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Recent advances in electromagnetic nonreciprocity raise the question of how to engineer the
nonreciprocal electromagnetic response with geometrical approaches. In this Letter, we examine this
problem by introducing generalized electromagnetic continua consisting structured points, which carry
extra degrees of freedom over coordinate transformation. We show that general nonreciprocal media have a
unique time-varying Riemannian metric structure with local spinning components. It is demonstrated that
the nonreciprocity can be alternatively identified as the torsion tensor of a Riemann-Cartan space, which
could provide analytic expressions for the magneto-optical effect and the axionic magnetoelectric coupling.
Our theory not only gives a deeper insight into the fundamental understanding of electromagnetic
nonreciprocity but also provides a practical principle to geometrically design nonreciprocal devices through
frame transformation.
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Introduction.—The idea of studying gravitational effects
with analogue curved spacetimes in the laboratory is a
century-old classical topic in physics [1,2]. Such successive
extension has led to a comprehensive understanding of
extreme gravity phenomena such as Hawking radiation [3],
Unruh effect [4] and Lorentz violation [5] in acoustics [6],
Bose-Einstein condensations [7], laser pulses [8], or
dielectric media [9–11]. In recent years, the analogy
between light propagation in gravitational fields and in
engineered optical media [12–15] was reversely applied to
design novel optical devices from invisible cloaking,
extreme plasmonics [16] to topology engineering [17] with
the method of coordinate transformation (CT) [18–20].
Despite significant advances in nonlinearity [21], time-
domain [22], non-Hermitian [23], and fully covariant
formulations for noninertial observer [24], however, the
current framework of transformation optics, which roots in
the well-established Maxwell-Lorentz relation of the
curved vacuum [13–15], has been mostly dedicated to
reciprocal systems.
Reciprocity is an internal symmetry of light waves [25],

which imposes fundamental constraints on transmission,
reflection and emission [26–29]. In nonreciprocal systems,
the transmission of waves becomes asymmetric when
sources and receivers are interchanged [30,31], and the in-
gap topological states can be delocalized in metamaterials
with nonreciprocal hopping [32]. It enables scattering-free
unidirectional photonic devices, of fundamental importance
for applications in signal processing, energy harvesting
and thermal-emission control. In general, nonreciprocal
responses require broken time reversal symmetry [33],

which is exclusively achieved through the gyrotropic
magneto-optical effect of ferrites, ferromagnets, metals,
or semiconductors in an external magnetic field [33].
Recently, there is an increasing interest to implement linear
nonreciprocity with new paradigms including multiferroi-
ces and topological materials with axionic magnetoelectric
coupling [34,35], and time-varying materials based on
linear [15] or angular [36–40] mechanical momentum
biasing and time modulation [30,31,41,42]. The latter
has initiated a broad range of nonmagnet, compact non-
reciprocal devices at optical frequencies, as well as bring
novel concepts such as time interface [43], temporal
Kramers-Kronig relation [44], and time-bandwidth limit
breaking [45,46]. Prior to this work, nonetheless, there still
lacks a general theory of transformation optics to engineer
nonreciprocal responses.
In this Letter, we develop a minimal extension of

transformation optics to unify different implementations
of linear nonreciprocity without linear momentum bias in
the continuum limit, by extending transformation media to
generalized continua with inner deformable degrees of
freedom (d.o.f.). Independent from CT, a unique time-
varying Riemannian metric structure is introduced to
characterize the local spinning of material points inside
the nonreciprocal materials. From the active viewpoint,
rotating directors specifying the inner structure build up an
effective tetrad whose nontrivial geometry models an
equivalent Riemann-Cartan geometry theory for nonreci-
procity. The dual geometry, which captures the universal
microscopic feature of nonreciprocity, allows designing
novel nonreciprocal devices by tailoring the inner d.o.f. of
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material points via frame transformation. Our work unveils
the geometrical origin of electromagnetic nonreciprocity
beyond the limitation of the Maxwell-Lorentz relation,
further widening the scope of possibilities to manipulate the
fully vectorial nature of light.
Electromagnetic nonreciprocity.—In covariant electro-

dynamics, the generic Lagrangian of a loss-free local
linear medium is L ¼ ð1=4ÞχijklFijFkl, which defines the
covariant constitutive equation [47]

Hij ¼ 1

2
χijklFkl; ð1Þ

where the field tensor Fkl ¼ ðE=c;BÞ and the excitation
tensorHij ¼ ð−cD;HÞ. The constitutive tensor χijkl, which
is antisymmetric in pairs ij and kl separately, has 36
independent components. The (1þ 3)-decomposition of
Eq. (1) is equivalent to the usual bi-anisotropic constitutive
relation [48]

�
D

B

�
¼

�
ϵ0ϵ ðχ þ iκÞ=c

ðχ − iκÞT=c μ0μ

��
E

H

�
;

where the permittivity ϵ and the permeability μ are complex
tensors, while the Tellegen term χ and the chiral tensor κ are
real by definition. In general, the antisymmetrically imagi-
nary parts of ϵ and μ, which describe the gyro-electric or
magnetic effects arising from spin precession at microwave
and electron cyclotron orbital motion at optical frequencies
in a magnetic field, and χ , which describes the magneto-
electric coupling due to orbital magnetization, are respon-
sible for the nonreciprocal electromagnetic response of
matters.
On the other hand, the constitutive tensor of a curved

vacuum described by the Maxwell-Lorentz relation only
contains the principle part of χijkl: χijkl ¼ Z0

ffiffiffiffiffiffi−gp ðgikgjl−
gilgjkÞ, with Z0 ¼ μ0c denoting the vacuum impedance, gij

the inverse of gij and g ¼ detðgijÞ [13,20]. In vector
notation, it takes the form

ϵ ¼ μ ¼ −
ffiffiffiffiffiffi−gp
g00

½gab�; χ ¼ ½g0a�
g00

; ð2Þ

where gab describes the symmetric part of the electronic
polarization (magnetization) which was usually assumed
can be generated by coordinate transformation, while g0a
describes the antisymmetric nonreciprocal magneto-
electric coupling due to frame dragging. The geometric
origin of other nonreciprocal constitutive terms remains
unexplored. This problem is of paramount importance for
materials at rest in laboratory which are assumed to be
described by static spacetimes with vanishing g0a. Here,
we develop a geometrical theory which unifies the
magneto-optical effect, axion magnetoelectric coupling

and the time-varying Riemannian system carrying local
spinning components.
Transformation optics with structured points.—In con-

ventional transformation optics, the CT x → x0ðxÞ creates a
curved Riemannian space with the metric g0 ¼ JgJT where
the constitutive tensors transform as tensor densities
fε0; μ0g ¼ detðJÞJfε; μgJT [18]. Here, Jaα ¼ ∂xa=∂x0α is
the Jacobian matrix, gab ¼ δab is the flat Euclidean metric.
From the perspective of classical field theory, the trans-
formed spaces are modeled as continua comprised of
infinitesimally sized geometrical points, where the geo-
metrical information is encoded in the displacement vector
uðxÞ ¼ x0 − x. However, the three translational d.o.f. of u
are less than the six independent components of a sym-
metric metric, indicating that the transformed medium is
only a subset of the general Riemannian medium. To
overcome this limitation, an anholonomic extension of
transformation optics was proposed to deal with the chiral
medium [49,50], where the tetrad decomposition of the
metric is utilized to characterize the twisting of the local
structure [15]. This is indicative of the fact that the points
are endowed with tensorial physical quantities χijkl, which
originate from the structural anisotropy or inhomogeneity
in molecular or artificially engineered materials.
We now elaborate on our generalized theory of trans-

formation optics for complex electromagnetic materials
which contain chiral [50] and nonreciprocal media as
special cases by breaking space-inversion and time-reversal
symmetries, respectively. To incorporate inner structures
into transformation optics, we generalize the electromag-
netic continuum to be a collection of structured points with
inner deformable d.o.f. In analogy to the mechanical
microcontinuum theory [51], each point is in itself a
deformable medium. To reconcile the concept of deform-
able points (which implies finite size) with the continuum
hypothesis, each material point is represented by a geo-
metric point P and three direction vectors eα; (α ¼ 1, 2, 3)
attached to P. Here, the position vector of P labels its
spatial coordinate x and eα describe the relative positions of
the inner structure contained in the material point, which
can deform arbitrarily. In essence, this picture is compatible
with the concept of metamaterials, where the metamole-
cules, represented by geometrical points in the homog-
enized continuum limit, can be deformed independently
from adjacent points. Compared to their detailed structural
geometries, we are interested to the spatial transformation
of the point microconstituents. To describe the intrinsic
deformation of these material points, we introduce the
frame deformation for the directors by e0α ¼ e0αðx; t; eαÞ in
addition to CT at each P [51]. Because the points are
considered to be infinitesimally small, we only consider the
linear approximation on eα,

e0α ¼ Fa
αea: ð3Þ
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Here, the frame transformation F ¼ ½Fa
αðx; tÞ� is a non-

singular matrix with positive determinant detðFÞ > 0. In
general, F has nine extra d.o.f. over CT, which account for
the local rotation and stretch of points. To fully characterize
the deformation, it requires to consider the transformation
of both the spatial coordinates and directors of the material
points. To be specific, we introduce the total transformation
of the point P by

M ¼ FJ; ð4Þ

where F and J denote the transformation matrices of frame
deformation and coordinate transformation, respectively.
Without loss of generality, we choose eα as the local basis
(tetrad fields) which span the tangent space for all tensorial
quantities. Therefore, Eq. (3) can be interpreted as the
active transformation of basis vectors. Replacing J withM,
we obtain the generalized transformation media

fε0; μ0g ¼ detðMÞMfε; μgMT: ð5Þ

Equation (5) is the first main result of this work, which is a
direct generalization of usual transformation optics. It
allows to create complex media for the full control of
light with the composite transformation: First, a CT defines
a transformation medium to engineer light rays.
Subsequently, the frame deformation introduce further
local manipulation for the polarization of light. The final
transformed medium is described by a spatial metric tensor

g0 ¼ MgMT: ð6Þ

By making use the matrix’s polar decomposition, the
frame deformation can be decomposed into

F ¼ RS; with S2 ¼ FTF; ð7Þ

where the orthogonal matrix R and the symmetric matrix S
describe the local rotation and stretch of the material points,
respectively. For simplicity, we only consider frame rota-
tion where the material particles can be regarded as points
carrying oriented rigid triads. A full description of the
continuum requires to specific the orientation ϕi of each
point besides the displacement field ui. In principle, we
have the deformation measure distortion βij and contortion
κijk [52,53],

βij ¼ ∂iuj − ωij; κijk ¼ −∂iϕjk; ð8Þ

where the bivector ωij ¼ −ωji ¼ 1
2
ϵijkϕ

k is dual to ϕi, and
κijk ¼ −κikj. For vanishing frame rotation, the points and
their relative distances completely determine the geometry,
and the distortion reduces to the strain ϵij ¼ 1

2
ðβij þ βjiÞ,

which measures the difference gij ¼ δij þ ϵij. With non-
vanishing ωij, the strain becomes asymmetric, and the

antisymmetric part gives to the relative rotation:
β½ij� ¼ 1

2
ðβij− βjiÞ ¼ωij−Rij, where Rij ¼ 1

2
ð∂iuj − ∂juiÞ

denotes the frame rotation associated with CT [54].
Figure 1(a) schematically depicts the oriented continuum
with purely local rotation. Nematic liquid crystals provide
an exemplification of the oriented media where the optical
anisotropy associated with the rodlike molecules define the
directors [50].
Electrodynamics of extended spinning objects.—Before

applying our theory to bulk nonreciprocal materials, we first
study the electrodynamics of isolated spinning neutral
objects. It has been shown that mechanical rotation leads
to several chirality-dependent scatteringphenomena, such as
the frequency shift for circularly polarized light in the
rotationalDopplereffect [36,37]and thepolarizationrotation
in the rotational photon drag effect [38,39]. Here, we assume
the object, which has scalar ϵ and μ, is spinning along z axis
with a constant angular velocity Ω ¼ Ωẑ. Unlike previous
works [39,40], we consider the spinning object as a meta-
molecule of a metamaterial in the infinitesimal limit. The
time-reversal symmetry breaking requires taking into
account the effect of relativistic frame dragging, which
was not considered in [50]. Using Lorentz boost from
the object rest frame rotating at instantaneous velocity v ¼
ð−Ωy;Ωx; 0ÞT to the lab system, the constitutive relations at
low velocity approximation v=c ≪ 1 are given by [33]

D ¼ ϵ0ϵEþ ðϵμ − 1Þ v
c2

×H;

B ¼ μ0μH − ðϵμ − 1Þ v
c2

×E: ð9Þ

The steady instantaneous velocity satisfies ∇ · v ¼
0;∇ × v ¼ 2Ω. Plugging (9) into Maxwell’s equations and
after some vector algebra, we obtain [53]

∇ ×Eþ 1

c
∂H
∂t

¼ ϵμ − 1

cϵ
KðHÞ ð10Þ

to first order of v=c, where

KðHÞ ¼ ∇ðv ·HÞ − 2H ×Ω − ðH · ∇Þv: ð11Þ

FIG. 1. (a) Schematics of the continuum comprised of struc-
tured points. (b) Torsion is introduced by the Burgers circuit
associated with rotating directors.
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For simplicity, we consider the electromagnetic field propa-
gating along the z direction. From (9),E andH have distant-
dependent longitudinal components of orderOðv=cÞ. Under
theseconsiderations, the last termin(10) isnegligibleoforder
Oðv=cÞ. Taking the curl of (10) and dropping terms due to
Coriolis and centrifugal forces of order OðΩ2Þ yield [53]

∇2E −
ϵμ

c2
∂
2E
∂t2

þ 2
ϵμ − 1

c2
Ω ×

∂E
∂t

¼ 0: ð12Þ

Equation (12) is identical in form to the wave equation in a
magneto-optical material described by

D ¼ ϵ0ϵEþ i
1

ω
Ω × E; ð13Þ

where the rotation vector plays the role of a pseudo-
magnetic field. Proceeding as above for the magnetic
field gives rise to the gyromagnetic constitutive relation
B ¼ μ0μH − iω−1Ω ×H. Notably, Eq. (12) is consistent
with the quantum mechanics analysis for certain rotating
plasmonic nanoparticles whose polarizability takes the
same form as static magnetized particles in an external
magnetic field [40] and the homogenized model of the
metamaterial with spinning inclusions [55]. This effect
illustrates that the equivalence between the mechanical
rotation and the magnetic field applies not only to
mechanics effects of extended objects in the Einstein–
de Haas effect [56] and the reversed Barnett effect [57],
but also for the constitutive relations of matters consisting
of spinning components.
Nonreciprocity from time-varying Riemannian metric.—

The gyrotropic response (13) suggests that spinning objects
can be regarded as material points of the nonreciprocal
medium in the infinitesimal limit. Applying this idea to an
electromagnetic continuum with each point carrying a
spinning d.o.f. leads to a Riemannian geometry description
for the gyrotropic medium. In the spirit of transformation
optics, we consider a thought experiment to create a
nonreciprocal medium from a reciprocal medium, such
as a dielectric with static structural inhomogeneity. It could
be an anisotropic medium with εabðμabÞ or a metamaterial
with reciprocal homogenized constitutive parameters. At
each point, we set up a local orthonormal frame eaðxÞ
which aligns with the global Cartesian axes at the initial
moment. To break time reversal symmetry, we consider the
inner structure carrying its local frame spins with angular
frequency Ω around a rotating axis, which relates with the
Cartesian basis by eαðr; tÞ ¼ Ra

αðr; tÞea. It is reasonable to
assume that the local frames at neighboring points connect
smoothly. According to Eq. (5), the proposed nonreciprocal
medium is described by time-varying real symmetric
parameters

fε0ðtÞ; μ0ðtÞg ¼ detðRÞRfε; μgRT: ð14Þ

In this regard, the transformed space is a Riemannian space
with a time-varying metric tensor g0ðtÞ ¼ RgRT, where the
associated spinning d.o.f. produce the imaginary antisym-
metric parts of ε and μ. Equation (14) is another main result
of this work.
Electromagnetism in arbitrary noninertial frame and

axionic magnetoelectric coupling.—Thus far we have
proposed nonreciprocal transformation media with spin-
ning components, we now express the Maxwell’s equations
in the local frame spanned by eα. Because eα are not
coordinate basis in general, they have nonvanishing Lie
brackets: ½eα; eβ� ¼ Cγ

αβeγ where the antisymmetric struc-
ture constant Cγ

αβ ¼ eγað∂αeaβ − ∂βeaαÞ [47]. The non-
vanishing Cγ

αβ characterizes the closed failure of order
Oðϵ2Þ of the infinitesimal parallelogram along the integral
curves of eα and eβ. In the general nonorthonormal basis,
the affine connection of the Riemannian space is given by
Γγ

αβ ¼ f γ
αβg þHγ

αβ [47], where f γ
αβg is the Christoffel

symbol and Hγ
αβ ¼ 1

2
ðCγ

αβ þ Cα
γ
β þ Cβ

γ
αÞ. By replacing

ordinary partial derivatives by the covariant ones ∂α → ∇α,
the Maxwell’s equations in an arbitrary anholonomic frame
read

∇̃βHαβ −
1

2
Cβγ

αHγβ þ 1

2
Cβγ

γHαβ ¼ J α; ð15Þ

∇̃½αFβγ� − C½αβδFγ�δ ¼ 0; ð16Þ

where ∇̃α is the covariant derivative associated with f γ
αβg,

½…� denotes the antisymmetrization of tensors. Note that in
a coordinate basis the C terms vanish, Eqs. (15) and (16)
collapse into the usual covariant Maxwell’s equations in the
Riemannian spacetime. In an orthonormal frame gαβ are
constant, Γγ

αβ is antisymmetric in its lower indices due to
the vanishing Christoffel symbol, and above equations
become the anholonomic Maxwell’s equations in moving
frames [47]. Traditionally, the noncoordinate basis is used
to construct the proper reference frame for local accelerat-
ing observers with Cγ

αβ representing the noninertial effect.
As mentioned earlier, however, we adopt an active per-
spective where it specifies the real geometrical structure
from the orientation of the local anisotropy at each material
point during the local spatial transformation. As depicted in
Fig. 1(b), the active viewpoint coincides with the non-
Riemannian geometry theory of the dislocation continuum,
where the spinning of the local atomic lattice axes defines
the antisymmetric connection and the dislocation density
measures the torsion tensor of the effective Riemann-
Cartan space [58–61]. By identifying Cγ

αβ as the torsion
tensor, Eqs. (15) and (16) recover the Maxwell’s equations
in a Riemann-Cartan space [62]. The above program akin to
the usual minimal coupling procedure to treat wave
equations in a curved space. However, Eq. (16) is not
compatible with the U(1) gauge invariance [63,64]. To keep
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the gauge invariance, we choose the semiminimal coupling
where the definition of the field tensor is the same as in the
Riemannian space,Fαβ ¼ ∂αAβ − ∂βAα. Thereby, the homo-
geneous Gauss-Faraday equation is irrelevant to tor-
sion, ∂½αFβγ� ¼ 0.
Equation (15) contains the field strengths as well as the

geometrical information of the spacetime where the addi-
tional constitutive terms are interpreted as the torsion
tensor. As a simplest example, we consider e0̂ ¼ e0; e3̂ ¼
e3 and the frame transformation

�
e1̂
e2̂

�
¼

�
cosðΩtÞ − sinðΩtÞ
sinðΩtÞ cosðΩtÞ

��
e1
e2

�
; ð17Þ

where the hat emphasizes it is a local orthonormal basis.
Obviously, the only nonvanishing structural constants are
C2
01 ¼ C1

20 ¼ Ω. Without loss of generality, Eq. (15) can be
written as

∂αHαβ ¼ J β; ð18Þ

where

Hαβ ¼ ffiffiffiffiffiffi
−g

p
Fαβ þ 1

2
xαCβγδFγδ: ð19Þ

Equation (18) is identical to the material form of the
Maxwell equation in Minkowski spacetime, which allows
interpreting the torsional space as a transparent medium
described by (19) in a flat system. This result, obtained by a
purely geometrical approach based on the nonminimal
coupling between torsion and electromagnetic field, is
consistent with the quantum computation of the vacuum
polarization effect in a torsional space [64,65]. By intro-
ducing a pseudoscalar θðxÞ, the torsion addition in (19) can
be expressed as an axion term corresponding to the axion
Lagrangian ΔL ¼ 1

2
θϵαβγδFαβFδγ ¼ −2θE · B, where

ϵαβγδθ ¼ xαCβγδ [35,66,67]. The axion angle depends
linearly on the spacetime coordinate: θðxÞ ¼ Ωμxμ. For
the rotating frame, the spatial components of Cijkði; j; k ¼
1; 2; 3Þ vanishes identically and θ depends only on the
spatial position θðrÞ ¼ Ω · x. Therefore, the electrodynam-
ics of the torsional medium describes the electromagnetic
response of Weyl semimetals where torsion measures the
separation of Weyl nodes [67]. It is known that this type of
magnetoelectric coupling can be reduced to the magneto-
optical response described by Eq. (13) [33]. Consequently,
torsion is also interpreted as the gyrotropic vector of
magneto-optical materials.
Asymmetric energy-momentum tensor.—Lastly, we con-

sider the symmetry of the electromagnetic energy-
momentum tensor Θαβ. By definition, the Minkowski

energy-momentum tensor of a conventional transformation
medium, Θαβ ¼ ð2= ffiffiffiffiffiffi−gp ÞδL=δgαβ, is symmetric. How-
ever, direct evaluation of Θαβ from Eq. (19) gives rise to
the gauge-dependent form

Θαβ ¼ −FαρFβ
ρ þ gαβFρσFρσ þ

Ωβ

4
ϵαργλAρFγλ: ð20Þ

It is interesting that torsion does not enter the energy
density E ¼ Θ00. Moreover, the torsion term renders the
Maxwell stress tensor asymmetric, Θij≠Θjiði;j¼1;2;3Þ.
To avoid the gauge dependence, we adopt the canonical
form Θij ¼ EiDj þHiBj − 1

2
δijðE ·DþH ·BÞ. From the

conservation of total angular momentum, the antisymmet-
ric part of Θij gives rise to the rate of change of the spin
angular momentum

∂kSijk ¼ 2Θ½ij� ¼ 1

2
ϵijkΩkjEj2; ð21Þ

where the spin angular momentum density Sijk ¼ ϵijkEjAk.
For infinitely bulk media, the asymmetry of Θij reflects the
presence of the internal torque for material points, which
produces the Faraday rotation.
Concluding remarks.—We emphasize that the analysis

on the electrodynamics of torsional spaces is not applicable
to gyromagnetic media because of the lack of a covariant
formalism for gyromagnetic response. There might require
a dual electromagnetism theory parallel to axion electro-
dynamics [68,69]. In addition, while our work focuses on
nanophotonics, our theory may be extended to analyze
electromagnetic phenomena at large scales such as explor-
ing the spacetime structure with cosmic microwave back-
ground radiation [70].
In summary, we have extended the theory of trans-

formation optics to generalized electromagnetic continua
consisting of structured material points. Our theory pro-
vides a unified geometrical description for typical linear
nonreciprocal media regardless of their different physical
origins. Geometrically, the nonreciprocal medium is inter-
preted as either a time-varying Riemannian space with
spinning components or, equally, a static Riemann-Cartan
space where torsion is mimicked by the spinning material
points. Our theory is a direct generalization of covariant
electrodynamics in the Riemannian spacetime. Together
with engineering light rays with CT, the developed for-
malism based on frame transformation provides a practical
strategy to design novel nonreciprocal electromagnetic
devices by controlling the full vectorial d.o.f. of light.
Our theory may be of interest to systematically create
torsional spaces to manipulate the spin of other classical
waves such as elastic and acoustic waves [71].
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