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Multiphoton absorption is of vital importance in many spectroscopic, microscopic, or lithographic
applications. However, given that it is an inherently weak process, the detection of multiphoton absorption
signals typically requires large field intensities, hindering its applicability in many practical situations. In
this Letter, we show that placing a multiphoton absorbent inside an imbalanced nonlinear interferometer
can enhance the precision of multiphoton cross section estimation with respect to strategies based on
photon-number measurements using coherent or even squeezed light directly transmitted through the
medium. In particular, the power scaling of the sensitivity with photon flux can be increased by 1 order
compared with transmission measurements of the sample with coherent light, such that the measurement
precision at any given intensity can be greatly enhanced. Furthermore, we show that this enhanced
measurement precision is robust against experimental imperfections leading to photon losses, which
usually tend to degrade the detection sensitivity. We trace the origin of this enhancement to an optimal
degree of squeezing which has to be generated in a nonlinear SU(1,1) interferometer.
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Introduction.—Multiphoton absorption (MPA) is a non-
linear process in which several photons are simultaneously
absorbed by the sample [1–3]. Large penetration depths and
the nonlinear dependence on the beam profile, causing most
of the signal to be generated in the confined area of maximal
beam intensity, make it an appealing process for a variety of
technological applications. Most famously, in nonlinear
imaging, multiphoton processes can surpass the single-
photon diffraction limit and thereby enhance the spatial
resolution [4–6], pushing the resolution of optical micro-
scopy to molecular scales. Two-photon absorption (i.e.,
m ¼ 2) already forms the foundation for diverse applica-
tions ranging from 3D microfabrication [7] to optical data
storage [8], spectroscopy, and microscopy [9–11] and even
medical applications such as photodynamic therapy [12].
Furthermore, processes with m ≥ 3 have been explored for
photon absorption microscopy due to a reduction of scatter-
ing losses and further minimization of unwanted linear

absorption. They provide greater penetration depth
and spatial resolution [13], making them ideal tools for
inorganic-organic hybrid materials [10] and biological
imaging [14–19].
These advantages offered by MPA are, however, limited

by the inherent weakness of nonlinear light-matter inter-
actions [20,21] and the resulting very small multiphoton
absorption cross sections, such that typically the use of
strong, ultrafast lasers is the only way to overcome this
problem and generate a measurable signal.
One way to circumvent the low efficiency of such

interactions may lie in the exploitation of the quantum
properties of light [22]. In particular, two-photon
absorption of nonclassical light has attracted tremendous
interest in this regard [23–31], where enhanced nonlinear
signals induced by entangled photons were reported [30].
The strength of this enhancement is, however, the subject
of intense current debate [32–37]. Moreover, even if
large enhancements due to entanglement were feasible,
because of its occurrence in the few-photon regime, where
the mean photon number per mode must be small, hn̂i ≲ 1,
it is not suitable for many practical applications, such as
nonlinear imaging, where a nonlinear photon flux depend-
ence, which requires hn̂i ≫ 1, is crucial to enhance the
resolution.
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This motivates us to investigate, more broadly, MPA of
nonclassical states of light with mesoscopic character, i.e.,
with large photon numbers compared with entangled
photon sources. With notable exceptions [38,39], this
photon number regime has received much less attention
in the literature to date, even though it is very attractive
for said applications. The rate of m-photon absorption
scales with the mth order correlation function, which, for
bunched sources, grows exponentially with m [40]. But for
practical applications, this enhancement has to be com-
pared with the increased noise levels of these sources
which may erode the benefits. We investigated two-photon
absorption recently [41,42], and found improved scaling
behavior of the Fisher information in quadrature measure-
ments with displaced squeezed light compared with coher-
ent states of light. However, the question remains: how to
find a realistic setup to perform this quantum-enhanced
nonlinear spectroscopy?
One particularly promising platform for investigating

the nonlinear interactions of bright quantum states of light
is nonlinear SU(1,1) interferometers [43–45]. Introduced
theoretically by Yurke already in the 1980s [46], this
technology has reached a level of maturity where various
applications in quantum sensing seem feasible. It can be
used, inter alia, for phase measurements [47], spectro-
scopy [48,49], imaging [50], quantum state engineering
[51,52], and quantum information applications [53,54].
The main difference between these nonlinear interfero-
meters and their linear Mach-Zehnder counterparts is the
replacement of the beam splitters with optical parametric
amplifiers (OPA) [45]. In the single-mode case considered
in this manuscript, these OPAs squeeze (or antisqueeze) a
field quadrature of the light field propagating through the
setup, and can thereby enhance resolution or suppress
the impact of certain noise sources. It is known that the
second OPA renders phase measurements robust against
single-photon losses that occur outside the interfero-
meter [47,50,55–61]. Recently, the same improvement
was also predicted in linear absorption measurements in
the low-gain regime [60]. However, to the best of our
knowledge, multiphoton absorption measurements have
not been investigated to date in this platform.
In this Letter, we will show that by placing an MPA

sample inside a nonlinear SU(1,1) interferometer [43] and
optimizing the interferometer, the resolution of a MPA
signal can be enhanced significantly compared with MPA
detection using a classical source with the same photon
number. In particular, while the uncertainty Δε2m for
measurements of the m-photon absorbance εm with
classical light scales as ∼n−2mþ1

S for sufficiently large
photon numbers (nS) at the sample, we find that this
scaling can be enhanced to n−2mS in a nonlinear SU(1,1)
interferometer, thus providing an enormous advantage in
the large photon number regime considered here. We find
a set of parameters of the interferometer that optimize the

measurable Δε2m, and we characterize the resulting light
fields. This analysis enables us to identify parameter
regimes where nonlinear interferometers can detect
MPA signals, but which are inaccessible with classical
methods. In addition, we explore the effects of error
sources (in the literature referred to as internal and
external losses [56–58]) on the MPA detection ability.
Crucially, we find that so-called external losses do not
degrade the sensitivity of the measurements, as they can
be compensated in nonlinear interferometers. As is also
the case in phase estimation [45], however, so-called
internal losses cannot be compensated, and reduce the
optimal achievable precision scaling.
Setup and theory.—The setup we consider in this Letter

is sketched in Fig. 1(a): a coherent seed field with central
frequency ω0 is injected into a degenerate OPA, where a
pump pulse with central frequency 2ω0 triggers stimulated
single-mode downconversion and creates a squeezed
coherent state that interacts with an m-photon absorbing
sample [62,63]. It should be noted that in most experiments
on downconversion driven by pulsed pump fields, multi-
mode states of light are created. In order to generate single-
mode squeezed light, one should enforce single-mode
spontaneous parametric downconversion (SPDC) with
specially chosen phase matching [64] via methods such
as dispersion engineering [65], parametric amplification after
group-velocity dispersion [51], or using waveguides [63,66].
We account for scattering losses in the optical system after
MPA (internal losses), which we characterize by the loss rate
1 − ηIn (ηIn ¼ 1 corresponds to no loss while ηIn ¼ 0
indicates all the photons are completely lost). Single-photon
losses occurring inside the sample are discussed in the
Supplemental Material [67]. The transmitted light field
passes through the second OPA where it will be squeezed
or antisqueezed. Finally, the light field reaches the detector,
where an intensity measurement is carried out. We account
for imperfect photon detection with a second loss process
(the so-called external losses), described by the loss rate
1 − ηEx. Taken together, the expectation value of the photon
number measurement after the transmission through the
described setup can be calculated as

hn̂i ¼ trfn̂eLloss 2eLOPA2eLloss1eLMPAεmeLOPA 1ρ0g: ð1Þ

Here, ρ0 ¼ DðαÞj0ih0jD†ðαÞ describes the initial coherent
seed state with the complex displacement amplitude
α ¼ jαjeiϕLas , in which “Las” stands for laser. LOPA k are
superoperators describing the squeezing processes,

eLOPA kρ≡UOPA kρU
†
OPA k; ð2Þ

where UOPA k ¼ expðζka†2=2 − ζ�ka
2=2Þ and ζk ¼ rkeiϕk .

Without loss of generality, we set the phase of the first
OPA as ϕ1 ¼ 0 and rename the phase of the second OPA
as ϕ2 ¼ ϕInt (where “Int” stands for the interferometer).
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Lloss k account for single-photon losses which we model as
unbalanced beam splitters [47,68–70], i.e.,

eLloss kρ ¼ Uloss kρU
†
loss k; ð3Þ

in which Uloss k ¼ exp ðτkðac†k þ cka†=2ÞÞ, with τk ¼
arccosð ffiffiffiffiffi

ηk
p Þ, and ck is a photon annihilation operator in

an auxiliary mode that remains in a vacuum state. Finally,
the dynamics of the transmission of a quantum state of light
through an m-photon absorbing medium is described by a
Markovian Lindblad master equation for the photonic
density matrix ρ in a reference frame rotating at the
frequency ω0 [71,72]

d
dt
ρ¼ γMPALMPAρ¼

γMPA

2m
ð2amρa†m−a†mamρ−ρa†mamÞ:

ð4Þ

The Lindblad operator is given by a correlated loss
operator L ¼ am=

ffiffiffiffi

m
p

. We add the factor m in the
definition of the Lindblad operator for convenience to
simplify expressions in our subsequent derivations.
Given the time t in which the light field travels through
the sample, we wish to estimate the absorbance
εm ≡ γMPAt which can be related to the corresponding
m-photon absorption cross section (see the Supplemental
Material [67]). The precision of estimating εm can be
obtained by studying the uncertainty of εm via error

propagation [73,74], yielding the following expression
for the variance of intensity measurements

Δε2m ¼ Varðn̂Þ
j ∂hn̂i
∂εm

j2
: ð5Þ

The variance Δϵ2m determines the smallest absorbance ϵm
that can be distinguished from a zero signal and con-
sequently, the improvement of its scaling behavior pro-
vides an enormous advantage in practical applications
where the photon flux should be kept as small as possible.
Since nonlinear susceptibilities, and hence the corre-
sponding multiphoton absorption cross sections, decline
rapidly with m (see the Supplemental Material [67]),
we concentrate on the weak absorption limit, where
εm ≪ 1. Consequently, we will approximate eLMPAεm ≃
1þ εmLMPA which results in the transmitted density
matrix being ρ0 ≃ ρþ εmð∂ρ=∂εmÞ.
Let us first consider a conventional transmission meas-

urement of MPA losses using a strong laser with hn̂i ≫ 1.
The precision can be found straightforwardly from Eqs. (1)
and (5) by setting r1 ¼ r2 ¼ 0. It evaluates to

Δε2m;ðcohÞ ¼
1

ηInηEx

1

n2m−1
S

; ð6Þ

where nS (the number of photons at the sample) in Eq. (6) is
simply nS ¼ jαj2. This behavior originates from the

(a) (b) (c)

M

FIG. 1. (a) The setup considered in this manuscript. A coherent seed pulse passes through a first degenerate OPA on the left which
prepares a squeezed state. It is focused on an m-photon absorption sample, where a part of the light field is lost due to single-photon
scattering. The transmitted light field is then focused on a second degenerate OPA. The light field finally reaches the detection device on
the right where imperfect detection gives rise to another loss source. (b) Variance Δε2

2;SUð1;1Þ for two-photon absorption (m ¼ 2) with

ηIn ¼ ηEx ¼ 1, and nS ¼ 15, as a function of interferometer and laser phases (upper panel with r1 ¼ 0.939 and r2 ¼ 1.447) and also as a
function of squeezing parameters (lower panel with ϕLas ¼ π=2 and ϕInt ¼ π). The sensitivity becomes independent of the second
squeezing parameter for a sufficiently large second squeezing parameter r2. The light blue line maps optimal regimes of squeezing
parameters. (c) Δε2m;SUð1;1Þ (dotted-dashed lines) and Eq. (7) (solid lines) as a function of second squeezing parameter for different

photon numbers at the sample (nS). We observe that for sufficiently large second squeezing parameter r2, Δε2m;SUð1;1Þ converges to the

scaling behavior reported in Eq. (7) (for sufficiently high nS).
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m-photon absorption signal scaling ∝ nmS and the variance
of the intensity (hence, the photon number) increasing
linearly for a coherent state. Altogether, the precision scales
as the (2m − 1)-th power of the mean photon number, and it
is reduced by both internal and external losses. As we show
in what follows, an interferometric detection can reduce the
photon number variance to a constant, without deteriorating
the signal scaling.
Interferometric enhancement.—We now want to under-

stand how the SU(1,1) interferometer can enhance the
resolution of MPA measurements compared with Eq. (6).
To this end, we first establish conditions for optimizing the
sensitivity, i.e., for minimizing the variance [Eq. (5)]. Since
the photon number in the interferometer can vary strongly
with, e.g., the phases ϕi, we fix the number of photons at
the sample (nS) in the optimization procedure. This require-
ment is inspired by the central objective in quantum-
enhanced sensing applications to reduce photodamage at
the sample. Instead, we allow for a varying number of
photons at the detector level, where photodamage is not
problematic. As a consequence, the first squeezing parameter
is bounded within 0⩽ r1 ⩽ arcsinh

ffiffiffiffiffi

nS
p

, and the coherent
amplitude jαj is adjusted to keep the photon number at the
sample fixed resulting in nS¼jαj2½sinhð2r1Þcosð2ϕLasÞþ
coshð2r1Þ�þ 1

2
½coshð2r1Þ−1�. Thus, r1 ¼ arcsinh

ffiffiffiffiffi

nS
p

will
correspond to a squeezed vacuum (and also jαj ¼ 0), while
r1 ¼ 0 corresponds to a coherent state with jαj ¼ ffiffiffiffiffi

nS
p

propagating through the sample.
In Fig. 1(b), we present the parameter optimization for

m ¼ 2 at a fixed photon number nS ¼ 15 showing that we
obtain the best precision when the phases are fixed at
ϕLas ¼ π=2; 3π=2;… and ϕInt ¼ π. This result does not
change for m ¼ 1…; 4 [75] and does not depend on the
photon number nS. It can be interpreted as illustrated in
the small panels in Fig. 1(a): The first condition implies that
the first OPA generates an amplitude-squeezed state (here
by squeezing the momentum quadrature). This photon-
number-squeezing enables the phase-insensitive multipho-
ton loss to create the strongest possible signal by changing
its sub-Poissonian photon number distribution. We recently
showed that such a state is well suited to detect two-photon
losses [42], and this remains true for general m-photon
absorption. The second condition above, ϕInt ¼ π, implies
that the second OPA antisqueezes the initially squeezed
quadrature, which means that the sub-Poissonian distribu-
tion is stretched into a super-Poissonian one thus enhancing
the change brought about by the MPA. This is illustrated in
the third and fourth small panels in Fig. 1(a).
The optimal choice of phases has to be accompanied by a

suitable degree of squeezing. This is depicted in Fig. 1(b),
where we minimize Eq. (5) as a function of both squeezing
parameters r1 and r2. For any fixed r2, there is a minimum
as a function of r1. This means that the optimal sensitivity
is generated by an amplitude-squeezed state, where the
amount of squeezing has to be adjusted for the mean photon

number nS, as we will discuss later in detail. In addition, the
optimal squeezing r1 increases with r2 and then saturates
[see Fig. 1(c)], as does the achievable precision at fixed nS.
This demonstrates that the interferometer can enhance the
precision of MPA detection.
If we optimize r1 at every nS we find that if, in the

absence of external losses, r2 ≫ r1=2 (for details, see the
Supplemental Material [67]), Eq. (5) scales as

Δε2m;SUð1;1Þjr2≫r1=2 ∝
1

n2mS
ð7Þ

for sufficiently large nS. This scaling is contrasted with the
classical case [Eq. (6)] in Fig. 2(a) for m ¼ 1…; 4. Thus,
the optimal choice of parameters enables us to increase the
scaling of the sensitivity with respect to the mean photon
number by a factor of 1. This is the central result of
our paper.
Impact of losses.—We next investigate how the quantum-

enhanced sensitivity scaling is affected by the inevitable
photon losses in a realistic experiment. We first note that in
the limit of large r2 considered before, Eq. (5) becomes
independent of external losses (see the Supplemental
Material [67]). This is again consistent with our earlier
results [42], where it was shown that single-photon losses
do not affect the sensitivity of two-photon absorption
measurements with squeezed states. Hence, external
losses can always be compensated in an SU(1,1) interfer-
ometer [51,56]. This behavior contrasts with the classical
situation in Eq. (6), where the resolution is degraded by
external losses. This behavior is shown in Fig. 2(b). While
we can have sensitivity advantages for r1=2 < r2 < r1, in
order to remove the effects of the external loss completely
and saturate the optimum scaling behavior as we have
described above, we should further demand r1 < r2, such
that we generate super-Poissonian photon statistics at the
detector.
The same is not true for internal losses. If these losses

destroy squeezing in the light field before it reaches the
second OPA, the quantum advantage we obtained in Eq. (7)
is lost. This behavior is shown in Fig. 2(c), where we
extract the scaling behavior of Δε2m (i.e., we determine the
scaling Δε2m ∼ n−γS for nS > 100) as a function of these
internal losses. At small internal losses (1 − ηIn ≲ 10−3),
the scaling is not affected, and we find γ ∼ 2m. The scaling
exponent then decreases gradually and approaches the
coherent limit γ ∼ 2m − 1 when the internal losses become
very large (1 − ηIn ∼ 0.1) [47,54]. It should be noted that
although the scaling behavior of the coherent case is not
affected by internal loss, the optimum sensitivity would be
affected similarly to the external case [see Eq. (6)]. There
is a quantum enhancement (albeit a small one) even for
strong internal losses of, say, 10%. Remarkably, overall our
findings appear analogous to linear phase estimation
applications, where internal losses destroy the sought-after

PHYSICAL REVIEW LETTERS 130, 203604 (2023)

203604-4



Heisenberg scaling, while external losses can be compen-
sated [47,50,55–59].
Optimal squeezing parameter.—We finally turn to the

discussion of the optimal squeezed state in the inter-
ferometer. The observed enhancement is a consequence
of the optimal squeezing or antisqueezing operations
performed by the two OPAs. While the second squeezing
parameter should be chosen as large as possible, the first
squeezing parameter is determined by three factors: the
number of photons nS, the internal loss 1 − ηIn, and the
degree of the nonlinearity m. We show its variation with nS
in Fig. 2(d). In an ideal interferometer, ηIn ¼ 1, the first
OPA generates an amplitude-squeezed state [see Fig. 1(a)]
where the standard deviation of the antisqueezed quad-
rature is as large as the expectation value of the squeezed
one, i.e., hq2i1=2 ¼ hpi. As we show in the Supplemental
Material [67], this condition gives rise to the enhanced
scaling in Eq. (7), by keeping the variance in the numerator
of Eq. (5) constant, while admitting an optimal scaling
of the denominator. This optimal degree of squeezing
decreases with the internal loss in the case of one- and
two-photon absorption but remains almost constant for
larger nonlinearities. Thus, the condition hq2i1=2 ¼ hpi
appears to describe an almost universally optimal state for
detecting multiphoton absorption.
Conclusion.—We found that at any given intensity of

light interacting with the sample, SU(1,1) interferometers
can improve significantly the precision of estimation of
multiphoton absorbances with respect to approaches based
on classical light. At photon fluxes with mean photon
number hn̂i > 1, the precision of an optimally tuned

SU(1,1) interferometer scales as ∼n−2mS . In contrast, a
classical measurement only realizes a scaling ∼n−2mþ1

S .
A measurement with the optimized ideal SU(1,1) interfer-
ometer can thus always outperform its classical counterpart.
Even in the presence of competing losses, optimized
quantum states always outperform classical measurement
strategies. We note that this performance is also superior
to transmission measurements with squeezed light (see
Ref. [42]). While we concentrated on multiphoton absorp-
tion, a similar SU(1,1) interferometer provides interesting
quantum enhancements for other nonlinear spectroscopic
processes such as Raman signals [48]. The generalization
to multimode interferometers will be another important
avenue to explore, as it will enable the exploitation of
entanglement to create further metrological and spectro-
scopic advantages in nonlinear interferometry [76–79]. Our
work establishes a quantum advantage for high-gain
squeezed light that opens new applications in quantum
imaging [80,81] in a nonlinear intensity regime.
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FIG. 2. (a) Optimum Δε2m as a function of the photon number interacting with the sample, nS. We observe that squeezing inside the
SU(1,1) interferometer enhances the best achievable sensitivity compared with a classical interferometer. (b) Eq. (5) is shown in the limit
of very large r2 as a function of external losses for optimized SU(1,1) measurements (solid lines) and coherent states (dashed lines) in the
case of one-, two-, three-, and four-photon absorption. By adjusting the squeezing parameters, the effects of external loss can be
completely compensated in the SU(1,1) case. (c) Scaling exponent γ of the sensitivity (i.e., Δε2m ∼ n−γS ) as a function of the internal loss.
SU(1,1) interferometric measurements show superior precision scaling compared with coherent state measurements even in the presence
of strong internal loss, up to ∼10%. (d) The optimal squeezing parameter r1 as a function of photon number for three different levels of
internal loss. Overall, we observe that higher-order nonlinear processes have better sensitivity indicating that the measurement of the
cross section in samples with higher-order nonlinear processes has better precision.
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