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We develop a compact theory that can be applied to a variety of time-varying dispersive materials. The
continuous-wave reflection and transmission coefficients are replaced with equivalent operator expres-
sions. In addition to comparing this approach to existing numerical and analytical techniques, we find that
the eigenfunctions of these operators represent pulses that do not change their spectra after interaction with
the time-varying, dispersive material. In addition, the poles of these operators represent the nontime
harmonic bound states of the system.
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Typical electromagnetic parameters (e.g., refractive index,
or impedance) are constant in time, deriving from both the
dispersive response and spatial arrangement of the constitu-
ent atoms, or meta-atoms. Designing such composite mate-
rials (metamaterials) with specified behavior has been the
subject of intense research for decades, with recent develop-
ments including one-way propagation [1], parity-time sym-
metric lasing [2], and a variety of methods for invisibility
cloaking [3]. Yet many fundamental limitations can be
overcome if the material properties are additionally struc-
tured in time as well as space [4]. For example, a lossless
time-varying grating can amplify waves [5], something
impossible with a static grating. The Kramers-Kronig
relations [6] also restrict the available palette of static
materials (limiting, e.g., the thickness-to-bandwidth ratio
of an absorber [7]), but do not apply to time-varying
media (TVM) [8]. In addition, TVM exhibit fundamentally
new phenomena such as “time refraction” [9,10], “time
reflection’ [11–14], and “temporal aiming” [15], where
wave energy can be redirected in the absence of spatial
inhomogeneity.
While many of the properties of TVM are yet to be

experimentally explored, one promising platform is the
conducting compound indium tin oxide (ITO) [16]. Close
to the epsilon-near-zero frequency of ITO, it exhibits a large
nonlinear susceptibility [17], leading to an effective permit-
tivity that is switchable on a subpicosecond timescale [18].
This rapid switchability has been used to demonstrate time

refraction [9,10] and time diffraction [19] as well as to
implement both time-varying metasurfaces [20], and spec-
trum-modifying mirrors [21].
As most materials are static, the theoretical tools for

treating TVM are not well developed. In spatially homo-
geneous media, transfer-matrix methods are often used,
based on the subsequent stacking of temporal “layers.”
While very successful for problems such as time inter-
faces [22], in the case of continuous modulations such
methods effectively act as finite differencing and hence
suffer from high computational costs in the presence of
nontrivial spatial structure. In addition, different sources of
dispersion present significant modeling challenges. Typical
TVM are highly dispersive in the frequency regimes where
their nonlinearities are strongest, making the susceptibility a
two-time function. Moreover, the poor impedance matching
to vacuum exhibited by epsilon-near-zero media implies
that resonant coupling mechanisms are needed to maximize
their effects within compact metastructures [21], contribut-
ing an additional degree of dispersion. This is difficult to
incorporate into existing analytical results or numerical
schemes, particularly in the regimes of highest phenom-
enological interest, where the material-response timescale is
similar to the timescale of its modulation. Several works
have developed methods to tackle these difficulties. For
instance, Zhou et al. [9] introduced an effective nondis-
persive time-varying response that was optimized to fit the
experimental data. Many current predictions alternatively
integrate the full Maxwell’s equations over time using, e.g.,
COMSOL Multiphysics [23] (see, e.g., [15]). However, this
becomes computationally intensive for the dispersive struc-
tured materials discussed in, e.g., [19–21].
In this Letter, we develop a compact semianalytical

theoretical approach that can be applied to a variety of time-
varying dispersive materials and is particularly well suited
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to describe the thin film ITO experiments discussed above.
We find that the continuous-wave reflection and trans-
mission coefficients can be replaced with equivalent
operator expressions that are simple to evaluate numerically
and act on the spectrum of the incident wave. Although
distinct from this work, aspects of our operator-based
approach (where, e.g., the wave vector is treated as an
operator) appear in the recent extension of Mie theory given
by Ptitcyn et al. [24]. We find that the eigenfunctions of
these operators represent spectra of incident waves that are,
e.g., unchanged on reflection from a TVM. Furthermore,
when an eigenvalue of, e.g., the reflection operator is zero
or diverges, we find respectively the time-varying analogs
of a reflectionless medium or a bound state, which we term
the “eigenpulses” of the system. In addition, we compare
this approach to existing numerical and semianalytical
techniques, evaluating the superior performance of this
method in terms of both accuracy and efficiency.
For a static material, the electric current j is linked to the

electric field E through the conductivity σðt − t0Þ that
represents the movement of charge in response to the past
behavior of the electric field and depends only on the time
difference t − t0. When the material is explicitly time-
dependent, due, e.g., to a pump pulse [17] (at optical
frequencies) or electronic modulation (at radio frequen-
cies), the conductivity can be replaced with a two-time
function such that

jðtÞ ¼
Z

∞

−∞
dt0 σðt; t − t0ÞEðt0Þ: ð1Þ

The second time argument t − t0 of the conductivity
represents the usual retarded response mentioned above.
Meanwhile the first argument t represents the change in the
instantaneous current due to the external modulation. As in
the static case, causality requires σðt; t − t0Þ ¼ 0 when
t0 > t. We can also develop the same formalism by taking
the first argument of σ as t0 instead of t. As the two times are
related by t0 ¼ t − ðt − t0Þ, our results can be applied to
either form of Eq. (1), with only minor modifications. We
could also equally develop the formalism in terms of the
permittivity and/or permeability instead of the conductivity.
Performing a Fourier transform of Eq. (1), j̃ðωÞ ¼R
dt jðtÞ expðiωtÞ, the frequency dependent current can

be written as

j̃ðωÞ ¼
Z

∞

−∞

dω0

2π
Ẽðω0Þ

Z
∞

−∞
dt σðt;ω0Þeiðω−ω0Þt

¼
Z

∞

−∞
dω0 Ẽðω0Þσ̂ð−i∂ω;ω0Þδðω − ω0Þ ð2Þ

¼ σ̂ð−i∂ω;ωÞẼðωÞ; ð3Þ

where σ̂ is the operator obtained by replacing the first
argument t0 with the operator −i∂ω. We note that an

analogous operator could also be used in inhomogeneous
spatially nonlocal media [25], where the spatial dependence
of the material parameters would be replaced by a k-space
derivative. Following the line of reasoning given here may
illuminate the general problem of additional boundary
conditions between nonlocal media [26,27].
In the final line of Eq. (3), all derivatives ∂ω within σ̂ must

be ordered such that they appear to the left of all the
frequency dependence of σ̂ [28]. This prescription is
reminiscent of the antinormal operator ordering adopted
in quantum mechanics [29]. To use Eq. (3) we write the
operator as σ̂ ¼ P

n anð−i∂ωÞbnðωÞ, a decomposition that
is generally possible through representing the conductivity
in terms of a complete set of functions PnðωÞ (e.g., the
classical orthogonal polynomials [30]) with time-dependent
expansion coefficients cnðtÞ: σðt;ωÞ ¼ P

n cnðtÞPnðωÞ.
The derivative ∂ω is numerically constructed as an N × N
matrix acting onN frequency points, via the finite difference
approximation or a Fourier transform. The operators an are
then evaluated as matrix-valued functions, and bnðωÞ is a
diagonal matrix (see the Supplemental Material [31] for an
example of this, with some further details). This idea of
using an operator-valued function is similar to the expo-
nential function of the Hamiltonian operator used as the
time evolution operator in quantum mechanics [34].
In this Letter, we assume the magnetic permeability is

unity, and use the Drude model with a time-varying plasma
frequency ωp (see Supplemental Material for motivation),

σ̂ð−i∂ω;ωÞ ¼ ω2
pð−i∂ωÞ

iϵ0
ωþ iγ

; ð4Þ

where we have imposed the aforementioned antinormal
ordering, and 1=γ is the collision time. Note that throughout
this Letter, we use the symbol ω0 ¼ ωpð−∞Þ, i.e., the
plasma frequency before the time variation.
The simplest application of Eq. (3) is where the

medium is homogeneous, propagation is along x, and
the field is polarized such that H̃ ¼ Hez. In this case,
Maxwell’s equations become ∂

2
xH þ K̂2

pH ¼ 0, the solu-
tions to which are

Hðx;ωÞ ¼ expð�iK̂pxÞH0ð0;ωÞ; ð5Þ

where k0 ¼ ω=c and K̂p is the matrix square root of
K̂2

p ¼ iη0σ̂k0 þ k20, Hð0;ωÞ is the Fourier amplitude of

the wave at x ¼ 0, and the quantity η0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
μ0=ϵ0

p
is the

impedance of free space.
The aforementioned operator square root calculation is

subtle. We perform it by first diagonalizing K̂2
p ¼ T̂−1D̂ T̂,

and then taking the square root of the eigenvalues,
K̂p ¼ T̂−1D̂1=2T̂. The question is whether the positive or
negative root should be taken in each eigenvalue, leaving us
with N possible roots for N × N operators. The problem of
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determining the correct root is identical to that encountered
in active media, where the sign of the refractive index can
be determined from the d → ∞ limit of a finite slab
provided it does not exhibit any instabilities [35]. In our
case we fix the imaginary parts of the eigenvalues of K̂s;p to
be positive. Further details are given in the Supplemental
Material.
Although the solutions, Eq. (5), have the appearance of

plane waves, the operator expð�iK̂pxÞ modifies the spec-
tral content of the wave as the observation point x is
changed, describing the expected temporal reshaping of the
pulse during propagation. Equation (5) shows that those
spectra Hð0;ωÞ that are eigenfunctions of K̂p with eigen-
value λ have a plane wave spatial dependence expð�iλxÞ
and retain the same spectrum during propagation, despite
the time variation of the material parameters. Note also that
Eq. (5) is similar to the aforementioned time evolution
operator in quantum mechanics, where a state jψi evolves
in time as jψðtÞi ¼ expð−iĤt=ℏÞjψð0Þi, where Ĥ is the
Hamiltonian operator. Figure 1 illustrates the basic idea of
our formalism, and gives the form of the operator K̂p for a
typical time variation of the material parameters, Eq. (4)
(see Supplemental Material for further details).
Fresnel coefficients for a dispersive, time-varying

interface.—Consider a pulse incident from vacuum onto
a dispersive time-varying half-space (x > 0). Using the
operator formalism described above, we calculate the
reflection r̂ and transmission t̂ operators for an incident
pulse. Just as for static materials, this calculation must be
done separately for transverse electric (TE) and transverse
magnetic (TM) polarizations.
Assuming incidence in the x-y plane with in-plane wave

vector kk, TE polarized waves have an electric field Ẽ ¼
Eez obeying the operator Helmholtz equation ∂

2
xEþ

K̂2
sE ¼ 0 where K̂2

s ¼ iη0k0σ̂ þ k20 − k2k. Inside the TVM
(x > 0) the solution is given by Eq. (5), Eðx > 0;ωÞ ¼
expðiK̂sxÞCsðωÞ. Meanwhile, on the entrance side the
field is a sum of plane waves for each frequency
Eðx < 0;ωÞ ¼ AsðωÞexpðikxxÞþBsðωÞexpð−ikxxÞ where
kx ¼ ½k20 − k2k�1=2. The spatial boundary conditions are
the same as for static media, with both electric E and
magnetic η0Hy ¼ ik−10 ∂xE fields continuous across x ¼ 0.
Substituting the forms of the fields in the respective
regions leads to the following reflection and transmission
operators:

r̂s ¼ ð1 − ẐsÞð1þ ẐsÞ−1
t̂s ¼ 2ð1þ ẐsÞ−1; ð6Þ

where Ẑs ¼ k−1x K̂s, Bs ¼ r̂sAs, and Cs ¼ t̂sAs.
Equations (6) are the TE Fresnel coefficients [36], with
an operator replacing the usual expression for the wave
vector in the material.

The derivation is slightly different for TM polarization,
revealing the importance of operator ordering in these
calculations. Taking the magnetic field as H ¼ Hez, it
obeys the operator Helmholtz equation ∂

2
xH þ K̂2

pH ¼ 0.
The square of the wave vector is as above K̂2

p ¼
iη0σ̂k0 þ k20 − k2k, differing from the TE expression

due to the noncommuting nature of σ̂ and ω. Applying
the continuity of the magnetic H, and electric E ¼
−i½k0 þ iη0σ̂�−1∂xη0H fields at the x ¼ 0 interface leads
to the reflection and transmission operators

r̂p ¼ ð1 − ẐpÞð1þ ẐpÞ−1
t̂p ¼ 2ð1þ ẐpÞ−1; ð7Þ

where Ẑp ¼ k−1x ½1þ iη0σ̂k−10 �−1K̂p. These are again oper-
ator analogs of the TM Fresnel coefficients, although in this
case the operator ordering would not be obvious without

(a)

(c)(b)

FIG. 1. Scattering from a time-varying dispersive medium.
(a) Our theory treats this as a generalization of a time-independent
problem, with operators r̂ and t̂ replacing the usual reflection and
transmission coefficients. (b) Here, we assume the Drude model
permittivity, Eq. (4), with an asymmetric time variation of the
plasma frequency, shown here in white. (c) The operator K̂p, here
shown as a phase plot (color phase and saturation magnitude),
determines the spatial evolution of the spectral content of the
wave via Eq. (5). For the time dependence shown in panel (b), the
operator causes a spectral broadening (the smearing around
ω ¼ ω0, with this largest close to the plasma frequency) and
reversal of propagation direction (the line around ω ¼ −ω0). The
absence of þve to −ve frequency coupling below the plasma
frequency stems from our choice of boundary conditions (see
Supplemental Material), although a full understanding requires
further work.
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applying the boundary conditions. Importantly, at normal
incidence the twowavevector operators differ by a similarity
transformation: K̂p ¼ k−10 K̂sk0. The two impedance oper-
ators are then simply related by Ẑp ¼ K̂−1

s k0 ¼ Ẑ−1
s , making

the reflection operators, Eqs. (6) and (7), differ by a minus
sign r̂s ¼ −r̂p as expected for the two polarizations at
normal incidence [37].
As discussed above, it is again interesting to examine the

eigenvalues and eigenvectors of the reflection and trans-
mission operators. These reveal that there are pulse spectra
(“eigenpulses”) that retain an identical spectrum after
interaction with the TVM (bar an overall multiplicative
factor). Alternatively, taking a singular value decomposi-
tion of the reflection and transmission operators, we can
find pulse spectra that are scaled by a set level (the singular
value), but have a different spectral content after interaction
with the material. We can see from Eqs. (6) and (7) that, in
the case of a single interface, the eigenpulses are the
eigenfunctions of the impedance operators Ẑs;p and thus
both transmitted and reflected spectra are unchanged.
Figure 2 shows a comparison between the reflection of a
Gaussian pulse and an eigenpulse from a TVM (plots show
the incident field just before the interface). While the
Gaussian pulse is significantly broadened and reshaped by
the interaction with the TVM, the eigenpulse reduces in
frequency in tandem with the plasma frequency, retaining
an identical spectrum upon reflection. In this case (modulus
of eigenvalue jrj ¼ 1), the eigenpulse is also entirely
reflected by the medium, as if it were a mirror.
In addition, the scattering operators can also exhibit

poles. For example, in Eqs. (6) and (7) these poles occur
where detð1þ Ẑs;pÞ ¼ 0. The vectors in the null space of
(1þ Ẑs;p) then represent nontime harmonic modes that are,
in this case, confined to the interface of the material. In the
Supplemental Material we find the surface plasmonlike
eigenpulses that are confined to the interface of a TVM.
Time-varying layer.—We can straightforwardly extend

this approach to any multilayer and any simple geometry
(e.g., a spherical, cylindrical, or ellipsoidal object) that
admits an analytic solution to Maxwell’s equations in the
static case. Broadly speaking, the results for the scattering
operators will have an identical form but with an operator
replacing the material parameters. To illustrate this in a
nontrivial case we calculate the reflection and transmission
operators for a slab of thickness d, which is relevant to the
experiments reported in [9,10,18,19,21].
Assuming TM polarization, the magnetic field within the

layer is taken to be of the form

Hð0< x< d;ωÞ ¼ eiK̂pxCpðωÞþ e−iK̂pxDpðωÞ; ð8Þ

with the field in the external regions equal to Hðx < 0Þ ¼
expðikxxÞApðωÞ þ expð−ikxxÞBpðωÞ and Hðx > dÞ ¼
exp½ikxðx − dÞ�FpðωÞ. Imposing the same boundary

conditions described above we obtain the reflection and
transmission coefficients for the slab

r̂slab ¼ ½Â− − ÂþΓ�½Âþ − ÂþΓ�−1 ð9Þ

and

t̂slab ¼ 4ẐpÂ
−1
þ eiK̂pd½Âþ − Â−Γ�−1 ; ð10Þ

where Â�¼1� Ẑp, and Γ ¼ expðiK̂pdÞA−A−1þ expðiK̂pdÞ.
Equations (9) and (10) reduce to the familiar reflection and
transmission coefficients of a dielectric slab [36] when the
operators are replaced with their scalar counterparts. When
d ¼ 0 the reflection operator, Eq. (9), is identically zero, and
the transmission operator, Eq. (10), becomes the identity, as
they should.
In Fig. 3, we give a comparison between results obtained

using COMSOL Multiphysics (see Supplemental Material), and
calculations made using the reflection and transmission
operators, Eqs. (9) and (10). We plot the normalized
transmitted spectra as a function of pulse delay time Δt.
As shown in the lower panel of this figure, there is excellent
agreement between the finite element calculation and our
operator approach. Additional comparisons to an adi-
abatic multiple-timescale approach used to model past

FIG. 2. Reflection of an eigenpulse from a time-varying
dispersive half-space. (a) We compare the reflection of two
different incident pulses: a Gaussian pulse (upper curve), and an
eigenpulse (lower curve) computed from the reflection operator,
Eq. (7), with eigenvalue jrj ¼ 1.00 (the zero level is displaced to
aid visualization). (b) Time variation of NðtÞ ¼ ω2

pðtÞ=ω2
0 in

Eq. (4). (c),(d) Magnitude of incident and reflected Fourier
spectra computed via a numerical integration of Maxwell’s
equations (see Supplemental Material) for an incident (c) eigen-
pulse and (d) Gaussian pulse.
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experiments [18,21] are also available in the Supplemental
Material. Importantly, these tests demonstrate the advan-
tage of this method for the efficient modeling of structures
that feature extremely subwavelength layers, circum-
venting the need for expensive numerical calculations.
Summary and conclusions.—We have developed a com-

pact theoretical approach for treating the problem of
scattering from dispersive TVM. We have shown that
our analytic expressions match full wave numerical sim-
ulations well. Although the theory is formally similar to the
case of static materials, the TVM parameters are given in
terms of operators that depend on both the frequency and
frequency derivatives, which must be carefully ordered.
The advantage of our theory is that it is semianalytical,
allowing us to give explicit operator expressions for
scattering coefficients from the TVM, and thus determine
conditions for, e.g., incoming modes that are bound, not
reflected, or completely reflected by the material. We have
numerically constructed these operators and found the
“eigenpulses” of a time-modulated Drude half-space,
numerically verifying that there are input pulse spectra
that, e.g., reflect as if the TVM was a dispersionless mirror.
This approach may be readily extended to other areas of
wave physics such as pressure acoustics [38] and elasticity
and may be of interest to those working on TVM as well as
multiple scattering, where our reflectionless eigenpulses
are analogous to the concept of open scattering channels in
disordered media (see, e.g., [39]).

S. A. R. H. acknowledges the Royal Society and TATA
for financial support through grant URF\R\211033, and
thanks Riccardo Sapienza, Euan Hendry, James Capers,
and Dean Patient for useful conversations. E. G. acknowl-
edges funding from the Simons Foundation through a
Junior Fellowship of the Simons Society of Fellows
(855344,EG).

*Corresponding author.
s.horsley@exeter.ac.uk

†Corresponding author.
egaliffi@gc.cuny.edu

[1] M. Segev and M. A. Bandres, Topological photonics: Where
do we go from here?, Nanophotonics 10, 425 (2021).

[2] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H.
Musslimani, S. Rotter, and D. N. Christodoulides, Non-
Hermitian physics and PT symmetry, Nat. Phys. 14, 11
(2018).

[3] K.-T. Lee, C. Ji, H. Iizuka, and D. Banerjee, Optical
cloaking and invisibility: From fiction toward a technologi-
cal reality, J. Appl. Phys. 129, 231101 (2021).

[4] E. Galiffi, R. Tirole, S. Yin, H. Li, S. Vezzoli, P. A.
Huidobro, M. G. Silveirinha, R. Sapienza, A. Alú, and
J. B. Pendry, Photonics of time-varying media, Adv. Opt.
Photonics 4, 014002 (2022).

[5] E. Galiffi, P. Huidobro, and J. Pendry, An Archimedes’
screw for light, Nat. Commun. 13, 2523 (2022).

[6] L. D. Landau and E. M. Lifshitz, Statistical Physics: Part 1
(Butterworth-Heinemann, London, 2005).

[7] K. N. Rozanov, Ultimate thickness to bandwidth ratio of
radar, IEEE Trans. Antennas Propag. 48, 1230 (2000).

[8] D. M. Solis and N. Engheta, Functional analysis of the
polarization response in linear time-varying media: A
generalization of the Kramers-Kronig relations, Phys.
Rev. B 103, 144303 (2021).

[9] Y. Zhou, M. Z. Alam, M. Karimi, J. Upham, O. Reshef, C.
Liu, A. E. Willner, and R.W. Boyd, Broadband frequency
translation through time refraction in an epsilon-near-zero
material, Nat. Commun. 11, 2180 (2020).

[10] J. Bohn, T. S. Luk, S. A. R. Horsley, and E. Hendry,
Spatiotemporal refraction of light in an epsilon-near-zero
indium tin oxide layer: Frequency shifting effects arising
from interfaces, Optica 8, 1532 (2021).

[11] F. R. Morgenthaler, Velocity modulation of electromagnetic
waves, IRE Trans. Microwave Theory Tech. 6, 167 (1958).

[12] J. T. Mendonça and P. K. Shukla, Time refraction and time
reflection: Two basic concepts, Phys. Scr. 65, 160 (2002).

[13] V. Bacot, M. Labousse, A. Eddi, M. Fink, and E. Fort, Time
reversal and holography with spacetime transformations,
Nat. Phys. 12, 972 (2016).

[14] H. Moussa, G. Xu, S. Yin, E. Galiffi, Y. Radi, and A. Alù,
Observation of temporal reflections and broadband fre-
quency translations at photonic time-interfaces, arXiv:
2208.07236.

[15] V. Pacheco-Peña and N. Engheta, Temporal aiming, Light
Sci. Appl. 9, 129 (2020).

[16] W. Jaffray, S. Saha, V. M. Shalaev, A. Boltasseva, and M.
Ferrera, Transparent conducting oxides: From all-dielectric

FIG. 3. Comparison between the proposed theory and COMSOL

Multiphysics [23]. The figures demonstrate normalized Fourier
transmitted spectra for a time-modulated Drude slab excited by a
45° incident probe wave. (See Supplemental Material for more
details).

PHYSICAL REVIEW LETTERS 130, 203803 (2023)

203803-5

https://doi.org/10.1515/nanoph-2020-0441
https://doi.org/10.1038/nphys4323
https://doi.org/10.1038/nphys4323
https://doi.org/10.1063/5.0048846
https://doi.org/10.1117/1.AP.4.1.014002
https://doi.org/10.1117/1.AP.4.1.014002
https://doi.org/10.1038/s41467-022-30079-z
https://doi.org/10.1109/8.884491
https://doi.org/10.1103/PhysRevB.103.144303
https://doi.org/10.1103/PhysRevB.103.144303
https://doi.org/10.1038/s41467-020-15682-2
https://doi.org/10.1364/OPTICA.436324
https://doi.org/10.1109/TMTT.1958.1124533
https://doi.org/10.1238/Physica.Regular.065a00160
https://doi.org/10.1038/nphys3810
https://arXiv.org/abs/2208.07236
https://arXiv.org/abs/2208.07236
https://doi.org/10.1038/s41377-020-00360-1
https://doi.org/10.1038/s41377-020-00360-1


plasmonics to a new paradigm in integrated photonics, Adv.
Opt. Photonics 14, 148 (2022).

[17] M. Z. Alam, I. De Leon, and R.W. Boyd, Large optical
nonlinearity of indium tin oxide in its epsilon-near-zero
region, Science 352, 795 (2016).

[18] T. S. Bohn, J. ans Luk, C. Tollerton, S. W. Hutchings, I.
Brener, S. A. R. Horsley, W. L. Barnes, and E. Hendry, All-
optical switching of an epsilon-near-zero plasmon reso-
nance in indium tin oxide, Nat. Commun. 12, 1017 (2021).

[19] R. Tirole, S. Vezzoli, E. Galiffi, I. Robertson, D. Maurice, B.
Tilmann, S. A. Maier, J. B. Pendry, and R. Sapienza,
Double-slit time diffraction at optical frequencies, arXiv:
2206.04362.

[20] C. Liu, M. Z. Alam, K. Pang, K. Manukyan, O. Reshef, Y.
Zhou, S. Choudhary, J. Patrow, A. Pennathurs, H. Song, Z.
Zhao, R. Zhang, F. Alishahi, A. Fallahpour, Y. Cao, A.
Almaiman, J. M. Dawlaty, M. Tur, R. W. Boyd, and A. E.
Willner, Photon acceleration using a time-varying epsilon-
near-zero metasurface, ACS Photonics 8, 716 (2021).

[21] R. Tirole, E. Galiffi, J. Dranczewski, T. Attavar, B. Tilmann,
Y.-T.Wang, P. A. Huidobro, A. Alú, J. B. Pendry, S. A.Maier
et al., Saturable Time-Varying Mirror Based on an Epsilon-
Near-Zero Material, Phys. Rev. Appl. 18, 054067 (2022).

[22] D. Ramaccia, A. Alù, A. Toscano, and F. Bilotti, Temporal
multilayer structures for designing higher-order transfer
functions using time-varying metamaterials, Appl. Phys.
Lett. 118, 101901 (2021).

[23] C. Multiphysics, Introduction to comsol multiphysics®,
COMSOL Multiphysics, Burlington, MA, accessed Feb 9, 2018
(1998).

[24] G. Ptitcyn, A. G. Lamprianidis, T. Karamanos, V. S.
Asadchy, R. Alaee, M. Müller, M. Albooyeh, M. S.
Mirmoosa, S. Fan, S. A. Tretyakov, and C. Rockstuhl,
Scattering of light by spheres made from a time-modulated
and dispersive material, .

[25] V. M. Agranovich and V. L. Ginzburg, Crystal Optics with
Spatial Dispersion, and Excitons (Springer-Verlag, Berlin,
2013).

[26] G. S. Agarwal, D. N. Pattanayak, and E. Wolf, Electromag-
netic fields in spatially dispersive media, Phys. Rev. B 10,
1447 (1974).

[27] M. G. Silveirinha, Additional boundary conditions for non-
connected wire media, New J. Phys. 11, 113016 (2009).

[28] The opposite (normal) operator ordering (where the ∂ω sit on
the right of the factors of frequency in σ̂) is required if we
specify the conductivity in Eq. (1) as σðt0; t − t0Þ.

[29] J. R. Shewell, On the formation of quantum-mechanical
operators, Am. J. Phys. 27, 16 (1959).

[30] DLMF, NIST Digital Library of Mathematical Functions,
http://dlmf.nist.gov/, Release 1.1.8 of 2022-12-15, edited by
f. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I.
Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V.
Saunders, H. S. Cohl, and M. A. McClain.

[31] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.130.203803 for addi-
tional details, which includes additional Refs. [32,33].

[32] B. Nistad and J. Skaar, Causality and electromagnetic
properties of active media, Phys. Rev. E 78, 036603
(2008).

[33] P. Virtanen, R. Gommers, T. E. Oliphant et al., SciPy 1.0:
fundamental algorithms for scientific computing in Python,
Nat. Methods 17, 261 (2020).

[34] J. J. Sakurai and J. Napolitano, Modern Quantum Mechan-
ics (Cambridge University Press, Cambridge, England,
2018).

[35] Note that for any finite medium, where we treat both entry
and exit boundaries, the ambiguity in the square root is
inconsequential; we automatically include both signs of the
eigenvalues in both expð�K̂pxÞ operators.

[36] L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electro-
dynamics of Continuous Media (Butterworth-Heinemann,
London, 2004).

[37] We define the TM reflection coefficients in terms of the
magnetic field amplitude, and the TE reflection coefficient
in terms of the electric field amplitude, hence their differ-
ence by a sign at normal incidence.

[38] C. Cho, X. Wen, N. Park, and J. Li, Digitally virtualized
atoms for acoustic metamaterials, Nat. Commun. 11, 251
(2020).

[39] W. Choi, A. P. Mosk, Q.-H. Park, and W. Choi, Trans-
mission eigenchannels in a disordered medium, Phys. Rev.
B 83, 134207 (2011).

PHYSICAL REVIEW LETTERS 130, 203803 (2023)

203803-6

https://doi.org/10.1364/AOP.448391
https://doi.org/10.1364/AOP.448391
https://doi.org/10.1126/science.aae0330
https://doi.org/10.1038/s41467-021-21332-y
https://arXiv.org/abs/2206.04362
https://arXiv.org/abs/2206.04362
https://doi.org/10.1021/acsphotonics.0c01929
https://doi.org/10.1103/PhysRevApplied.18.054067
https://doi.org/10.1063/5.0042567
https://doi.org/10.1063/5.0042567
https://doi.org/10.1103/PhysRevB.10.1447
https://doi.org/10.1103/PhysRevB.10.1447
https://doi.org/10.1088/1367-2630/11/11/113016
https://doi.org/10.1119/1.1934740
http://dlmf.nist.gov/
http://dlmf.nist.gov/
http://dlmf.nist.gov/
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.203803
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.203803
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.203803
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.203803
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.203803
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.203803
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.203803
https://doi.org/10.1103/PhysRevE.78.036603
https://doi.org/10.1103/PhysRevE.78.036603
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41467-019-14124-y
https://doi.org/10.1038/s41467-019-14124-y
https://doi.org/10.1103/PhysRevB.83.134207
https://doi.org/10.1103/PhysRevB.83.134207

