonlocal Hanle effect at 20 K
[25] are explained by residual magnetic disorder [26,27].
In contrast, recently, it was demonstrated that electrons
isolated from edge disorder by gate confinement and
trapped in gate-defined quantum dots acquire ultralong
spin lifetimes, reaching values of 200 μs [28] and
50 ms [29] when measured in an applied magnetic field
by pulsed-gate spectroscopy. Therefore, probing spin
excitations in gate-defined electron puddles presents a
distinct advantage. Yet, spin lifetimes measured in large
BLG systems [25] also lie in a suitable range. Spin lifetimes
can be further increased by applying nonquantizing mag-
netic fields that, apart from a constant offset, have little
impact on the chiral spin-wave dispersion [see Eq. (18)].
In a metallic state, the chiral mode at the edge can, in

principle, decay by scattering into the 2D spin-1 particle-
hole continuum and spin waves. The former process is
blocked by energy conservation since the spin-1 con-
tinuum is gapped at small momenta [see Supplemental
Material [30] Fig. S1(a)]. The latter process, as shown by
the black arrow in Fig. 1(b), is blocked by the energy and
momentum conservation for a smooth edge, but can be
viable for a rough edge. However, as discussed in the
Supplemental Material [30], in the long-wavelength limit,
the edge modes have vanishing overlaps with the edge
disorder potential, a property that protects the modes from
edge-to-bulk scattering.
The chiral edge behavior in a Stoner metal phase

discussed here is distinct from that predicted for magnetic
phases with a nontrivial magnon band topology [31–37]. In
these systems, chiral edge excitations lie above the first
magnon band and are therefore gapped. To the contrary, the
chiral modes described here arise at the boundary of a
uniformly spin-polarized Stoner Fermi sea—a metallic
compressible state with a nontopological bulk magnon
band. The edge excitations are gapless (in the absence of an
externally applied magnetic field, see below) and have
dispersion positioned beneath that of bulk spin waves (in
our case, these are nothing but the gapless magnons
of a Heisenberg ferromagnet). Accordingly, here chiral
modes arise in the absence of microscopic spin-dependent
interactions, such as Dzyaloshinskii-Moriya interaction or
dipolar interaction (as in Refs. [31–35] and Refs. [36,37],
respectively). Instead, they originate from an interplay
between the exchange interaction and orbital magnetization
in bands with Berry curvature and broken time reversal
symmetry. Our spin waves act analogously to the chiral
edge plasmons predicted for such bands [38], yet they
transport spin rather than charge and arise from a very
different mechanism.

Collective spin dynamics, both bulk and edge, are readily
analyzed in the long-wavelength limit, at frequencies below
the Stoner continuum [see Fig. S1(a) [30]],

Δ ¼ Uns > ωðqÞ; ð1Þ

whereΔ is the Stoner gap,U is the exchange interaction, ns
is spin-polarized carrier density, and ωðqÞ is mode
dispersion. We employ an effective action for spin variables
obtained by integrating out fermion orbital degrees of
freedom. In that, we assume the electron velocity is large
compared to that of spin waves, vF ≫ vg ¼ dω=dk. As
found below, the long-wavelength spin-wave dispersion is
quadratic, ωðkÞ ∼ k2, a behavior that confirms the separa-
tion of timescales for the orbital and spin degrees of
freedom and justifies our analysis. The effective action
for spin variables takes the form (see, e.g., [39,40])

A ¼
Z

dtd2rðinsS0hηðr; tÞj∂tjηðr; tÞi −H½n�Þ; ð2Þ

where the first term is the Wess-Zumino-Witten action,
hereafter referred to as AWZW, representing the single-spin
Berry phase accumulated through time evolution. The
second term is the Hamiltonian of a spin-polarized state
discussed below. The quantity jηðr; tÞi represents a coher-
ent spin state in ð2þ 1ÞD space-time. Here ns ¼ n↑ − n↓ is
the density of spin-imbalanced carriers, and the factor nsS0
is the spin density, where S0 ¼ ℏ=2. In what follows, spin
polarization is described by a unit vector,

nðr; tÞ ¼ hηðr; tÞjσjηðr; tÞi:

The term H½n� in Eq. (2) is the effective spin Hamiltonian.
Symmetry arguments and microscopic analysis predict [41]
the long-wavelength Hamiltonian

H½n� ¼ ns

�
J
2
ð∂μnÞ2 −MðrÞBðr; tÞ − h0 · n

�
: ð3Þ

Here J is spin stiffness, the second term is an interaction
between the band orbital magnetization and the geometric
magnetic field, and the last term is the Zeeman energy per
carrier, with the g factor and Bohr magneton absorbed in
the external magnetic field h0.
As indicated above, the interaction −MB originates from

a geometric Berry phase, arising due to electron spins
tracking magnetization along electron trajectories. Spin
rotation generates a Berry phase in position space defined
by a spin-dependent magnetic vector potential [12]

aμ ¼
ℏc
2e

ð1 − cos θÞ∂μϕ; μ ¼ x; y: ð4Þ

Here θ and ϕ are the polar and azimuthal angles measured
with respect to the spin polarization axis in the ground state.
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The sign of aμ is chosen to describe the Berry phase
accrued by the majority-spin carriers. For the minority-spin
carriers, the vector potential is described by −aμ, giving a
Berry phase of the opposite sign. The geometric magnetic
field is simply the curl of aμ. In terms of n, it reads

Bðr; tÞ ¼ ∇ × a ¼ ϕ0

4π
n · ð∂xn × ∂ynÞ; ð5Þ

where ϕ0 ¼ hc=e is the flux quantum. This physics was
first discussed in the early literature on high Tc super-
conductivity [42–45] and later in the literature on noncol-
linear magnetic systems [12–15]. Importantly, unlike static
spin textures in the latter systems, our spin-wave dynamics
generate a time-dependent vector potential, Eq. (4). This
leads to a geometric electric field [14,46]

Eμ ¼ −∂aμ=c∂t −∇a0 ¼
ℏ
2e

n · ð∂tn × ∂μnÞ; ð6Þ

which can enable electrical detection of the spin waves.
The quantity MðrÞ in the second term in Eq. (3)

describes the orbital magnetization per carrier in a spin-
imbalanced band arising due to Berry curvature in k space.
It is given by a sum of contributions of the filled states in
the spin-valley-polarized Fermi sea. For a partially spin-
polarized Fermi sea, the contributions to M from the
majority- and minority-spin carriers are of opposite signs,
giving M ¼ M↑ −M↓. The opposite signs originate from
the opposite signs of aμ for the spin-up and spin-down
carriers discussed beneath Eq. (4). These opposite sign
contributions cancel in a spin-unpolarized state, but lead to
M ≠ 0 in a fully or partially spin-polarized state. The
position dependenceMðrÞ reflects spatially varying spin or
valley imbalance arising, e.g., due to gating.
The geometric fields aμ, B, and Eμ are derived in the

adiabatic regime when an electron spin tracks spin texture
along the electron’s trajectory. The adiabatic regime occurs
when the spin texture is of sufficiently long wavelength,
such that the Stoner spin gapΔ ¼ Uns is much greater than
ℏvFq, where q is the characteristic spin-wave wave number
and U is the exchange interaction [see Eq. (1)].
The Hamiltonian (3) features different phases depending

on the M and J values [41]. If M > 2J and h0 is small
enough, the uniformly polarized state is predicted to
become unstable toward twisting, giving rise to a skyrmion
texture with a nonzero chiral density B. Here, we consider
excitations in a uniformly polarized state

nðr; tÞ ¼ n0 þ δnðr; tÞ; δn⊥n0; ð7Þ

with n0kh0, occurring for not too large M values.
The spin-wave dispersion can be obtained from the

canonical equations of motion found from the saddle-point
condition δA=δn ¼ 0, with A given in Eq. (2). Indeed, the
variation of the Wess-Zumino-Witten term AWZW [the first

term in Eq. (2)] can be found by noting that this term equals
nsS0 times the solid angle swept by n. As a result, its
variation can be expressed as

δAWZW ¼ nsS0

Z
dtd2rðδn × ∂tnÞ · n: ð8Þ

The variation of the action in Eq. (2) gives δA ¼
ðnsS0∂tn × n − δH=δnÞ · δn, giving equations of motion,

nsS0∂tnðrÞ ¼ hðrÞ × nðrÞ; h ¼ −
∂H
∂n

þ ∂μ
∂H
∂∂μn

: ð9Þ

Linearizing about a uniformly polarized state yields
coupled linear equations for δn components, which are
identical to those found for a nonchiral problem,

S0∂tδnðr; tÞ ¼ h0 × δnðr; tÞ þ J∂2μδnðr; tÞ × n0: ð10Þ

Plane wave solutions to this equation yield a simple
isotropic and nonchiral spin-wave dispersion

ω�ðqÞ ¼ �ðh0 þ Jq2Þ=S0; ð11Þ

with values approaching �h0=S0 in the limit q → 0,
universally and independent of the exchange interaction,
as required by the Larmor theorem.
For a spatially uniformM, the −MB term is a topological

invariant. Therefore, a local twist of spin does not change
the H value. As a result, this interaction neither affects the
energy nor impacts the spin waves. A spatially varying M,
to the contrary, has a profound effect on spin waves. In
particular, system boundaries and interfaces between
regions in which M takes different values support chiral
spin-wave modes reminiscent of the QH edge states. To
illustrate this behavior, we consider a step

MðyÞ ¼
�
M1; y > 0;

M2; y < 0:
ð12Þ

In this case, after linearization (7), we find

h ¼ ns½J∂2μδn − ∂yMðyÞðn0 × ∂xδnÞ þ h0�: ð13Þ

Other terms vanish at first order in δn. As a result, the
linearized equations of motion become

S0∂tδn¼ h0 × δnþ J∂2μδn× n0 þmδðyÞðn0 × ∂xδnÞ× n0;

where m ¼ M2 −M1 is the difference between M on two
sides of the edge. These equations are solved by writing
δnðx; yÞ as a superposition of complex-valued helical
components,
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δnðr; tÞ ¼
�
δnxðr; tÞ
δnyðr; tÞ

�
¼

X
q

eiqx
�
e−iωþtψq;þðyÞ

�
1

i

�

þ e−iω−tψq;−ðyÞ
�

1

−i

��
ð14Þ

where we carried out the Fourier transform in time and
the translation-invariant x direction. Plugging this ansatz
into the equations of motion for δnðr; tÞ, we obtain two
decoupled 1D problems for a quantum particle in a delta-
function potential, separately for each helicity:

S0ω�ψðyÞ ¼ �½h0 þ Jðq2 − ∂
2
yÞ�ψðyÞ −mqδðyÞψðyÞ;

ð15Þ

where ψðyÞ is a shorthand for ψq;�ðyÞ. These equations
support bound states that are edge spin waves for the helical
polarization of a plus (minus) sign for mq of a positive
(negative) sign, respectively.
Indeed, the bound state is described by an exponential

solution for both helicities,

ψq;�ðyÞ ¼ uqe−λqjyj; λq > 0; ð16Þ

where the condition λq > 0 is required for the mode to be
normalizable. The value of λq and the dispersion are
determined by the condition

0 ¼ �2JλqδðyÞ −mqδðyÞ; ð17Þ

which gives λq ¼ �ðmq=2JÞ. Therefore, the right-helicity
mode ψþ exists only for mq > 0, whereas the left-helicity
mode ψ− exists only for mq < 0,

ω�ðqÞ ¼ � 1

S0

�
h0 þ

�
J −

m2

4J

�
q2
�
: ð18Þ

The resulting dispersion is illustrated in Fig. 1(b) form > 0.
The group velocity vg ¼ dω=dq is of the same sign for both
helicities, as expected for a chiral edge mode. At q ¼ 0, the
frequency value agrees with the Zeeman frequency for a
single spin, as required byLarmor’s theorem.At this point λq
vanishes, which signals that the mode ceases to be confined
to the edge and transforms into a uniformly precessing state.
Notably, the discrete chiral mode (18) appears in a robust

manner regardless of magnetization values in the two half-
planes and the step sizem ¼ M1 −M2. AtM1 approaching
M2, the chiral mode, while remaining discrete, approaches
the bulk magnon continuum and merges with it at
M1 ¼ M2. Another interesting aspect of the dispersion
in Eq. (18) is that the group velocity reverses when m
exceeds 2J, upon which the mode propagation direction is
reversed, with the left-moving excitations becoming right-
moving and vice versa. In this regime, the frequencies

ω�ðqÞ reverse their signs when the wave number reaches
a certain critical value, q ¼ q� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Jh0=ð4J2 −m2Þ

p
.

Frequency sign reversal signals an instability toward a
spatial modulation at the edge with spatial periodicity
2π=q�. Notably, this instability can occur before skyrmions
are nucleated in the bulk. This happens, in particular, when
M1 andM2 are of opposite signs. In this case, the condition
for skyrmion nucleation in the bulk, 2J < jM1;2j, is
more stringent than that for the instability at the edge,
2J < jM1 −M2j.
Next, we consider polarization of chiral modes. As we

found above, the modes of both helicities ψþ and ψ−
propagate in the same direction. This gives rise to an
interesting space-time picture that combines propagation
with velocity vg and precession about h0. Indeed, a narrow
wave packet uq centered at q ≈ q0 evolves as

δnðr; tÞ ¼
X
q>0

ϕþ
q ðr; tÞ

�
1

i

�
þ
X
q<0

ϕ−
q ðr; tÞ

�
1

−i

�

∼ e−λq0 jyjuðx−vgtÞ
�
cos ½ω0t−q0xþ θ0�
sin ½ω0t−q0xþ θ0�

�
: ð19Þ

Here, ϕ�
q ðr; tÞ ¼ e−iω�ðqÞtþiqx−λqjyjuq. The quantity uðxÞ is

the Fourier transform of uq, ω0 ¼ ωþðq0Þ, vg is the group
velocity dω=dq at q ¼ q0, θ0 is a free parameter. This
describes spin precession and 1D propagation as illustrated
in Fig. 1(c).
Last, we discuss the relation between the analysis above

and the collective spin excitations in QH ferromagnets. The
seminal prediction of skyrmions in QH ferromagnets by
Sondhi et al. [47] relies on the notion of an excess charge
induced on a chiral spin texture, δρðrÞ ¼ 1

c σxyBðrÞ, a
value that follows from the topological pumping argu-
ment [48,49], with σxy the Hall conductivity of a filled
Landau level and B the quantity in Eq. (5). This gives a
contribution to the energy

δE ¼
Z

d2rVgδρðrÞ; ð20Þ

where Vg is the gate voltage. Since BðrÞ ¼
ðϕ0=4πÞn · ∂xn × ∂yn, the quantity in Eq. (20) is identical
in form to our−MB interaction [the second term in Eq. (3)].
Furthermore, it is straightforward to link the prefactor with
the orbital magnetization of a fully filled Landau level,

M ¼ 1

c
Vgσxy: ð21Þ

This relation follows from the thermodynamic relation
dM=dμ ¼ dn=dBext and the Streda formula dn=dBext ¼
ðσxy=ceÞ. Having reproduced the −MB interaction, we are
led to conclude that the chiral spin waves derived above
must also occur in QH ferromagnets. While a detailed
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analysis should be deferred to future work, we expect that
these modes differ in two distinct ways from various chiral
charge and spin edge modes that have been widely
investigated in QH systems [50–58]. First, their dispersion
at small k will be quadratic rather than linear. Second,
rather than being tightly confined to the edge on a magnetic
length scale, these modes will feature a wider profile
extending far into the bulk. The weak confinement may
suppress scattering by edge disorder and boost the lifetimes
for these modes.
Last, we envision that extending the pulsed-gate spec-

troscopy of Refs. [28,29] to probe the gate-confined
electron puddles can allow one to launch the chiral spin
waves and detect them in a manner analogous to the time-
domain detection of QH edge magnetoplasmons [59–62].
Further, electron-spin resonance (ESR) measurements on
such puddles by the technique recently used to probe ESR
in graphene [63] can provide direct information of the
chiral mode dispersion. Indeed, for a puddle of circum-
ference L, the mode dispersion in Eq. (18) will translate
into sidebands of the ESR resonance with frequencies

ωn ¼ ωðqnÞ; qn ¼ 2πn=L; ð22Þ

with integer n. Here n ¼ 0 is the fundamental ESR
frequency and n ¼ 1; 2; 3… describes a family of chiral
mode excitations. The ω ¼ ωn resonances will occur over a
continuous background due to the 2D spin-wave con-
tinuum, Eq. (11). As an example, we consider a disk of
circumference L ¼ 10 μm for which the minimal wave
number is q1 ¼ 2π=L. Estimating the stiffness as the e − e
interaction at the Fermi wavelength scale, J ∼ e2=ðκλFÞ,
and plugging realistic parameter values, we find the side-
band frequency detuning of ω1 − ω0 ≈ 50 MHz. This value
is greater than 1=T1 found in Refs. [28,29] and lies in a
convenient range for microwave measurements. We also
note that, as discussed above, spin dynamics in our system
is accompanied by a geometric electric field given in
Eq. (6). The oscillating electric polarization induced by
this field can be used for a direct electrical detection of the
chiral spin-wave dynamics.
Summing up, the chiral edge excitations are a unique

manifestation of geometric interactions in a metallic spin-
polarized Fermi sea with a Berry band curvature. Despite
occurring in a nontopological setting, they are protected
from backscattering by their chiral character. Correlated-
electron phases that host chiral edge modes allowing
excitations to propagate along system boundaries in a
one-way manner are of keen interest for fundamental
physics and are expected to harbor interesting applications.
We describe the requirements for such modes to exist and
argue that the chiral behavior and associated exotic physics
are generic and readily accessible in state-of-the-art systems.
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