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We theoretically predict the squeezing-induced point-gap topology together with a symmetry-protected
Z, “skin effect” in a one-dimensional (1D) quadratic-bosonic system. Protected by a time-reversal
symmetry, such a topology is associated with a novel Z, invariant (similar to quantum spin-Hall insulators),
which is fully capable of characterizing the occurrence of the Z, skin effect. Focusing on zero energy, the
parameter regime of this skin effect in the phase diagram just corresponds to a “real- and point-gap
coexisting topological phase.” Moreover, this phase associated with the symmetry-protected Z, skin effect
is experimentally observable by detecting the steady-state power spectral density. Our Letter is of
fundamental interest in enriching non-Bloch topological physics by introducing quantum squeezing and
has potential applications for the engineering of symmetry-protected sensors based on the Z, skin

effect.

DOI: 10.1103/PhysRevLett.130.203605

The concept of topological phases of matter has radiated
from condensed-matter physics to several fields including
photonics [1], magnetoplasmon [2], mechanics [3—6], cold
atoms [7,8], metasurface [9—11], etc. In particular, growing
efforts are paid to search for distinctive topological phe-
nomena in non-Hermitian systems [12-43]. The most
intriguing is the non-Hermitian skin effect [14,18], which
refers to the localization of bulk states at boundaries.
Accompanied with the breakdown of the bulk-boundary
correspondence, it stems from the point-gap topology where
the complex-valued spectrum enclosing an energy point has
a nonvanishing winding number [19,22-24,30,31].

Squeezing of bosonic fields [44], as a useful technique of
quantum engineering, could not only exponentially enhance
light-matter interactions [45-52], but also induce instability
of edge states in quadratic-bosonic systems (QBSs) [53-57].
In the sense that the instability arises from the complex-
valued spectrum given by a non-Hermitian matrix, the
QBS is also of interest in the framework of non-
Hermitian physics [58,59]. The topological classification
for the generic QBS is established based on the Bernard-
LeClair 38-fold symmetry classes [60], and it predicts the
topological triviality of 1D QBS in terms of zero energy [23].
However, the bosonic Kitaev chain exhibits an end-to-end
amplification and has the analog of Majorana zero
modes [61-66], which should be an effect of point-gap
topology. Such a contradiction implies that the topological
nature of QBSs still remains unclear, and solving this
contradiction is fundamentally interesting in exploring the
exotic topological phenomena (e.g., skin effect).

Here, we investigate the topological origin of a 1D QBS
in the thermodynamic-instability regime. By introducing an
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unconventional time-reversal symmetry, we discover that
the squeezing can induce the appearance of point-gap
topology together with a symmetry-protected Z, skin
effect in the QBS. The mechanism relies on additional
symmetry enriching the topology of system. In contrast to
the imaginary gauge transformation in non-Hermitian
systems [18,24,26,67,68], this skin effect corresponds to
a real squeezing transformation, and it is extremely
sensitive to the local perturbation that breaks the time-
reversal symmetry of system. By increasing the squeezing
until the point gap is open at zero energy, we also find the
survival of a pair of zero modes in the open boundary
condition (OBC) even if the real gap closes in the periodic
boundary condition (PBC). This indicates an anomalous
bulk-boundary correspondence and the appearance of a
real- and point-gap coexisting topological phase.
Meanwhile, the Z, skin effect, appearing in this coexisting
phase, inhibits another pair of zero modes.

Compared with the previous works focusing on the
transport amplification [61,62,65], Majorana bosonic ana-
logs together with the topological metastability [63,64],
and non-Bloch wave behaviors [69], here we introduce an
unconventional time-reversal symmetry to the QBS and
uncover the symmetry-enriched topological classification.
Remarkably, we also find the real- and point-gap coexisting
topological phase, and it can be identified by the steady-
state power spectral density. Our Letter builds the con-
nection between point-gap topology together with skin
effect and quantum squeezing. It opens up a door for
exploring the crossover between topological physics and
quantum engineering and offers potential applications in
designing new types of topological-protected devices.

© 2023 American Physical Society
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Squeezing-induced point-gap topology.—Let us consider
a 1D QBS subject to the lattice-translational symmetry with
Hamiltonian & = 13", & H(k)®;. Here H(K) is the first-
quantized Hamiltonian of the QBS in the crystal-momen-
tum space, and & = (a, ..., a4y, @ 4y, .o @ )7 s the
Nambu spinor in terms of 2N bosonic annihilation and
creation operators with k and —k, respectively. The spinor
obeys [@y;, ], | = Sy (7);;, with 7 being the indefinite
metric [70,71]. Here, ' = ¢’ ® Iy with the Pauli matrices
o' (i=1, 2, 3). The system dynamics is described
by (9/0t)®(t) = —iH, (k)®,(t), with H, (k) = °H(k)
being non-Hermitian. The dynamical matrix H, (k) inher-
ently respects the particle-hole symmetry CH};(—k)C™! =
—H,(k), with C=1' being the ‘“charge conjugation”
[72-74] and the pseudo-Hermiticity nHi (k)" = H,(k),
with # = 7° [75].

In the thermodynamic-instability regime, the squeezing
may induce a complex-valued spectrum formed by loops in
the PBC and open curves in the OBC [61,62,76]. This
scenario is a reminiscence of the point-gap topology in non-
Hermitian systems [19,22,23]. In terms of zero energy, we
construct the Hermitian matrix

- 0 H (k)
H(k)={ . , (1)
H: (k) 0
which respects the chiral symmetry T'H,I'"! = —H_, with

I'=1,y ® —1,y. This symmetry leads to the winding
number W € Z given by

/ ﬁim det H, (k). 2)

7 271 0

Equation (2) is always trivial due to the pseudo-Hermiticity.
However, in general, the symmetry class together with
the topological classification for the QBS would be
altered once some additional symmetries are introduced.
Hence, the presence of additional symmetries can enrich
the topological phase of the QBS (see Supplemental
Material [77]).

For illustration, we study the squeezed Su-Schrieffer-
Heeger (SSH) model shown in Fig. 1(a). The system
Hamiltonian is

£ B P at N
Hgsy = E (1@ AQjp + 120}, 1 4Q) B
jez

+ 91800 5 + 920j:1 405 +He.),  (3)

where #|, t, > 0 are the hopping strengths between the
nearest-neighbor sites, and ¢;, g, € R are the strengths of
the intra- and intercell squeezing, respectively. This model
can be implemented in many platforms, such as quantum
superconducting circuits [86-90] and photonic crystals
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FIG. 1. (a) Schematic of the squeezed SSH model consisting of

the A and B sublattices in the presence of two-mode squeezing.
The hopping and squeezing strengths between the adjacent sites
are denoted by 14, 1, and gy, g,, respectively. (b) Spectrum in the
complex plane as varying the intercell squeezing strength g,.
Here t, = 3t,/2 and g, = 0. The red dots at g, = 0.57;,2.5¢,
represent the critical points for closing or opening the point gap at
E = 0,and v = 1 corresponds to g, € (0.5,2.5)t,. (c)—(e) Spectra
(black curves) for I, II, and III in (b) can be continuously
deformed to (c) 1 (blue dots), (d) unit circle (blue circle), and
(e) xi (blue dots), respectively, while preserving the associated
gaps (red).

with optomechanical interaction [91-93]. In particular,
the crucial bosonic squeezing can be implemented via
the three-wave mixing process introduced by the Josephson
ring modulator or superconducting nonlinear asymmetric
inductive element device [77].

The Bloch spectrum with a twofold degeneracy is
Ezi(k) = Az -+ 2(t1t2 - 9192) COSk + 2i(t192 - tzgl) sin k,
with A = /] + 15 — g7 — g3. Figures 1(b)-1(e) show that
the spectrum experiences three processes in the complex
plane as increasing g,. First, two isolated loops are located
at the real axis (I) and, subsequently, a curve encloses zero
energy (I). Finally, two isolated loops move to the
imaginary axis (III). Those processes have the real
(ReE = 0), point (E = 0), and imaginary (ImE = 0) gaps,
respectively. This hints at the appearance of nontrivial
point-gap topology at zero energy in regime II induced by
squeezing.

Specifically, the winding number (2) for our system
is trivial, when the Bogoliubov bands enclose zero
energy shown in Figs. 1(b) and 1(d). However, the system
also respects a sublattice symmetry SH. gy (k)S™! =
—H gsu(k), with S = 63 being the sublattice and H,ggy
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FIG. 2. (a) Spectrum (black) of the squeezed SSH model under
the PBC and the corresponding continuum bands (red) after the
mapping (6). (b) Amplitudes of the Kramers pair with the lowest
energy (blue and red bars) for both the particles and holes
in the OBC. The localization of the two degenerate states
manifests the Z, skin effect. (c) Spectra of the perturbed model
in the OBC with varying the chemical potential u = (0, 1078,
1077,107%, 1073, 10‘4)1‘1. The red diamond mark denotes the
Kramers pair in (b). Parameters: 1, = 1.5¢;, g; = 0, g, = 0.61,,
and L = 40.

being the dynamical matrix. The combination of
the particle-hole symmetry, pseudo-Hermiticity, and sub-
lattice symmetry yields an unconventional time-reversal
symmetry [13,94,95],
THlssu(=k)T ' =Hssu(k), TT =-1, (4)
with 7 = iz?6>. In terms of zero energy, this symmetry
supports a Z, invariant v € {0, 1}, defined by [23,77]

Pf[H TSSH(O)T]] ’

(U = 580 B gon () 7]

(5)

where Pf(O) denotes the Pfaffian for any skew-symmetric
matrix O (OT = —0). This Z, invariant gives the critical
points at |ty £ 1| = |g; £ -], i.e., the red dots in Fig. 1(b),
which shows a squeezing-induced nontrivial point-gap
topology in regime II. Moreover, in regimes I and III,
the point-gap topology of the system can also be nontrivial,
if the reference energy E is not zero and is placed in the
closed loop [77].

Symmetry-protected Z, skin effect.—In the presence of
point-gap topology, the spectrum of the Hamiltonian (3)
dramatically changes from a closed curve [black loop in
Fig. 2(a)] to the discrete points that form open lines [see the
first panel of Fig. 2(c)] under the OBC. Consequently, as
shown in Fig. 2(b), the Kramers pair guaranteed by the

time-reversal symmetry (4) is localized at both ends, which
shows the appearance of the symmetry-protected Z, skin
effect [30,96,97].

In general, the non-Hermitian skin effect corresponds to
an imaginary gauge transformation [18,24,26,67,68].
However, here the Z, skin effect corresponds to a real
squeezing transformation with operator S[77]. Specifically,
under the parameter condition of g; = 0 and #, > |g,|, we

perform a squeezing transformation to the “particles” a;,
2 A—“

and “holes” a o with 6 = A, B such that

aja/s NS ja/B
(w ) =@ ) e

4jass %ja/B
Here the squeezing parameter r satisfies tanh r = —g,/1,.
The squeezing transformation (6) inherently belongs to

SU(,1) [98], and the particles and holes (&j{,,&;a) in the
new quasiparticle basis preserve [&;,. &}6,
this transformation (6), the Hamiltonian (3) is mapped to the
conventional SSH model with Hamiltonian Hggy =
Sk a4+ Hal, b + He., where T, = /8 — g
and L is the number of the total unit cells. As shown in
Fig. 2(a), the spectrum of H gy becomes two open (red) lines
in the continuum limit L — oo corresponding to the PBC
[99], which indicates the disappearance of the skin effect in
the squeezed-state representation. This demonstrates that the
obtained Z, skin effect originally comes from the intercell
squeezing ) ; g,(@;p;js14 + H.c.) in the QBS.

Physically, such squeezing interaction describes a non-
degenerate parametric amplification process and gives rise
to the entanglement between two bosonic modes in the
adjacent unit cells. Then, the introduced intercell para-
metric amplification in the 1D lattice induces intrinsically
the non-Hermiticity of the system, which ultimately leads
to the appearance of the point-gap topology together with
the symmetry-protected Z, skin effect (see Supplemental
Material [77]).

This Z, skin effect is extremely sensitive against
local symmetry-breaking perturbations [26,77,97]. To

] = 6,784, Using

show this, we introduce an on-site perturbation H, g =

Uy io &;”& jo to the system, which breaks the time-reversal
symmetry (4). Applying the squeezing transformation (6)
to the perturbation, we obtain

L
Hon site — M Z |:COSh (2r.]) (&;A&jA + &;B&jB)
=1

sinh (2rj) .+ . o
+f(ajAa;A —aj.BajT-B +Hc)|. (7)

The impact of Eq. (7) on the unperturbed Hamiltonian is
qualitatively determined by the scaling [26,69,101]
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p/ty ~ ek, (8)

It implies that the presence of an infinitesimal perturbation
also can change the physics of the system in the continuum
limit. Such an instability arises from the breakdown of the
time-reversal symmetry. More precisely, the anomalous
squeezing in (7) dramatically alters the spectrum by
coupling the Kramers pairs localized at the opposite ends
of the chain [see Fig. 2(b)]. As shown in Fig. 2(c), the
instability of the spectrum occurring at u/t; ~ 1078 con-
firms our analysis.

Real- and point-gap coexisting topological phase.—The
parameter regime of Z, skin effect actually corresponds to
a real- and point-gap coexisting topological phase due to
the interplay between the squeezing and particle-exchange
coupling. Such a phase is unconventional since the real
gap is closed in the PBC, while the zero mode survives in
the OBC, which indicates an anomalous bulk-boundary
correspondence. Meanwhile, the point-gap topology
is also nontrivial. To show this, in Fig. 3, we plot the
phase diagram for the real-gap topology by calculating the
winding number in the PBC and the zero modes in
the OBC.

First, the real gap ReE =0 opens in the PBC if
lg2| < |t, — t;| holds, as shown in Fig. 1(b). Because
of the sublattice symmetry S, the real-gap topology can
be characterized by the winding number W) =
(1/27i) [ g 'dg, with ¢ = t; + t,€™ [77]. This winding
number is nontrivial for #; 4 |g,| < t,, corresponding to the
yellow area of Fig. 3. The bulk-boundary correspondence
ensures the emergence of zero modes in the bulk gap. In the

3
(&0, &5) § (&r,2g)
(br.pr) i (B.%R)
@7, 2%) ()
2
1
lly unstable Dynamicall
0
-2 -1 0 1 2
9/t

FIG. 3. Phase diagram of the 1D QBS for g; = 0. In the yellow
area, the real gap opens in the PBC, and two pairs of zero modes
(XF.%%) and (P, pg) appear in the OBC. The green area
indicates a real- and point-gap coexisting topological phase with a
zero-mode pair. The dark gray areas correspond to the imaginary-
gap topological phase. The system has no zero mode in the white
area and is dynamically unstable in the light and dark gray areas
under the OBC.

representation of the canonical coordinates and momenta
Xjo=(aj, —l—&;g)/\/i and p, = (4, — &;G)/\/Ei, two pairs

Aes L Jj—1 A Ams L L—j A
of zero modes [ —ijlé_s Xja, X5 = ZFI 6%

and p{ =Yk 807 pia. piy =2k, 87 pyg. with 6., =
—11/(t, £ s|g»|) and s = sgn(g,) = £(|6.| < 1) appear in
the OBC [77]. Here the subscripts L and R denote the left
and right edges of the 1D QBS, respectively. [.*, pj]| =
[35%. Pyl = i(1—6°1)/(1 = 6%) (8 = —t;/T,) implies that
X[Jr and pj g are canonically conjugate with each other.

As increasing g», the real gap closes at 1| + |g:| = 1,
while a pair of zero modes (% ,2%) or (P, pR)
can survive. This means that the conventional bulk-boun-
dary correspondence based on W) is no longer valid. To
reconstruct it, we impose the continuum limit to the
mapped Hamiltonian Hggy and find that the real gap
preserves in the region |g,| <f, under the PBC.
Furthermore, the reconstructed winding number W)
[77] indicates the new nontrivial phase (.e.,

/11 + g3 < 1), corresponding to the yellow and green
areas of Fig. 3.

In terms of E = 0, the defined v is nontrivial in the green
area, which indicates a real- and point-gap coexisting
topological phase. Correspondingly, the symmetry-
protected Z, skin effect appears and greatly inhibits the
occurrence of a pair of zero modes, either ()Ac[,fcﬁ) for
g >0 or (pr, pr) for g, < 0. This inhibition originates
from the localization competition between the skin effect
and zero modes of the conventional SSH model [77].
Meanwhile, another pair of zero modes (p,.pg) or
(2, 2%) survive, and they are extremely sensitive to the
local perturbation (7). The scaling of i can be heuristically
estimated by u/t; ~ &L, with & = el"l|8]'/2. Figure 2(c)
shows that the zero modes (p, . pg) almost disappear at
U/t ~3x 107, which is consistent with this critical
scaling. As continuously increasing g¢,, the imaginary
gap is open and the associated topology becomes nontrivial
in regime III of Figs. 1(b) and 1(e), corresponding to the
dark gray areas of Fig. 3. Moreover, the phase diagram can
be enriched further when the intracell squeezing is intro-
duced, i.e., g # 0 [77].

Detection of the coexisting topological phase together
with the Z, skin effect—For detection, we calculate
the normalized power spectral density S, , (@)=
S de(p10(2)10(0)) €™/ (10(0)p0(0)), in the presence
of decay with rate y [77]. Here (), denotes a steady-state
expectation value and pj, = Xj,, pj,. Normally, any zero
mode corresponds to the peak of |S, , (0)] at edge sites.
Focusing on the first site 1A, the zero modes % * and p}
correspond to the peaks of |S, . (0)| and |S, , (0)],
respectively. Then double peaks at zero frequency in
Fig. 4(a) indicate the real-gap topological phase (yellow
area of Fig. 3), and one peak in Fig. 4(b) depicts the
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FIG. 4. (a),(b) Power spectral density |S/),-ﬁ/1,n (w)], with p;, =
Xia»P1a versus @ when y=0.2¢, (@ ¢, =02f; and
(b) g» = 0.61,, corresponding to the diamond and circle in Fig. 3.
(©) |Sy,,x,, (@) as varying y and . The red dashed lines denote
the cases in (b) and (d), respectively. (d) |S,, ., (0)| versus y. The
zero-frequency dip vanishes at the critical decay y. = 0.33#.
(€) |Sy,,x,, (0)| versus u when y = 0.2¢,. The topological inhib-
ition vanishes at /t; ~ 3 x 107>, Parameters: t, = 1.5¢;, g; = 0,
L =40, and (c)-(e) g, = 0.6¢,.

real- and point-gap coexisting topological phase (green area
in Fig. 3). Moreover, the peaks of |S,, ,  (£#)|in Fig. 4(b)
also manifest the skin effect, which is algebraically
divergent with L [64,77].

The above signature for detecting the coexisting
topological phase (i.e., the zero-frequency dip) will be
destroyed by the dissipation or perturbation of the system.
Figures 4(c) and 4(d) show that the dip of [S, , (0)]

disappears at the critical point y. = /g5 — (t; — 1,)* (see
Supplemental Material [77]). Physically, the presence of
dissipation moves the effective spectrum to the lower half
plane, and the reference frequency @ would go out of the
loop as increasing y. Figure 4(e) demonstrates that the zero-
frequency dip vanishes at the scaling p/t; ~ &L, since the
perturbation breaks the time-reversal symmetry.

Conclusion.—We have shown the squeezing-induced
point-gap topology together with the Z, skin effect in
the QBS, when time-reversal symmetry is introduced. The
interplay of the bosonic squeezing and particle-exchange
coupling results in the survival of zero modes in the OBC
even if a real gap closes in the PBC. This exhibits an
anomalous bulk-boundary correspondence. Our Letter
enriches non-Bloch topological physics in the QBS by
predicting the real- and point-gap coexisting topological
phase. This may stimulate future studies of symmetry-
enriched topological physics in the higher-dimensional
systems. Our Letter also provides a perfect example of
the combination of nonlinearity and non-Hermiticity with
topology, and it will inspire experimental activity in the
field of nonlinear topological photonics [102].
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