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In this Letter, we propose a novel strategy for significantly enhancing the heat transfer in convection
turbulence. By introducing a boundary deformation of the standing-wave type, flow modulation can be
realized when the amplitude is comparable or larger than the boundary-layer thickness. For a fixed
moderate frequency, the entire fluid layer follows the boundary motion at small wave numbers, while only
the near-wall regions are affected by the boundary deformation at large wave numbers. The heat-flux
enhancement happens for the latter. For a fixed wave number and gradually increasing frequency, the
vortical flows inside the wave valleys exhibit nonlinear transition and alter the distribution of boundary heat
flux, and the global heat flux increases significantly at large enough frequencies. The current findings
suggest that oscillating deformations of boundary can efficiently break the boundary layers, which serves as
the bottleneck of global heat transfer, and open a new venue for modulating the convection turbulence.
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Turbulent convection controls the mixing and transport
processes in many natural environments and engineering
applications, such as geophysical flows and bioflows [1–3].
The canonical model for convection turbulence is the
Rayleigh-Bénard convection (RBC), where the fluid
between two horizontal plates is heated from below and
cooled from above. The flow domain of the RBC can be
spatially divided into the thin boundary-layer (BL) regions
adjacent to the top and bottom plates and the bulk in
between. Thermal plumes originated from BLs penetrate
into the bulk and drive large-scale convection rolls there.
The interplay among the BLs, the plumes, and the turbulent
bulk is highly nonlinear and produces very rich dynamics,
which makes the RBC one of the most classic paradigms in
fluid mechanics [4–6].
Manipulating the coherent structures in the RBC attracts

immense interest for two reasons. From a fundamental point
of view, valuable insights about the nonlinear dynamics of
turbulent flows can be obtained by intentionally modifying
these coherent structures, such as the horizontal geometry
confinement [7,8] and the asymmetric ratchet surfaces [9].
While from an application point of view, suchmanipulations
often affect the global transport efficiency, which is highly
desired in numerous engineering situations.
Various strategies have been proposed for coherent

structure manipulation and to successfully enhance the

heat flux. For instance, the bulk region can be altered to a
more transfer-efficient state by horizontal confinement
[7,8], background rotation [10,11], second stabilizing
scalar gradient [10,12], and vertical riblets or round solid
obstacles [13–15]. Meanwhile, since the conductive BLs
usually act as the bottleneck of heat transfer in the RBC, it
is then very natural to disturb the BLs and achieve heat-
transfer enhancement. Wall roughness has long been used
to modify the RBC and increase the heat flux [16–20], for
which one key rule is that the roughness should be high
enough to penetrate the thermal BLs.
Another effective strategy is periodic modulations. It is

well known that periodic forcing induces nontrivial behav-
iors in wall-bounded turbulence, such as pipe, channel, and
Taylor-Couette flows [21–23]. In RBC, the horizontal
vibration can strongly destabilize the thermal BL and
promote the plume eruption, and the heat flux can be
increased by up to 600% compared to the uncontrolled
RBC [24]. When the periodic modulation is applied to the
temperature of the bottom hot boundary, a Stokes thermal
BL develops adjacent to the boundary and the global
transport can be enhanced by about 25% for optimal
parameters [25]. This strategy has been recently confirmed
by experiments [26]. It should be noted, though, in the
former work the angular frequency of vibration needs to be
larger than 200 for observable enhancement [24]. Note that
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the frequency is nondimensionalized by the free-fall time-
scale τ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H=ðαgΔÞp

, with H being the height of the fluid
layer, α as the thermal expansion coefficient, g as the
gravitational acceleration, and Δ as the temperature differ-
ence across the layer, respectively. While in the latter work,
although the optimal frequency is of order 10−2 for the
maximal 25% of heat-flux increment, the amplitude of the
periodic modulation is the same as the total temperature
difference Δ, saying a relatively large amplitude [25].
Here we propose a new modulation method to the

turbulent convection flows. By introducing boundary
deformation of the standing-wave type, the BL is mechan-
ically disturbed and the heat flux can be enhanced signifi-
cantly, saying over 100% increment compared to RBC.
Moreover, this significant enhancement is achieved with
the deformation amplitude of the order of BL thickness and
at the moderate frequency. Therefore, the current Letter
opens a new venue for flow modulation in thermal
convection.
Consider a fluid layer bounded by two boundaries that

deform according to the same standing-wave law,

zðx; y; tÞ ¼ z0 − A cosð2πkxÞ cosð2πkyÞ cosð2πftÞ: ð1Þ

Here x and y are the horizontal coordinates, z is the vertical
coordinate opposite to the gravity, and t is time, respec-
tively. z0 ¼ 0 (H) is the neutral height when the bottom
(top) boundary is flat. k is the wave number, which is the
same in the two horizontal directions. A is the amplitude.
Note the deformation has the same phase for the two
boundaries, thus the actual height of the fluid layer always
equalsH. Both boundaries have constant temperatures with
a difference Δ. The governing equations under the
Oberbeck-Boussinesq approximation are solved with our
in-house code, which utilizes a second-order finite differ-
ence scheme and a fraction-time-step method for the
incompressible flows [27]. The boundary deformation is
implemented by a sharp-boundary type of immersed-
boundary method [28]. Throughout this Letter, the same
working fluid is used with the Prandtl number Pr ¼ ν=κ
fixed at 1. The strength of the thermal driving is measured
by the Rayleigh number Ra ¼ ðαgΔH3Þ=ðνκÞ, with ν being
the kinematic viscosity and κ the thermal diffusivity,
respectively. Numerical simulations are conducted for vari-
ous combinations of A, k, and f over the range 106 ≤ Ra ≤
108, and details are summarized in the Supplemental
Material [29].
Effects of amplitude and wave number.—We first fix the

frequency at fτ ¼ 1 and investigate five groups of cases
with different combinations of (Ra, A=H). For each
combination the nondimensional wave number, kH is
gradually increased from 0.5 to 8. The heat flux is
measured by the nondimensional Nusselt number
Nu ¼ Ftot=ðκΔH−1Þ, with Ftot being the mean total flux
measured over the horizontal plane at the midheight.

The heat-flux enhancement is then measured by the ratio
Nu=NuRB, with NuRB being the corresponding RBC with
the same Ra number. The Reynolds number is defined as
Re ¼ urmsH=ν, with urms being the root-mean-square (rms)
value of velocity magnitude calculated over the entire fluid
domain. Similarly, the ratio Re=ReRB is used to indicate the
strengthening of flow motions. As shown by Figs. 1(a)
and 1(b), which plot the two ratios versus the wave number,
the heat-flux enhancement happens at large kH for
ðRa; A=HÞ ¼ ð107; 0.04Þ, ð107; 0.08Þ, and ð108; 0.04Þ.
Meanwhile, for all cases, the Reynolds number does not
change much compared to the RB cases, especially for the
cases with heat-flux enhancement at large kH. Therefore,
the heat-flux enhancement at large wave numbers is not
accompanied by the strengthening of flow motions.
Actually, the appearance of heat-flux enhancement is

highly related to the relative height of boundary deforma-
tion compared to the BL thickness of the uncontrolled RB
flows. The viscous BL thickness λu and the thermal BL
thickness λT are determined by the peak locations in the
rms profiles of horizontal velocity and temperature of RB
flows, respectively. Figure 1(c) displays λu and λT for the
three Rayleigh numbers considered here. It is immediately
clear that heat-flux enhancement at large kH only happens
when A=H is larger than thermal BL thickness or both the
viscous and thermal BL thicknesses. For the two groups
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FIG. 1. (a) The Nusselt number ratio Nu=NuRB and (b) the
Reynolds number ratio Re=ReRB versus the wave number kH,
respectively. In (a) and (b), different symbols represent different
combinations of (Ra, A=H) as indicated in the legend of (a).
(c) The viscous and thermal boundary-layer thicknesses versus
the Rayleigh number for the RB flow.
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with ðRa; A=HÞ ¼ ð106; 0.04Þ and ð107; 0.02Þ, the ampli-
tude is smaller than both λu and λT , and no enhancement is
obtained.
The above results indicate that for fixed fτ ¼ 1 the

observable heat-flux enhancement is achieved when the
amplitude is larger than the thermal BL thickness and when
the wave number is large enough. The difference between
the large and small wave numbers is caused by different
responses of the fluid layer to the boundary oscillation. As
discussed in the Supplemental Material [29], from the
perspective of thermal dissipation rate, the heat flux is
highest when the boundary has the largest deformation.
Therefore, in the following we focus on the flow fields at
the maximal deformation phase. Figures 2(a) and 2(b) (and
the corresponding video in the Supplemental Material)
reveal that, for the small wave number kH ¼ 0.5, the whole
fluid layer follows the movement of boundaries, and the
large-scale rolls in the bulk change the direction of
circulations according to the boundary oscillation. For
the large wave number kH ¼ 8, the boundary deformation

only affects the adjacent regions and the bulk convection
rolls are still driven by thermal plumes. Moreover, for the
latter the wave crests penetrate into the bulk when the
amplitude is larger than BL thickness, which causes
the increase of boundary heat flux at the wave crests, as
indicated by Fig. 2(e). The increment becomes larger as k
increases. Meanwhile, for the lower boundary at the wave
valleys, the boundary flux reduces due to the local
accumulation of high temperature fluid, but this reduction
is much weaker than the increase at the crests. Therefore,
the overall heat flux is elevated for higher k.
Effects of frequency.—We now turn to the influence of

changing frequency. The wave number is fixed at kH ¼ 4,
and three combinations of ðRa; A=HÞ are investigated with
gradually increasing f. For these three groups, the ampli-
tude A=H is larger than the thermal BL thickness of
corresponding RB flows. The variations of Nu=NuRB
and Re=ReRB versus the nondimensional frequency fτ
are plotted in Figs. 3(a) and 3(b). Both ratios share very

FIG. 2. Contours of (a),(c) temperature and (b),(d) vertical
velocity on the vertical slice when the boundaries reach maximal
deformation. Two cases are shown for Ra ¼ 107 and
A=H ¼ 0.08. (a),(b) is for the case with kH ¼ 0.5 and (c),(d)
is for the case with kH ¼ 8, respectively. (e) The temporal and
phase averaged wall-normal temperature gradient j∂nTjb over
half wavelength at the lower boundary when the boundary
reaches the maximal deformation. 2ky ¼ 0 corresponds to wave
crest and 1 to wave valley. Different curves are for different
wave numbers at Ra ¼ 107. The horizontal dashed gray line
marks the value of RB flow.
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FIG. 3. (a) The Nusselt number ratio Nu=NuRB and (b) the
Reynolds number ratio Re=ReRB versus the frequency fτ for
fixed kH ¼ 4, respectively. (c) Nu versus f with the two variables
normalized by the minimum Numin and the corresponding
frequency fmin. Different symbols represent different combina-
tions of (Ra, A=H) as indicated in the legend of (c). The dashed
lines in (a) indicate the value for fτ ¼ 0, with the line color the
same as the symbols for the same ðRa; A=HÞ.
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similar nonmonotonic variations among the three groups:
They first slightly decrease and then rapidly increase as fτ
becomes larger. The highest heat-flux enhancement with
respect to the RB flow can exceed 100% for ðRa; A=HÞ ¼
ð107; 0.08Þ and fτ ¼ 5. Unlike the situation of the increas-
ing wave number, now the enhancement in heat transfer is
accompanied by the increasing of Re or stronger flow
motions. Furthermore, if one normalizes Nu by the respec-
tive minimum Numin and the corresponding frequency fmin,
all three curves roughly collapse with each other, see
Fig. 3(c). Here the minimum and its location are deter-
mined by the spline interpolation for each group of cases.
The nonmonotonic variation of Nu versus f is caused by

the nonlinear response of flow structures to boundary
deformation, which, in turn, modify the near-wall temper-
ature distribution and the boundary heat flux. Figures 4(a)–
4(c) show the temporal and phase averaged flow fields for
three different frequencies when boundary deformation is
maximal, and Fig. 4(d) plots the distribution of boundary
heat flux for increasing frequency. The temporal evolution
of these structures at different frequency can be seen more
clearly in the videos in the Supplemental Material [29]. At
fτ ¼ 0.2, two vortices are induced inside the wave valley
and their centers are at the upper part of valley. Simulation
shows that, for the stationary wavy boundary with the same
wave number and amplitude, i.e., fτ ¼ 0, the averaged
flow field is very similar to that shown in Fig. 4(a) but with
weaker mean currents. For the flow region shown in
Fig. 4(a), the maximal velocity is about 0.044Uf with
Uf ¼ H=τ being the free-fall velocity. Whereas for fτ ¼ 0

the same quantity is about 0.032Uf. The surface heat-flux
distributions indicate that for zero and low frequencies, the
heat flux is the strongest and larger than the RB value at
the crest, and the lowest and smaller than the RB value at
the trough, respectively. Note the local mean flow is rather
weak. The variation of surface heat flux is probably due
to the different height. The wave crests penetrate into the
bulk while the wave troughs are shielded by the local high
temperature regions.
As fτ increases, the two vortices move downward closer

to the boundary and become stronger. For the flow region

shown in Fig. 4(b) with fτ ¼ 1, the local maximal velocity
is about 0.087Uf. With the changes in the vortices’ location
and strength, the heat flux increases at both the crest and
trough. Moreover, the boundary heat flux beneath the
vortices is smaller compared to the case with lower
frequency, see the local minima around y=H ¼ 0.07 in
Fig. 4(d). For even higher frequency, two pairs of vortices
exist inside the wave valley. The local velocity maximum
can be as high as 0.5Uf for the flow field with fτ ¼ 5

shown in Fig. 4(c). Now the boundary heat flux exhibits
more complex distribution since it is affected by multiple
vortices. Although the heat flux at crest is now smaller than
those for intermediate frequencies, the heat flux around
z=H ¼ 0 is higher. Because of the 3D geometry of
boundary, smaller z corresponds to large surface area
around each wave peak. Therefore, the total heat flux is
still larger for higher frequency.
Since the boundary deformation with high frequency can

strongly disrupt the original boundary layers that serve as
the bottleneck of heat transfer in the RBC, the exponent ζ in
the scaling Nu ∼ Raζ is considerably larger than the RB
value, as illustrated by the compensated plot in Fig. 5 for
fixed A=H ¼ 0.04, kH ¼ 4, and fτ ¼ 8. For the RB flow,
the linear fitting gives ζRB ¼ 0.3� 0.03, which is consis-
tent with existing studies [4]. However, for the flow with
deforming boundary, the exponent ζ gradually increases
toward 1=2, which is the value for the so-called ultimate
regime. Similar behavior has also been found in RBC with
horizontal vibration [24].
Two final remarks should be made. First, the surface area

of boundary is larger than RBC when the deformation is
introduced. Increasing of surface area does favor the heat-
transfer rate, but it alone cannot account for all of the
enhancement obtained here, especially for the regime with
large f, as discussed in detail in the Supplemental Material
[29]. Second, extra kinetic energy is ejected into the system
by the boundary deformation. The minimal work required
to generate the oscillation deformation is that to resist the
pressure and viscous stress on the boundary. Calculation
reveals that this energy is larger than the potential energy
released by convection. However, the ratio between the two

FIG. 4. (a)–(c) The contours of temperature fields overlaid by the streamlines on a vertical slice over one wave pattern for fτ ¼ 0.2, 1,
and 5, respectively. (d) The distributions of boundary temperature gradient over half wavelength for increasing fτ with y=H ¼ 0
corresponding to the wave crest. For all panels, the quantities are calculated from the data on a vertical slice cutting the wave crest and
averaged over time and different wave patterns for the phase with maximal boundary deformation. In (d) the horizontal dashed gray line
marks the value of RB flow.
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is smaller for larger Ra and smaller amplitude, see Fig. 4 of
the Supplemental Material [29]. Therefore, one may
anticipate that, for even larger Ra, as usually found in real
applications, the ratio should be even smaller and may drop
below unit.
Conclusions.—We demonstrate that the boundary defor-

mation of the standing-wave type can efficiently alter
the global responses of convection turbulence when the
deforming amplitude is comparable to or larger than the BL
thickness of RB flows. For small wave number, the whole
fluid layer follows the movement of the boundaries. When
the wave number is large enough, only flow regions close to
boundary are disturbed. Local boundary heat flux is
enhanced at wave crests and suppressed at wave troughs.
For fixed intermediate frequency, the global heat flux
increases as wave number and amplitude become larger,
but the strength of flow motions does not change much.
The change of frequency has more profound influences

on the flow morphology and global responses. As the
frequency becomes higher, the vortical flows inside the
wave valley show increasing strength and nonlinear tran-
sition of morphology, and the total heat-transfer enhance-
ment increases with frequency. For fixed properties of
standing wave, the exponent in the power-law scaling of the
Nusselt number versus the Rayleigh number increases and
approaches the value for the ultimate regime, as the
mechanical perturbation can efficiently break the BLs that
serve as the bottleneck of heat transfer.
The current results highlight the great potential of

boundary deformation in flow modulations and open
new venues for future investigations to fully exploit the
proposed method. For instance, as Ra increases, the
effective amplitude can be smaller as the BL thickness
decreases. This implies that such heat-flux enhancement is
easier to achieve at high Ra. The oscillating boundary
deformation may be realized by microelectronic mechani-
cal systems, and practical applications can be expected.
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