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We determine the phase diagram of strongly correlated fermions in the crossover from Bose-Einstein
condensates of molecules (BEC) to Cooper pairs of fermions (BCS) utilizing an artificial neural network.
By applying advanced image recognition techniques to the momentum distribution of the fermions, a
quantity which has been widely considered as featureless for providing information about the condensed
state, we measure the critical temperature and show that it exhibits a maximum on the bosonic side of the
crossover. Additionally, we backanalyze the trained neural network and demonstrate that it interprets
physically relevant quantities.
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When an ensemble of attractively interacting fermions is
cooled to below a critical temperature Tc it transitions from
a normal phase into a superfluid or superconducting phase.
The precise value of the phase transition temperature is
governed by the microscopic details of the system, such as
the interaction strength and interparticle correlations, and
can exhibit nontrivial dependencies. For example, in the
crossover from BCS to BEC, it has been theoretically
predicted that the critical temperature depends nonmono-
tonically on the interaction parameter [1–8], see Fig. 1(a).
The nonmonotonic behavior is rooted in the fundamental
change of the nature of pairing below the critical temper-
ature. For Cooper pairing (BCS) one expects an exponen-
tial dependence of Tc on the interaction strength whereas
dimer pairing (BEC) implies a nearly constant Tc. The
division between the two regimes is not at unitarity but is
expected to be on the BEC side of the crossover [9,10]. In
this Letter we study the critical temperature across the
BCS=BEC crossover using an artificial neural network to
analyze the momentum distribution of ultracold atomic
Fermi gases.
A precision determination of the critical temperature

across a broad range of interaction strengths has so far been
hindered by insufficient experimental detection capabil-
ities. One main challenge is that upon release from the trap
in a conventional time-of-flight study, Cooper pairs break
and are not amenable for direct detection. Nevertheless,
they leave a weak imprint on the momentum distribution of
the fermions. In Fig. 1(b) we compare the momentum
distribution of a homogeneous Fermi gas at a temperature
of T=TF ¼ 0.15 (i.e., near the critical temperature) with the
momentum distributions of BCS ground state wave func-
tions for different interaction parameters. The pairing
signature is by far not as pronounced as the celebrated
bimodal momentum distribution of a Bose-Einstein con-
densate and therefore the detection of the condensate

fraction is much more difficult. Additionally, finite
temperature, interactions, and the inhomogeneity of the
harmonically trapped sample further obscure the pairing
signature [11]. In order to detect the minuscule
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FIG. 1. (a) Sketch of the phase diagram across the BCS=BEC
crossover including the critical temperature for condensation
(solid line). The BCS ground state is dominated by long-range
Cooper pairs whereas the BEC exhibits dimer pairing of the
fermions. (b) Momentum distribution of an ideal Fermi gas at a
temperature of T=TF ¼ 0.15 (dashed line) in comparison with the
momentum distribution of the BCS ground state for different
interaction strengths: 1=ðkFaÞ¼−1 (blue), 1=ðkFaÞ¼0 (yellow),
and 1=ðkFaÞ ¼ 1 (red). (c) Principle of the data analysis using a
neural network. Condensate fractions are determined from time-
of-flight images after a rapid ramp. This information is used to
label time-of-flight data for equal parameters but without rapid
ramp. A neural network is trained on the labeled data to predict
the condensate fraction.
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modifications of the momentum distribution in the time-of-
flight images, we have developed and applied a neural
network for advanced image recognition. We favor neural
network processing over standard data fitting since the
neural network is unbiased as compared to applying a
predetermined fitting function and therefore might detect
physical signatures beyond a model-based analysis.
Recently, applications of these sophisticated techniques
have entered into the field of quantum physics for the
identification of phases of quantum matter [12–18].
However, even when being successfully trained, artificial
neural networks have acted as “black boxes” hiding their
decision criteria. Specifically, whether or not the network
actually identifies physically relevant criteria for computing
its output has remained obscure. Generally, the inter-
pretation of neural networks and their causality is rather
challenging and currently a major topic in computer
science [19]. In this Letter, we demonstrate that the back-
analysis of neural networks provides further details of the
physics, which are not accessible by conventional means.
Experimentally, we prepare a quantum gas of ∼3 × 105

atoms per spin state in the two lowest hyperfine states j1i
and j2i of 6Li in an optical dipole trap, similar to our
previous work [20]. We adjust the interaction strength of
the sample by Feshbach resonance and the temperature by
changing the trap [21]. The interaction and temperature are
tuned independently of each other and the thermalized
cloud is detected by absorption imaging after ballistic
expansion, see the Appendix.
The neural network employed for image analysis com-

prises of three convolutional and pooling layers and three
fully connected layers and is trained through stochastic
gradient descent with Adam optimizer [22], see the
Appendix. In order to train and validate our neural network,
we employ a supervised learning method [23]. To this end,
we measure two different density distributions after time of
flight, see Fig. 1(c): (i) The density distribution nA of the
atoms directly released from the optical dipole trap. During
the expansion, the Cooper pairs are broken and nA is related
to the momentum distribution of the fermions convolved
with interaction effects during the expansion. (ii) The
density distribution nRR after applying the rapid ramp
technique [24–27], which measures the momentum dis-
tribution of the molecules that have been created from the
Cooper pairs. Even though this technique is expected to
preserve physics in many cases, quantitatively and princi-
pally there are open questions about the adiabaticity of the
ramp and how this might affect weak signatures such as
small condensate fractions near the critical temperature.
During the training process, we label input pictures
of nA with condensate fractions obtained from bimodal
fits to nRR at the same experimental parameters. We exclude
data with temperatures near the critical temperature from
learning. Moreover, in order to prevent the network from
learning unwanted correlations between directly accessible

parameters (such as atom number and condensate fraction),
we use training data from different interaction values
throughout the crossover at 1=ðkFaÞ ¼ f1.6; 1.0; 0.5; 0.0;
−0.5;−0.6g on a total of 7895 labeled examples. Here, kF
denotes the Fermi wave vector calculated from the atom
number and the trap parameters and a the s-wave scattering
length. We extract the critical temperature from the neural
network predictions for the direct-release time-of-flight
images across the whole range of the BCS=BEC crossover
by taking a piecewise linear fit of the condensate fraction.
Qualitatively, the behavior of the critical temperature of

the superfluid transition across the BCS=BEC crossover
can be understood by starting from the extreme regimes: in
the weakly attractive BCS limit, the critical tempera-
ture scales kBTc ∼ EF exp½−π=ð2kFjajÞ� [1,28]. Here, EF
denotes the Fermi energy. In the opposite regime, far on
the BEC side, we encounter a weakly repulsively interact-
ing gas of bosons. The bosons have twice the mass of the
fermions MB ¼ 2m and half the density nB ¼ n=2.
The critical temperature of the ideal Bose gas is simply
given by kBT0

c ∼ ðℏ2n2=3B =MBÞ. Unlike in the BCS regime,
the critical temperature of the Bose gas has a very weak
dependence on the interaction strength between the bosons
TcðaBÞ ¼ T0

c½1þ cn1=3B aB þ � � ��, where aB ¼ 0.6a [29]
denotes the s-wave scattering length between two bosons,
and c is a positive constant [30,31]. From this simple
argument, we expect an increase of the critical temperature
when approaching the crossover from the BEC side and
hence a maximum critical temperature somewhere in the
crossover regime.
From the previous consideration it is obvious that a

careful determination of both density and temperature is
very important. In the trapped gas of our experiment, the
two quantities are inversely related to each other and,
furthermore, also interparticle interactions change the
density.
The calibration of density and temperature proceeds in

the following way: We take in situ absorption images of the
trapped gas along two orthogonal spatial directions (in
order to account for asymmetries of the trapped cloud) for
different interaction strengths and temperatures. On these
data, we perform an inverse Abel transform to reconstruct
the density distribution inside the trap. This serves two
purposes: on the one hand, we obtain the center density
which we use for the normalization of the data and on the
other hand, the density distribution nσðrÞ feeds into
the temperature calibration in the next step. Then, we
use the data from the unitary Fermi gas [1=ðkFaÞ ¼ 0]
and its both theoretically [2,8,32,33] and experimentally
[34–37] well-known critical temperature of Tc ¼ 0.167TF
to precisely reconstruct our trapping potential. To this end,
the inverse equation of state of the unitary Fermi gas [37] is
applied to the in-trap density distribution reconstructed
from in situ high-intensity absorption images of the cloud at
T ¼ Tc. In the final step, we use the obtained knowledge of
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trap potential and measured in-situ density profiles nσðrÞ to
determine the temperature by fitting a virial expansion of
the equation of state to the outermost regions of the trapped
cloud where the gas is not condensed.
In Fig. 2, we show the results of the critical temperature

for a homogeneous gas in comparison with theoretical
predictions as a function of the interaction parameter
1=ðkFaÞ. Since the condensation will initiate at regions
of highest density, i.e., at the center of the trapping
potential, we adopt a local density approximation and
use the density and interaction parameters at the center
of the cloud to compare with the theory of the uniform gas.
Our results show a steady increase of the critical tempera-
ture from the BCS side up to interaction strengths of
approximately 1=ðkFaÞ ¼ 0.5. There, Tc levels off and
stays approximately constant or, possibly, declines weakly
for higher coupling strengths.
Overall, our results are in very good agreement with

several theory predictions in different ranges of the phase
diagram. Throughout the whole crossover, the agreement
with the extended Gorkov-Melik-Bakhudarov (GMB)
theory [8] is striking and both position and value of the
maximum Tc are well compatible with the theoretical
results. On the BCS side our data are higher than the
quantum Monte Carlo calculations [3,4,33] and the
extended GMB theory, however, close to the theoretical
prediction of reference [2]. The experimental results agree
with trends observed also in earlier measurements of
the phase diagram in both potassium [24] and lithium

gases [25] in which the critical temperature on the BCS side
did not fall off as rapidly with decreasing interaction
strength. Possible suggested explanations include effects
of the harmonic trap [38], the formation of dimers above the
resonance [25], and nonadiabaticities of the rapid ramp in
the training data.
In order to verify our methodology, we have double

checked the performance of the trained neural network
using a different Feshbach resonance in another spin
mixture of the lithium atoms: We prepare a condensate
in the hyperfine states j1i and j3i for which the position and
width of the Feshbach resonance are different and atom
number and starting temperature as compared to the
training cases are also different. Nevertheless, the neural
network successfully predicts the condensate fraction at
1=kFa ¼ −0.41 (kF calculated from the atom number) with
the same critical temperature.
An important remaining question is whether the opti-

mized neural network has learned physically relevant
quantities. In other words: does the neural network spot
hidden details in the data during its optimization and can
we extract this information to draw conclusions for the
physics? In previous applications of neural networks to
analyze quantum problems this had often not been con-
sidered, and, generally, the question of causality in machine
learning is becoming increasingly important also in com-
puter science. We extract from the neural network which
neurons have been mostly activated. To this end, we
employ a back-propagation-based approach (DeepLIFT,
[39]) that assigns importance scores to the inputs for a
given output. The importance scores can then be identified
to reveal those neurons (or, simply put, regions of the
image) that contribute most decisively to the neural net-
work output. In Fig. 3, we show the importance scores

FIG. 2. Critical temperature across the BEC-BCS crossover
referenced to the homogeneous gas. Full symbols: experimental
data. Error bars are calculated from the standard error and an
estimation of the systematic error caused by nonharmonicities of
the trap. The latter effect dominates and is discussed in more
detail in the appendix. Dashed line: BCS theory with GMB
corrections; solid line: extended GMB theory [8]; dash-dot line:
theory from [2]; dotted line: interacting BEC; open triangles:
quantum Monte-Carlo data [3], open circles: quantum Monte-
Carlo data [4].

FIG. 3. Backanalysis of the neural network. For every inter-
action strength, we determine which neurons activate most for
determining the condensate fraction. On the BEC side the most
active neurons are at low momenta whereas at unitarity and on the
BCS side the most active are at large momenta.
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obtained for different momenta. The results highlight that
in the BCS regime [1=ðkFaÞ < 0] the neural network
output is dominated by the momentum density near
k ≃ 0.2kF. In contrast, on the bosonic side [1=ðkFaÞ > 0],
the neural network output mostly relies on low-k data. This
finding is in agreement with the expectation of the effects of
pairing in the fermionic and bosonic sides of the crossover
[see Fig. 1(b)] and indicates that the neural network
optimizes indeed for physically relevant features in the
time-of-flight data.
In summary, we have demonstrated that a neural network

can be utilized for the detection of quantum phases of
strongly interacting systems with high accuracy. Moreover,
we show that backanalysis of the trained neural network
allows to extract insights much beyond standard fitting
routines and therefore opens a new route to the precision
analysis of physical data.

This work has been supported by the Alexander-von-
Humboldt Stiftung, DFG (SFB/TR 185 project C6), Cluster
of Excellence Matter and Light for Quantum Computing
(ML4Q) EXC 2004/1–390534769. We thank Kilian Kluge
for discussions.

Appendix.—Preparation and detection of the
sample: The lithium atoms are confined in a trap
formed by two intersecting laser beams of 1070 nm
wavelength with final trap frequencies in harmonic
approximation of 2π × ð168; 166; 238Þ Hz. The final
temperature of the sample after evaporation close to a
Feshbach resonance at 834 G is T=TF ¼ 0.08� 0.01.
After preparation of the condensate in the crossover
regime, we choose a desired interaction strength 1=kFa
by adiabatically ramping the magnetic field to the
corresponding field value Bfinal. To controllably increase
the temperature, we suddenly decompress and sub-
sequently recompress the trap for a variable amount
of time [21,40]. This is followed by a hold time of 50 ms
for thermalization. We perform detection of the gas by
time-of-flight imaging. To this end, the optical dipole
trap is extinguished rapidly and the gas expands. Owing
to a residual inhomogeneity of our magnetic bias field,
the gas expands into a weak harmonic trapping potential
with frequencies 2π × ð16; 16; 20iÞ Hz.
In order to image the bimodal distribution nRR, the cloud

is subjected to a rapid projection onto Feshbach molecules
by suddenly ramping the magnetic field to the zero crossing
of the scattering length at a magnetic field of 534 G before
15 ms time of flight. The cloud is then imaged close to the
resonance on the repulsive side at a magnetic field strength
of 760 G. To image the density distribution of the atoms
after release from the trap nA, we perform standard time-of-
flight imaging after 5 ms without changing the mag-
netic field.
For the reconstruction of the equation of state, we

perform high-intensity absorption imaging in situ to resolve

the very high densities in the trap [41]. Because the size of
the cloud has to be known in all spatial directions, the high-
intensity absorption imaging is done along two perpendi-
cular lines of sight.
The neural network: The neural network architecture

used to generate the phase diagram is given in Table I and is
realized with the TensorFlow library [42]. It consists of
three convolutional layers combined with max pooling
layers followed by two dense layers with dropout regu-
larization and one output neuron. The total number of
tunable parameters is 11601591. We train the network with
stochastic gradient descent using Adam optimizer with
learning rate 1.5 × 10−4 [22] on the mean squared error loss
function. We use 7895 labeled data points in total from
which 90% are used for training and 10% for validation.
We train each network for 15 epochs with a batch size of
30. The training data are shuffled after each epoch. We
tested several network architectures and generally found
the performance robust against changes of the hyper-
parameters. We conclude that network architectures similar
to the one used here provide robust learners for the
detection of the condensate fraction. Moreover, we have
taken datasets with different magnifications of the optical
imaging system. The images were then scaled prior to
feeding the data into the neural network and transfer
learning on 2500 images was performed, while freezing
the parameters of the convolutional layers. We found our
data to be robust against this scaling operation.
Equation of state reconstruction: We reconstruct

the equation of state under local density approximation
nσðμ − VÞ for all temperatures and interaction strengths
entering the phase diagram. Here, nσ is the density
distribution of the cloud in the trap, μ the chemical
potential, and V the external trapping potential. From
the equation of state, we can extract the temperature of
the cloud T and the density in the center of the trap nσjV¼0,
which are the quantities needed to calibrate the phase

TABLE I. Neural network architecture used for the phase
diagrams.

Layer (type) Output shape Parameters

Input (Batch, 150, 170, 1) 0
2D Convolutional (Batch, 150, 170, 30) 300
Max Pooling (Batch, 75, 85, 30) 0
2D Convolutional (Batch, 75, 85, 40) 30040
Max Pooling (Batch, 37, 42, 40) 0
2D Convolutional (Batch, 37, 42, 50) 50050
Max Pooling (Batch, 18, 21, 50) 0
Flatten (Batch, 18900) 0
Dense (Batch, 600) 11340600
Dropout (Batch, 600) 0
Dense (Batch, 300) 180300
Dropout (Batch, 300) 0
Dense (Batch, 1) 301
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diagram. The Fermi wave vector kF and Fermi temperature
TF are related to nσjV¼0 via kF ¼ ð3π2nσjV¼0Þ1=3 and
TF ¼ ðℏ2k2F=2mkBÞ, where ℏ denotes the reduced
Planck constant, kB the Boltzmann constant, and m the
mass of 6Li atoms.
To determine the temperature of the cloud we utilize that,

close to the surface of the cloud, the equation of state can be
approximated by a virial expansion nσλ3 ¼

P
n nbnz

n with
λ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πℏ2=mkBTÞ

p
the thermal de-Broglie wavelength,

bn the nth virial coefficient, and z ¼ exp½ðμ − VÞ=kBT�. By
fitting the virial expansion up to order n ¼ 3 (or n ¼ 4 for
clouds furthest in the BCS regime) to the dependence of nσ
on V close to the surface of the cloud we get the temper-
ature of the cloud T. While b1 ¼ 1 for all scattering lengths
a and temperatures T, higher order bns depend on a and T.
For b2 an analytic formula is known [43], b3 has been
calculated for a wide range of a and T [44] and also for
a < 0 in [45] where b4 for a < 0 is calculated as well.
To perform the equation of state reconstruction, intrap

density, and potential have to be known. The density is
determined from in situ optical density images by first
taking the elliptic radial average—respecting the cloud’s
aspect ratio—and converting the optical density to column
density ncolðrÞ, i.e., the density integrated along the
camera’s line of sight. The actual density nσðrÞ is then
reconstructed from ncolðrÞ by an elliptic inverse Abel
transform

nσðrÞ ¼ −
σr
σz

1

π

Z
∞

r
dr0

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 − r2

p ∂ncolðr0Þ
∂r0

; ðA1Þ

where σrðσzÞ is the size of the cloud in radial direction (the
camera’s line of sight).
The external potential is only known in harmonic

approximation from the trap frequencies, but this approxi-
mation is not valid for the crossed Gaussian-beam dipole
trap in the region where we perform our thermometry. We
therefore derive the full external trapping potential VðrÞ
from the density nσðrÞ of a cloud with 1=kFa ¼ 0 and
T ¼ Tc. Since the critical temperature of a homogeneous
Fermi gas at unitarity is well known to be Tc ¼ 0.167 TF
[37], it is sufficient to determine TF (resp. nσjV¼0) instead
of T. From reference [37] the chemical potential of the
unitary Fermi gas at Tc can also be related to TF by
μjT¼Tc

¼ 0.416 kBTF. With known μ and T, combining the
local density approximation μ → μ − VðrÞ with the
known equation of state of the unitary Fermi gas [37]
nσðμ; TÞ ¼ nσðμ=kBTÞ → nσf½μ − VðrÞ�=kBTg yields a
relation between nσðrÞ and VðrÞ without free parameters.
Inversion of this relation allows the derivation of VðrÞ from
nσðrÞ of a cloud with 1=kFa ¼ 0 and T ¼ Tc.
Because VðrÞ is identical for all clouds, it is possible to

fit the equation of state’s virial expansion close to the
surface of the cloud, where exp½ðμ − VðrÞÞ=kBT� ≪ 1
ensures the validity of the virial expansion, with the free

parameters μ and T. TF can again be calculated from the
density at V ¼ 0 to get T=TF for arbitrary interaction
strengths and temperatures.
It should be noted that the inverse Abel transform

assumes elliptic equipotential lines, a condition only
approximately fulfilled in our crossed Gaussian-beam
dipole trap. We estimate the influence of this systematic
error by simulating the column density of a cloud with
1=kFa ¼ 0 and T ¼ Tc in a trap comparable to the one
used in the experiment. We then use the same procedure as
for the experimental data to reconstruct the external
potential and perform our thermometry on simulated
column densities of an ideal Fermi gas. The error in T
introduced in this way stays below 5%. We therefore use
this value as an upper bound to estimate the systematic
error of our thermometry. It is the dominating contribution
to the uncertainty of the critical temperature as depicted
in Fig. 2.
The inverse Abel transform also relies on the differential

of the column density ∂ncol=∂r, which is very susceptible to
noise when extracting it from the experimental data. We
therefore average ca. 30 identically prepared clouds and
perform radial averaging. However, experimental noise still
dominates close to the center of the cloud where radial
averaging has little effect. To determine the central density
more reliably, we linearly extrapolate the measured nσðVÞ
data towards V ¼ 0.

*Corresponding author.
michael.koehl@uni-bonn.de

[1] C. A. R. Sá de Melo, M. Randeria, and J. R. Engelbrecht,
Phys. Rev. Lett. 71, 3202 (1993).

[2] R. Haussmann, W. Rantner, S. Cerrito, and W. Zwerger,
Phys. Rev. A 75, 023610 (2007).

[3] E. Burovski, E. Kozik, N. Prokof’ev, B. Svistunov, and M.
Troyer, Phys. Rev. Lett. 101, 090402 (2008).

[4] A. Bulgac, J. E. Drut, and P. Magierski, Phys. Rev. A 78,
023625 (2008).

[5] S. Floerchinger, M. Scherer, S. Diehl, and C. Wetterich,
Phys. Rev. B 78, 174528 (2008).

[6] S. Floerchinger, M. M. Scherer, and C. Wetterich, Phys.
Rev. A 81, 063619 (2010).

[7] M. Pini, P. Pieri, and G. C. Strinati, Phys. Rev. B 99, 094502
(2019).

[8] L. Pisani, A. Perali, P. Pieri, and G. C. Strinati, Phys. Rev. B
97, 014528 (2018).

[9] D. T. Son and M. A. Stephanov, Phys. Rev. A 74, 013614
(2006).

[10] J. Carlson and S. Reddy, Phys. Rev. Lett. 100, 150403
(2008).

[11] W. Ketterle and M.W. Zwierlein, Riv. Nuovo Cimento. 31,
247 (2008).

[12] G. Carleo and M. Troyer, Science 355, 602 (2017).
[13] A. Tanaka and A. Tomiya, J. Phys. Soc. Jpn. 86, 063001

(2017).

PHYSICAL REVIEW LETTERS 130, 203401 (2023)

203401-5

https://doi.org/10.1103/PhysRevLett.71.3202
https://doi.org/10.1103/PhysRevA.75.023610
https://doi.org/10.1103/PhysRevLett.101.090402
https://doi.org/10.1103/PhysRevA.78.023625
https://doi.org/10.1103/PhysRevA.78.023625
https://doi.org/10.1103/PhysRevB.78.174528
https://doi.org/10.1103/PhysRevA.81.063619
https://doi.org/10.1103/PhysRevA.81.063619
https://doi.org/10.1103/PhysRevB.99.094502
https://doi.org/10.1103/PhysRevB.99.094502
https://doi.org/10.1103/PhysRevB.97.014528
https://doi.org/10.1103/PhysRevB.97.014528
https://doi.org/10.1103/PhysRevA.74.013614
https://doi.org/10.1103/PhysRevA.74.013614
https://doi.org/10.1103/PhysRevLett.100.150403
https://doi.org/10.1103/PhysRevLett.100.150403
https://doi.org/10.1393/ncr/i2008-10033-1
https://doi.org/10.1393/ncr/i2008-10033-1
https://doi.org/10.1126/science.aag2302
https://doi.org/10.7566/JPSJ.86.063001
https://doi.org/10.7566/JPSJ.86.063001


[14] E. van Nieuwenburg, Y.-H. Liu, and S. Huber, Nat. Phys.
13, 435 (2017).

[15] G. Torlai, G. Mazzola, J. Carrasquilla, M. Troyer, R. Melko,
and G. Carleo, Nat. Phys. 14, 447 (2018).

[16] L. Wang, Phys. Rev. B 94, 195105 (2016).
[17] P. Huembeli, A. Dauphin, and P. Wittek, Phys. Rev. B 97,

134109 (2018).
[18] B. S. Rem, N. Käming, M. Tarnowski, L. Asteria, N.

Fläschner, C. Becker, K. Sengstock, and C. Weitenberg,
Nat. Phys. 15, 917 (2019).

[19] L. H. Gilpin et al., 2018 IEEE 5th International Conference
on data science and advanced analytics (DSAA) (IEEE,
2018).

[20] A. Behrle, T. Harrison, J. Kombe, K. Gao, M. Link, J.-S.
Bernier, C. Kollath, and M. Köhl, Nat. Phys. 14, 781 (2018).

[21] E. D. Kuhnle, S. Hoinka, P. Dyke, H. Hu, P. Hannaford, and
C. J. Vale, Phys. Rev. Lett. 106, 170402 (2011).

[22] D. P. Kingma and J. Ba, arXiv:1412.6980.
[23] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning

(MIT Press, Cambridge, MA, 2016).
[24] C. A. Regal, M. Greiner, and D. S. Jin, Phys. Rev. Lett. 92,

040403 (2004).
[25] M. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach,

A. J. Kerman, and W. Ketterle, Phys. Rev. Lett. 92, 120403
(2004).

[26] E. Altman and A. Vishwanath, Phys. Rev. Lett. 95, 110404
(2005).

[27] I. Tikhonenkov, E. Pazy, Y. B. Band, M. Fleischhauer, and
A. Vardi, Phys. Rev. A 73, 043605 (2006).

[28] L. P. Gorkov and T. K. Melik-Barkhudarov, Sov. Phys. JETP
13, 1018 (1961), http://jetp.ras.ru/cgi-bin/e/index/e/13/5/
p1018?a=list.

[29] D. S. Petrov, C. Salomon, and G. V. Shlyapnikov, Phys. Rev.
Lett. 93, 090404 (2004).

[30] P. Arnold and G. Moore, Phys. Rev. Lett. 87, 120401
(2001).

[31] V. A. Kashurnikov, N. V. Prokof’ev, and B. V. Svistunov,
Phys. Rev. Lett. 87, 120402 (2001).

[32] O. Goulko and M. Wingate, Phys. Rev. A 82, 053621
(2010).

[33] E. Burovski, N. Prokof’ev, B. Svistunov, and M. Troyer,
Phys. Rev. Lett. 96, 160402 (2006).

[34] L. Luo and J. E. Thomas, J. Low Temp. Phys. 154, 1
(2009).

[35] M. Horikoshi, S. Nakajima, M. Ueda, and T. Mukaiyama,
Science 327, 442 (2010).

[36] S. Nascimbene, N. Navon, K. Jiang, F. Chevy, and C.
Salomon, Nature (London) 463, 1057 (2010).

[37] M. J. H. Ku, A. T. Sommer, L. W. Cheuk, and M.W.
Zwierlein, Science 335, 563 (2012).

[38] A. Perali, P. Pieri, L. Pisani, and G. C. Strinati, Phys. Rev.
Lett. 92, 220404 (2004).

[39] A. Shrikumar, P. Greenside, and A. Kundaje, arXiv:1704.
02685.

[40] J. Kinast, A. Turlapov, J. E. Thomas, Q. Chen, J. Stajic, and
K. Levin, Science 307, 1296 (2005).

[41] G. Reinaudi, T. Lahaye, Z. Wang, and D. Guéry-Odelin,
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