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We present large-scale quantum Monte Carlo simulation results on a realistic Hamiltonian of kagome-
lattice Rydberg atom arrays. Although the system has no intrinsic disorder, intriguingly, our analyses of
static and dynamic properties on large system sizes reveal emergent glassy behavior in a region of
parameter space located between two valence bond solid phases. The extent of this glassy region is
demarcated using the Edwards-Anderson order parameter, and its phase transitions to the two proximate
valence bond solids—as well as the crossover towards a trivial paramagnetic phase—are identified. We
demonstrate the intrinsically slow (imaginary) time dynamics deep inside the glassy phase and discuss
experimental considerations for detecting such a quantum disordered phase with numerous nearly
degenerate local minima. Our proposal paves a new route to the study of real-time glassy phenomena
and highlights the potential for quantum simulation of a distinct phase of quantum matter beyond solids and
liquids in current-generation Rydberg platforms.
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Introduction.—Over the last decade, quantum simulators
based on programmable Rydberg atom arrays [1–5] have
emerged as powerful platforms for the investigation of highly
correlated quantum matter. These systems have opened up
new avenues to study interesting many-body states [6–9],
quantum dynamics [10–12], gauge theories [13–16], and
even combinatorial optimization problems [17–19].
An especially promising direction that has recently

attracted much attention is the simulation of quantum
phases of matter in these tunable atomic setups. Such
phases and the transitions between them have been
intensely studied for Rydberg atoms arrayed in one spatial
dimension [20–23] as well as in various two-dimensional
geometries, including on the square [24–28], triangular
[29], honeycomb [30,31], kagome [32], and ruby [33–35]
lattices. In particular, Ref. [32] identified an intriguing
highly correlated regime in the phase diagram of the
kagome-lattice Rydberg atom array characterized by a lack
of symmetry-breaking solid order and a large entanglement
entropy. The correlations in this region were found to be
“liquidlike” in that the density of excitations is limited by
the strong Rydberg-Rydberg interactions (as opposed to a
weakly interacting gas wherein the laser drive induces
independent atomic excitations). Mapping this system to a
quantum dimer model [36] on the triangular lattice [37–39]
raises the possibility of a spin liquid phase with Z2

topological order [32,40]. However, since the precise
microscopic interactions differ between the Rydberg [32]

FIG. 1. Phase diagram, spanned by the δ=Ω and Rb axes,
obtained from QMC simulations. The four stars mark the points
in each phase for which the equal-time dimer structure factor is
presented in Fig. 2. The white dashed lines indicate the cuts in
parameter space along which the quantum phase transitions are
studied in Figs. 3 and S2. The colored background shows the
Edwards-Anderson order parameter as obtained in Fig. 3(c), with
the color bar on top denoting the scale of qEA. The two insets
schematically sketch the two crystalline phases (nematic and
staggered). Each red (white) circle representing an atom in the
Rydberg (ground) state on the kagome lattice [black] can be
mapped to the presence (absence) of a dimer on the medial
triangular lattice [white].
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and dimer [40] models, it is crucial to independently
establish the properties of the former in the thermodynamic
limit. This poses a challenging problem for numerical
techniques such as the density-matrix renormalization
group (DMRG), which is not only hindered by the
geometrically frustrated and long-ranged nature of the
Hamiltonian in Eq. (1) but is also limited to relatively
small system sizes on cylinders.
In light of the situation, here, we overcome this obstacle

and present large-scale quantum Monte Carlo (QMC)
simulation results on the realistic Hamiltonian of kagome-
lattice Rydberg arrays in Eq. (1) below. Surprisingly, even
though the Hamiltonian is translationally invariant and has
no disorder, our unbiased numerical results for large system
sizes and dynamic and static data reveal emergent glassy
behavior [41] in the region located between the so-called
“nematic” [38,42] and “staggered” [43] valence bond solid
(VBS) phases [32]. Although disorder-free glassiness has
been observed in extended Heisenberg models [44], it is
novel in the context of the realistic Rydberg arrays.
Moreover, we emphasize that unlike previous work that
identified glassy behavior in open dissipative Rydberg
gases [45,46], our findings here apply to an isolated closed
quantum system. We utilize the Edwards-Anderson order
parameter to map out the extent of the glassy region in the
phase diagram. Furthermore, the phase transitions between
the glassy phase and the two valence bond phases as well as
the crossover towards the paramagnetic phase are identi-
fied. Our results highlight the intrinsically slow (imaginary)
time dynamics deep inside the glassy phase, and we suggest
experimental protocols to detect such a quantum disordered
phase with numerous nearly degenerate local minima in its
energy landscape.
Rydberg Hamiltonian on the kagome lattice.—We inves-

tigate the following realistic Hamiltonian describing
Rydberg arrays on the kagome lattice,

H ¼
XN

i¼1

�
Ω
2
ðjgiihrj þ jriihgjÞ − δjriihrj

�

þ
XN

i;j¼1

Vij

2
ðjriihrj ⊗ jrijhrjÞ; ð1Þ

where the sum on i runs over all N sites of the kagome
lattice. The ket jgi (jri) represents the ground (Rydberg)
state, while Ω (δ) stands for the Rabi frequency (detuning)
of the laser drive, which can be mapped to a transverse
(longitudinal) field in the language of quantum Ising
model. The repulsive interaction is of the van der Waals
form Vij ¼ ΩR6

b=R
6
ij, where Rij is the distance between the

sites i and j, and Rb defines the Rydberg blockade radius
(within which no two atoms can be simultaneously excited
to the Rydberg state). Note that we are implicitly working
in units where the lattice spacing is set to one. Since Vij

falls off rapidly with the sixth power of the interatomic

distance, we truncate the interactions beyond a cutoff of
third-nearest neighbors in our simulations, akin to
Ref. [32]. We set Ω ¼ 1 and scan the parameters δ and
Rb to explore the phase diagram, paying particular attention
to the previously identified correlated region between the
solid phases.
To solve the model in Eq. (1) in an unbiased manner, we

modify and employ several stochastic series expansion
(SSE) QMC schemes [40,47–53] to deal with such
Rydberg arrays. By monitoring the behavior of various
physical observables, e.g., correlation functions and struc-
ture factors, we map out the detailed phase diagram in
Fig. 1. Our simulations are performed on the kagome lattice
with periodic boundary conditions and system sizes N ¼
3L2 for linear dimensions L ¼ 6, 8, 12, while setting the
inverse temperature β ¼ L to scale to the ground state.
Besides the conventional observables employed in recent
QMC work [40], here, to reveal the intricate nature of the
glassy phase and its transitions or crossovers to the
neighboring phases, we employ different annealing,
quench, and parallel tempering schemes [19,54–62].
Scanning along parameter paths in the phase diagram,
we compute the Edwards-Anderson order parameter to
detect the spin-glass behavior [63–66]. More details
about these schemes can be found in the Supplemental
Material [67].
Phase diagram.—The phase diagram thus obtained is

illustrated in Fig. 1. When δ=Ω is small but positive, we
observe a disordered paramagnetic (PM) phase. Once δ=Ω

FIG. 2. Equal-time dimer structure factors Sðk; τ ¼ 0Þ in the
Brillouin zone for the (a) 1=6 staggered (Rb ¼ 2.3), (b) glass
(Rb ¼ 2.1), (c) nematic (Rb ¼ 1.9), and (d) PM (Rb ¼ 1.05)
phases at δ=Ω ¼ 3.3 (vertical cut in the phase diagram of Fig. 1).
The data shown here is simulated for β ¼ L ¼ 12. The number in
the upper-right corner shows the enlargement factor of the color
bar; e.g., ×10 changes the color bar from [0, 0.1] to [0, 1].
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is tuned to larger values, we find two symmetry-breaking
VBS phases, in agreement with previous DMRG results
[32] but with slightly shifted phase boundaries. These solid
phases, termed nematic and staggered, correspond to
(approximately) 1=3 and 1=6 filling of Rydberg excitations,
respectively. The schematic plots of these crystalline phases
are sketched in the insets of Fig. 1, both on the direct
kagome lattice in the Rydberg basis and on the medial
triangular lattice in the dimer basis. The exact manner in
which they connect to each other, in the thermodynamic
limit, is an interesting open question, with possibilities
including topologically ordered even or odd quantum spin
liquids (QSLs), an intervening trivial disordered phase, or
some new emergent intermediate phase [32,40].
Interestingly, we discover that a glassy disordered

phase—which can be distinguished from the PM by the
magnitude of the Edwards-Anderson order parameter—
exists in the central region between the two VBSs. The
phase boundaries between this region and proximate phases
are determined by examining various parameter points and
paths scanning through the phase diagram, as denoted by
the red stars and dashed lines in Fig. 1, and addressed in
detail below.
To characterize the variety of phases, we first compute

the equal-time (τ ¼ 0) structure factor (see Fig. 2) as

Sðk; τÞ ¼ 1

N

XL3

i;jα¼1;2;3

eik·rijðhni;αðτÞnj;αð0Þi − hni;αihnj;αiÞ;

ð2Þ
where ni is the density operator on site i and α stands for
the three sublattices of the kagome lattice, at four repre-
sentative parameter points corresponding to the four
distinct phases in the phase diagram. Figures 2(b)
and 2(d) show Sðk; 0Þ inside the glass and PM phases,
respectively. In the hexagonal Brillouin zone, we observe
that there are no peaks signifying long-range order but

only broad profiles associated with different short-range
density correlation patterns in real space. In contrast,
Figs. 2(a) and 2(c) present the structure factors inside
the staggered and nematic phases, respectively, where one
now clearly sees the Bragg peaks at the relevant ordering
wave vectors.
Quantum phase transitions.—Having established the

lack of long-range density correlations in both the PM
and glass phases, we move on to study the associated
quantum phase transitions [71]. Since the glass phase is
expected to have many degenerate energy minima and very
long autocorrelation times (which render the QMC simu-
lation difficult), special care needs to be taken in determin-
ing its phase boundaries. Our results in this regard are
summarized in Fig. 3, which shows the data along several
parameter scans in the phase diagram (dashed lines in
Fig. 1).
First, in Fig. 3(a), we illustrate the energy density along

the line δ=Ω ¼ 3.3, computed with different initial states
and annealing or quench schemes, to find the phase
transition between the nematic and PM phases. The red
curve shows the energy density simulated from random
initial configurations with thermal annealing (by decreasing
the temperature slowly) [55,56]. On the other hand, the data
plotted in blue is simulated from nematic configurations by
quenching (i.e., starting at a very low temperature). Deep in
the nematic phase, the two energy lines are clearly distinct.
The difference between the two becomes small on pro-
gressing towards the transition point, where the two energy
lines cross and then split weakly in the PM phase. Thus, the
phase transition between the PM and nematic phases,
which belongs to the ð2þ 1ÞD three-state Potts universality
class [32], is seen to be weakly first-order, in consistency
with prior findings [72]. This first-order phase transition
can also be detected from the order parameter of the
nematic phase, as detailed in the Supplemental Material
[67]. By the same logic, Fig. 3(a) also conveys that the
transition between the glass and the nematic phase, which

FIG. 3. (a) Energy per site plotted along the cut with δ=Ω ¼ 3.3 in Fig. 1 using different initial states for the QMC simulations,
showing that the nematic-glass phase transition is first-order while the nematic-PM one is also weakly first order. (b) The loop order
parameter (green dashed string), which can be used to distinguish the even/odd Z2 QSL (hloopi ≠ 0) from the trivial disordered phase
without topological order (hloopi ¼ 0), is always close to zero, suggesting that the phase is not a pure even or odd Z2 QSL. (c) The
Edwards-Anderson order parameter increases sharply upon going from the PM to the glass phase as δ=Ω increases at different Rb.
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occurs at Rb ∼ 2 in Fig. 1, is first-order as well. Scanning
the energy density along the line Rb ¼ 1.9, as shown in the
Supplemental Material [67], similarly manifests a first-
order phase transition.
We now study the central disordered region between the

two VBS phases, considering, in particular, the possible
even and odd QSLs, or PM phases that emerge in an
approximate quantum dimer model [40]. To this end, we
define a nonlocal loop operator [9]—schematically shown
by the green dashed loop in the inset of Fig. 3(b)—as
hloopi ¼ hð−1Þ#cut dimersi, which measures the parity of the
number of dimers intersected along a rhomboid with odd
linear size on the medial dimer lattice. This operator can be
used to distinguish the two QSLs and the PM phase [9,40].
In an odd (even) Z2 QSL without spinon excitations, the
value of hloopi is pinned to −1 (þ1) because of the exact
constraint requiring one (two) dimer(s) per site of the
triangular lattice; this operator continues to be well-defined
for a small density of matter fields [16]. From Fig. 3(b), we
see that hloopi remains close to zero in the central
correlated region, indicating that the ground state is not
a pure even or odd Z2 QSL. As shown below, we further
find that this region is also not a trivial PM phase, but,
perhaps surprisingly for a homogeneous Hamiltonian, an
emergent glass phase. This finding also underscores that
the low-energy effective theory—a triangular lattice quan-
tum dimer model with variable dimer density [40]—used to
describe the physics proximate to the VBS phases departs
from the realistic Rydberg Hamiltonian in this part of the
phase diagram, where the Rydberg excitation density
differs significantly from 1=6 or 1=3 (corresponding to
the limit of one or two dimers per site, respectively).
Moreover, the snapshots of the sampled configurations
drawn in the Supplemental Material [67] also demonstrate
that apart from the Rydberg blockade, all local constraints
(associated with the Z2 topological order) are relaxed in
this glass region.
To differentiate between the PM and glass phases, we

utilize the Edwards-Anderson order parameter [63–66,73]
qEA ¼ P

N
i¼1hni − ρi2=½Nρð1 − ρÞ�, where ni ≡ jriihrj, ρ is

the average density defined as ρ≡P
N
i¼1hnii=N, and h� � �i

indicates a statistical average over Monte Carlo snapshots
[44,74]. The spin-glass order is characterized by the
breaking of translational invariance and the Edwards-
Anderson order parameter qEA ∈ ½0; 1�, which captures
the on-site deviation from the average density, is a measure
of the glassy behavior. The large magnitude of qEA shown
in Fig. 3(c) demonstrates the emergent glassy nature of the
disordered region amid the VBS phases. While qEA clearly
tells the PM and glass phases apart, whether the two are
separated by a phase transition or by a crossover is an
interesting open question. It is also noteworthy that this
Edwards-Anderson order parameter decays extremely
slowly with increasing the number of Monte Carlo steps
[see Fig. 4(b)]; this is another signature of the slow

dynamics in the glass phase [75], which is consistent with
the small and nearly degenerate gaps that we will now
establish.
Glassy dynamics.—One of the hallmarks of a quantum

glass is its ability to support nearly gapless excitations at all
momenta due to the existence of exponentially many local
minima in its energy landscape [75–78]. Meanwhile, the
PM phase is obviously gapped and dispersionless with a
short correlation length. In this section, we focus on the
measurement of imaginary-time correlations Sðk; τÞ at
different momenta, deep inside the PM (δ=Ω ¼ 3.3,
Rb ¼ 1.0) and glass (δ=Ω ¼ 3.3, Rb ¼ 2.1) phases, as
marked by the red stars (d) and (b) in Fig. 1, respectively.
Figure 4(a) highlights a striking distinction in Sðk; τÞ
between these two regions. The upper ones, which are
measured inside the glass phase, decay slowly, indicating
that their gaps are all very small and almost equal. On the
other hand, the lower ones measuring the correlations in
PM phase decay much more quickly with similar slopes.
These two kinds of correlations are consistent with the
respective features of the glass phase, which possesses
nearly gapless excitations, as well as the PM phase, which
hosts gapped flat bands.
Lastly, we also compare the behavior of the Edwards-

Anderson order parameter qEA, as a function of the number

FIG. 4. (a) Dynamical correlations Sðk; τÞ deep in the glass
(δ=Ω ¼ 3.3, Rb ¼ 2.1) and PM (δ=Ω ¼ 3.3, Rb ¼ 1) phases. The
correlations decay quickly with similar slopes in the PM phase,
indicating a large gap and a flat band. Meanwhile, the correlations
in the glass phase decay very slowly, which suggests that there are
many nearly degenerate local minima in the energy landscape.
(b) The Edwards-Anderson order parameter qEA also decays
much more slowly with the increasing number of Monte Carlo
steps for the glass than for the QSL. The data in the glass phase is
computed for the model (1) at δ=Ω ¼ 3.55, Rb ¼ 2.05, while the
QSL’s data is obtained from the triangular-lattice quantum loop
model at V=t ¼ 0.9. All the data are simulated at β ¼ 6 on a
L ¼ 6 lattice.
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of Monte Carlo steps, inside the glass phase to that in an
even QSL [39]. Since the representative parameter point
chosen for the spin glass (δ=Ω ¼ 3.55, Rb ¼ 2.05) lies
close to the boundary of the nematic phase (which, recall, is
a VBS with two dimers per site), the low-energy effective
model describing the QSL is taken to be the triangular-
lattice quantum loop model close to the Rokhsar-Kivelson
point [39,40] (V=t ¼ 0.9, where V is the interaction
between parallel dimers and −t is the dimer resonance
energy). As shown in Fig. 4(b), in the QSL phase, qEA is
not only an order-of-magnitude smaller but also decays
much faster than in the glass. The Monte Carlo dynamics of
qEA thus complement the static results of Fig. 3(b) and
together, highlight the distinction between the QSL and
glass phases.
Discussion.—In this Letter, we investigated a realistic

Rydberg Hamiltonian on the kagome latticewith large-scale
QMC simulations and uncover—besides two VBSs and a
PM phase—an emergent glass phase in the phase diagram.
The origin of glassiness is likely due to the kinetic
constraints associatedwith the Rydberg blockade that forbid
several hopping processes [41,45,79]. Such a glass phase
constitutes a new addition to the growing list of correlated
quantum many-body states that can be studied on current-
generation Rydberg platforms. Through detailed QMC
analyses, we explore the subtle behavior of this glass phase
with its intricate degenerate energy landscapes, establish its
unique static and dynamic fingerprints, and compare and
contrast its properties to those of competingQSLcandidates.
However, we note that the observation of a glassy ground
state does not necessarily rule out the dynamical preparation
of QSL states, which may be obtained as a macroscopic
superposition of dimer configurations during quasiadiabatic
sweeps in experiments [9,34,35].
Experimentally, the spin glass phase can be detected by

preparing a (deterministic) far-from-equilibrium initial state,
quenching to the glassy region, measuring snapshots in the
occupation basis, and repeating the protocol, but stopping at
different points in the temporal evolution each time. This
would allow one to observe the anomalously slow relaxa-
tion dynamics, as recently demonstrated in experiments
studying a disordered XXZ model on a Rydberg quantum
simulator [80]. It is also possible to use Bragg spectroscopy
to measure the dynamics of the glass phase in cold-atom
systems held in optical lattices [81]. Finally, even though the
Edwards-Anderson order parameter can be challenging to
measure in quantum simulators (since it requires knowledge
of two-time correlation functions), one can probe an efficient
proxy for qEA by measuring the eigenstate spin-glass order
parameter [82] constructed from two-site reduced density
matrices, which can be can be accessed by a variety of
methods including quantum state tomography [83].
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