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The LHCb collaboration has recently reported the largest CP violation effect from a single amplitude, as
well as other giant CP asymmetries in several B-meson decays into three charmless light mesons. It is also
claimed that this is predominantly due to ππ → KK̄ rescattering in the final state, particularly in the 1 to
1.5 GeV region. In these analyses the ππ → KK̄ amplitude is by default estimated from the ππ elastic
scattering amplitude and does not describe the existing ππ → KK̄ scattering data. Here we show how the
recent model-independent dispersive analysis of ππ → KK̄ data can be easily implemented in the LHCb
formalism. This leads to a more accurate description of the asymmetry, while being consistent with the
measured scattering amplitude and confirming the prominent role of hadronic final state interactions,
paving the way for more elaborated analyses.
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In a series of recent works the LHCb Collaboration has
reported the observation of direct CP symmetry violation
(CPV) in charged B-meson charmless decays into three
pseudoscalar mesons. The relevance of these processes is
that the observation of CPV requires the interference
between a “weak” phase, which changes sign for opposite
CP states, with a CP invariant “strong” phase. While the
source of the first one is well understood from the Cabibbo-
Kobayashi-Maskawa matrix [1,2] of the standard model,
and can be easily calculated in standard perturbation theory,
the latter is much more troublesome due to its strong
character. Moreover, it is long thought that it can be
produced from short-distance quark-level contributions
and/or long-distance hadronic final state interactions
(FSI) [3–5]. The relevance of CPV in three-body decays
(see Ref. [6] for a recent review) is that it can be studied, not
only from the total or integrated charge asymmetry, which
is a single number, but from the phase-space distribution of
the decay, which is a function that depends on two energy
variables and is much richer in structure. Moreover, the
rescattering of final state hadrons is dominated by reso-
nances that can yield huge variations throughout the phase-

space distributions. The energy dependence of these
distributions may allow disentangling different sources
of strong phases in CPV.
In particular, CPV both in the local and integrated phase-

space asymmetries between the opposite charge B� →
K�πþπ− and B� → K�KþK− decays was first observed at
LHCb in 2013 [7], followed by the observation of the
corresponding asymmetries in B� → π�πþπ− and B� →
π�KþK− [8]. These B → 3M analyses were soon super-
seded with larger statistical samples in 2014 [9]. Whereas
integrated asymmetries came up of the order of 2 to 12%, it
was shown that local asymmetries could be very large,
when looking at localized regions in the Dalitz plots. The
collaboration suggested that FSI may be a determinant
factor for this giantCP violation. In particular, asymmetries
became very large when the Dalitz plot was projected on
the invariant mass of the opposite-charged final mesons,
and in the 1 to 1.5 GeV range, which was associated with
the inelastic isoscalar S-wave πþπ− ↔ KþK− FSI. Even
more accurate CPV results have just been presented [10],
still supporting the relevance of FSI, which could also be
important for CPV in charm decays [11].
It is only very recently that the LHCb has performed the

full amplitude analyses of their run I data on B� →
π�KþK− [12] and Bþ → πþπþπ− [13,14]. Their most
striking feature is that, for B� → π�KþK−, the collabora-
tion claims ππ → KK̄ S-wave rescattering to have “the
largest CP asymmetry reported to date for a single
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amplitude of ð−66� 4� 2Þ%.” For Bþ → πþπþπ− a
similarly large value ∼45%, is also found.
The inelastic FSI framework for CPV dates back to

Wolfenstein and Suzuki in [3–5]. The LHCb amplitude
analyses [12–14] used a very appealing particularization to
B → 3M in [15,16] (Other models are also used for B →
3π in [13,14]). This model is relevant in the 1 to 1.5 GeV
region, where final-state multiplicity is low and the CPT
constraint is more enlightening. It also assumes that only
two particles rescatter whereas the third is a spectator. In
this formulation, the πþπ− ↔ KþK− complex isoscalar
partial S wave should be described by its modulus and
phase δππKK̄ . However, in the [15,16] formalism and its
implementation by LHCb [12–14], or modification by
[17,18], the ππ → KK̄ interaction is not used. Instead, it is
assumed that KK̄ and ππ are the only available states and,
in addition, the phase is crudely estimated as δππKK ∼
2δππππ whereas its elasticity is obtained from that of ππ
scattering. Of course, in this way they could use the
model-independent dispersive analysis of ππ scattering
data in [19]. It is true that meson-meson scattering
experiments are plagued with systematic errors and have
been usually described with crude models (see
Refs. [20,21] for reviews). Model-independent parameter-
izations can only be obtained through dispersive methods,
whose relevance has been repeatedly emphasized in the
context of heavy particle hadronic decays [22,23].
However, as we will show below this estimate does not
reproduce the ππ → KK̄ data. Moreover, it violates
Watson’s theorem [24], which implies that at KK thresh-
old, and for partial waves with given total angular
momentum and isospin, δππKK ¼ δππππ , without that factor
of 2. Furthermore, the poorly known ππ elasticity and the
factor of 2 amplifying the already large δππππ error gives
rise to huge uncertainties in the description of the
asymmetry FSI. Despite this treatment may provide a
hint of the relevance of FSI, it definitely calls for an
implementation using the realistic ππ → KK̄ amplitude,
consistent with data and fundamental constraints.
Fortunately, a dispersively constrained ππ → KK̄ data

analysis has become recently available [21,25]. It provides
precise and model-independent parameterizations of phases
and moduli for several partial waves, including the iso-
scalar S wave. Here we show how to implement easily this
dispersive parameterization within the formalism presently
used by LHCb, proposed in [15,16], and how it improves
dramatically the accuracy of the FSI contribution to these
CPVasymmetries. Moreover, it unveils hadronic structures
that were masked in the uncertainties, while providing a
sound support for the FSI prominent role in these giant CP
violations. Implementing these amplitudes in future LHCb
analyses will provide much more precise descriptions and
may allow us to understand further hadronic details other-
wise swamped by the huge uncertainties of the present
estimates.

Let us briefly recall the FSI formalism in [15,16], with
simplified notation and assuming CPT conservation.
Consider theA− ¼ hλjHW jhi decay amplitudes of a meson
h into a hadron state λ and its CP conjugated process
Aþ ¼ hλ̄jHW jh̄i. HereHW is the electroweak Hamiltonian.
Customarily, we writeA� ¼ Aλ þ Bλe�iγ , where Aλ, Bλ are
CP invariant and only the weak phase γ sign changes under
CP. However, when the final state λ is coupled to other
physically accessible states λ0, we could consider that it has
been produced directly from the source or via another
intermediate state. Formally, to the lowest order effect due
to FSI, we write [15,18]

A�
LO ¼ Aλ þ Bλe�iγ þ i

X
λ0
f̂λ0λðAλ0 þ Bλ0e�iγÞ; ð1Þ

where f̂λλ0 is the two-body scattering partial wave related to
the S matrix by Sλλ0 ¼ δλλ0 þ 2if̂λλ0. The factor of 2 in front
of f̂, absent in [15], is standard for partial waves and
essential [4,18] to arrive to Eq. (1). Now Aλ and Bλ are
understood as decay amplitudes without FSI. The above
expression is formal and λ0 represents the two particles that
rescatter in a definite spin and isospin state. CP asymme-
tries are then defined through ΔΓλ ¼ Γh→λ − Γh̄→λ̄ with,
generically, Γ ¼ jALOj2.
These processes involve three final mesons, but there is

strong evidence that, at least in some regions of phase
space, the first two-body scattering largely dominates the
FSI [26] and the other meson acts as a spectator. Four or
more meson intermediate states are negligible below CM
energies of 1 GeV and relatively small up to roughly
1.5 GeV, where giant CPV is observed.
Following [15], let us consider for now just the

isoscalar S-wave ππ ↔ KK̄ rescattering, i.e., λ; λ0 can
be ππ or KK, which is the most interesting contribution
to ΔΓKKðππÞ in B� → K�KþK−ðK�πþπ−Þ, when the
two-meson invariant mass is in the 1 to 1.5 GeV range.
We will add the other terms and waves later. Since
2if̂ππKK ¼ SππKK ¼ jSππKKj expðiδππKKÞ, we can write

ΔΓKK ≃ CjSππKKj cosðδππKK þΦKKÞFðM2
KÞ: ð2Þ

Following [15] we define C ¼ 4jKj sin γ, where
K ¼ jKj expðiΦKKÞ ¼ B�

KKAππ − B�
ππAKK , with KKK ¼

−Kππ and ΦKK ¼ Φππ þ π due to CPT. Within this first
approximation, C can be considered constant compared
to the strong s dependence of SππKK . The Dalitz form
factor is FðM2

KÞ ¼ ðM2
KÞmax − ðM2

KÞmin, which are
obtained from kinematics. The amplitude symmetrization
in the two like-sign kaons is neglected as low-mass
regions for each neutral KK pair are very separated in
phase space. CPT implies [15] that these rescattering
contributions satisfy ΔΓKK ¼ −ΔΓππ.
However, two crude estimates originally made in [15]

have become standard but are not needed and can be easily
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improved. Note they have been used in [16–18] and also in
the LHCb implementation of this model in [12–14]. A
possible reason for such estimates was that meson-meson
scattering are plagued with systematic uncertainties and
frequently analyzed with crude models. However, at the
time of [15] a dispersively constrained analysis existed for
ππ → ππ [19]. Thus, in order to use this dispersive
representation, the first approximation was to assume a
formalism with only two channels: 1 ¼ ππ and 2 ¼ KK, so
that S-matrix unitarity implies

ðSλλ0 Þ ¼
�

ηe2iδ11 i
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
eiðδ11þδ22Þ

i
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
eiðδ11þδ22Þ ηe2iδ22

�
;

where η is the ππ → ππ elasticity. Hence, the required
SππKK was avoided by replacing in Eq. (2)

jSππKKj →
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q
; ð3Þ

δππKK → δππππ þ δKKKK ≃ 2δππππ; ð4Þ

where in the last step δKKKK ≃ δππππ , was assumed, since
little is known about δKKKK. Finally, setting ΦKK ¼ 0 as
well as δππKK ¼ 0 above 1.5 GeV, we reproduce in Fig. 1
the results of [15] for ΔΓKK (bottom) and ΔΓππ (top),
projected from LHCb results [7], as a function of the two-
meson invariant mass M2

sub ¼ s. Only the normali-
zation constant C is free. Note that as nicely shown in
[15], due to CPT symmetry, and just by changing its global
sign, Eq. (2) roughly describes both asymmetries from KK̄
threshold toMsub ≃ 1.5 GeV, i.e., S-wave FSI dominate the
s dependence in that region.
However, neither of these estimates is needed because

both δππKK and jSππKKj data up to 2 GeV exist since the

1980s from the Argonne [28], Brookhaven I [29], and
Brookhaven II [30] Collaborations, shown in Fig. 2.
Note that to compare with data we employ the usual
normalization

jg00ðsÞj ¼
ffiffiffi
s

p
4ðqπqKÞ1=2

jSππKKðsÞj; s > 4m2
K; ð5Þ

with qP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=4 −m2

P

p
the P ¼ π, K CM momenta. There

we see that Eqs. (3) and (4) fail to describe both the jSππKKj
and δππKK data, respectively. For these curves we use the
δππππ and η obtained in [19], because it has become
customary in the literature, although those dispersively
constrained fits were updated in [31]. Had we used the
latter, with smaller uncertainties, the comparison with data
would be even worse. Recall also that we are subtracting 2π
[32] to make 2δππππ fit in the plot. Hence, Eqs. (3) and (4)
should be avoided. But then one might wonder if the
claimed relevance of ππ → KK̄ FSI in giant CPV depends
crucially on such crude estimates and their large uncer-
tainties, or if they still hold when a realistic ππ → KK̄
parameterization is used instead.
Luckily, only very recently, but very timely, model-

independent dispersive analyses of ππ → KK data, using
hyperbolic dispersion relations (Roy-Steiner equations),
have become available in [25] and updated in [21]. These
provide accurate constrained fits to data (CFD) up to
1.47 GeV, the maximum applicability of these relations,
continuously matched to unconstrained fits up to 2 GeV, for
both δππKK and jSππKKj, shown in Fig. 2. Note that for the

FIG. 1. CP asymmetries for B� → K�πþπ− (top) and B� →
K�KþK− (bottom), from Eq. (2) and the estimates in Eq. (3) and
(4). The plot is identical to Fig. 1 in [15]. Data from [27].

FIG. 2. Top:δππKK̄ datafrom[28] (squares)and[29](circles).The
dashed line is the Eq. (4) estimate, although subtracting 2π to fit in
the plot, and using [19] (PY) for δππππ. The continuous line is the
dispersivelyconstrained fit from[25] (PR).The five first datapoints
of [29] below 1.2 GeVare in conflict with Watson’s Theorem and
dispersive analyses of ππ → ππ and are commonly discarded.
Bottom: jg00ðsÞj data. The green band is Eq. (3) and the grey and
orange bands correspond to the dispersive analysis in [25].
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modulus there are two solutions. We will present results for
the higher one since their difference up to 1.47 GeV can be
reabsorbed in the normalization parameter and at the end
yield very similar results.
Thus, in Fig. 3 we show the asymmetry results when the

CFD ππ → KK̄ dispersive analysis is used in Eq. (2). Our
χ2d:o:f: ¼ 1 and we have freed the parameter Φ finding a
nonvanishing preferred value ð−34� 9Þ°. There is an
impressive improvement in precision with respect to
Fig. 1. Remarkably, it also shows peaks and dips associated
with the interplay of the f0ð980Þ, f0ð1370Þ and f0ð1500Þ
resonances [33] that were concealed in Fig. 1 within the
large uncertainty from Eqs. (3) and (4).
Furthermore, the full run I LHCb data on the B� →

K�KþK− CPVasymmetry [9], were described in [16] with
Eq. (2) above, but divided by ð1þ s=Λ2

λÞð1þ s=Λ2
λ0 Þ, to

mimic the mild s dependence of the source term for each λ
pair, with ΛKK ¼ 4 GeV and Λππ ¼ 3 GeV. Using then
Eqs. (3) and (4), we have reproduced in Fig. 4 the central
value of [16], but also adding the huge uncertainty due to
such estimates. In contrast, we show in Fig. 5 the result
when using the CFD phase and modulus from [25,33]. The
central line follows much better the data, with dramatically
smaller uncertainties, again unraveling the interplay
between resonances. See Ref. [34] for details. Above
1.5 GeV this approach is not expected to be valid, due
to the increasing relevance of 4π and other resonances and
FSI with higher angular momenta.
All in all, these results confirm, using realistic and

accurate FSI, that ππ → KK̄ rescattering does indeed play
a dominant role in the appearance and the s dependence of
giant CPV at LHCb in the 1 to 1.5 GeV region.
Let us now reintroduce other relevant terms, following

the more complete model of [16], adopted by the LHCb
analyses [12–14]. Thus, we recast Eq. (1) as

A�
LO ¼

X
J

ðaJλNR þ bJλNRe
�iγÞ=ð1þ s=Λ2

λÞ

þ
X
JR

ðaRλ þ bRλ e
�iγÞFBW

Rλ PJðcos θÞ

þ i
X
λ0;J

f̂Jλ0λðaJλ0NR þ bJλ0NRe
�iγÞ=ð1þ s=Λ2

λ0 Þ; ð6Þ

where the angular momenta J is explicitly separated from λ.
Note that terms without FSI and other mild s-dependent
contributions are grouped into a nonresonant (NR) part.
Besides, the strong s dependence of elastic scattering,
λ0 ¼ λ, is described with usual Breit-Wigner shapes.
Namely, ð1þ if̂JλλÞAJ

λR → aR0F
BW
R PJðcos θÞ, with θ the

helicity angle between the like-sign mesons in the
Gottfried-Jackson frame, and

FBW
R ¼ 1

m2
R − s − imRΓRðsÞ

; ΓRðsÞ ¼
qπðsÞmRΓR

qπðm2
RÞs1=2

:

FIG. 3. As Fig. 1 but using in Eq. (2) the dispersively
constrained CFD parameterization of ππ → KK̄ data from
[21,25]. Note the huge increase in precision with respect to
Fig. 1 and the new patterns due to resonance interplay.

FIG. 4. Total B� → K�KþK− asymmetry. LHCb data from the
sum of Figs. 6(c) and 6(d) in [9]. Central line, using Eqs. (3) and
(4), identical to [16]. We have added here the huge uncertainty in
that description.

FIG. 5. As in Fig. 4 but using the dispersively constrained fit to
SππKK data in [25]. Note the dramatic improvement in precision
and the unveiling of resonant structures.
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The two first terms in Eq. (6) correspond to a familiar
isobar model, whereas inelastic FSI appear in the third
term, dominated by f̂0ππKK. The resonances to be considered
depend on the process. For instance, for the B� → K�πþπ−
asymmetries, the energies below the KK threshold become
accessible. In [16] the J ¼ 1, 0 waves were approximated
only with the ρð770Þ and f0ð980Þ resonances, respectively,
by setting

AλR ¼ aρλF
BW
ρ ðsÞkðsÞ cosðθÞ þ afλF

BW
f ðsÞ; ð7Þ

with kðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

π=s
p

and similarly for BλR ampli-
tudes. Thus, on the left panel of Fig. 6 we reproduce the
central value of the partial CPVasymmetry obtained in [16]
with this improved model, and using Eqs. (3) and (4). Note
the nice ρð770Þ resonant peak and dip structure around
770 MeV and the marked peak of the f0ð980Þ. However,
once again we are providing the huge uncertainties that
appear due to such standard crude estimates. In contrast, on
the right panel we show the remarkable accuracy attained
when using the dispersive ππ → KK̄ amplitude instead.
Details can be found in [34].
So far we have limited ourselves to the crude but

appealing model formulated in [16], in order to show

the accuracy improvement when using the recent disper-
sively constrained parameterizations of ππ → KK̄ in the
same kind of analyses that had been widely used before. It
is enough to restore back all the instances of 2δππππ
and

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
by, respectively, the δππKK and jSππKKj

parameterizations by in [21,25] (beware of the different
notation [38]).
However, the accuracy attained in S-wave FSI, opens an

interesting outlook for further studies. Hence, reconsider-
ing contributions neglected so far becomes even more
appealing. The proponents of this model already pointed
out some possible improvements, particularly the inclusion
of a realistic ππ S wave. Thus Fig. 6 shows in red the result
of replacing the naive single f0ð980Þ Breit-Wigner shape
with the dispersive ππ data analysis in [37], which also
describes the f0ð500Þ and f0ð1370Þ. The contributions
containing the ππ → KK̄ amplitudes still dominate the 1 to
1.5 GeV region. Further waves and resonances could also
be implemented in a similar way.
Our level of precision calls for a future replacement of

this simple isobar model with leading order FSI corrections
by the full treatment of the three-body decay, but containing
the correct two-body rescattering amplitude. A first step
would be to consider the all-order two-body contributions
[4,17,18], although eventually it should include disper-
sively constrained third-particle effects following what has
been done for D or other heavy meson decays [39–41], but
restricted to certain regions of the B-decay phase space.
Finally, three-body contributions should be included. For
ongoing efforts in these topics we refer to [26,42,43] and
references therein. This Letter, therefore, paves the way for
several future developments.
In summary, we have shown how to implement the

recent dispersively constrained parameterizations of
ππ → KK̄ to describe final state interactions in charmless
three-body B decays, avoiding standard crude estimates
within a popularmodel used by LHCb and others to describe
giantCP violation. Thiswill help reducing by about an order
of magnitude the uncertainty due to FSI in that model. As a
result, the dominant role of inelastic final state interactions in
the strong s dependence measured in the 1 to 1.5 GeV
region, previously based on crude estimates, is confirmed
with realistic interactions.Moreover, this dramatic reduction
of uncertainty when using the dispersive analyses of
ππ → KK̄ data, opens the way for a more detailed descrip-
tion of additional hadronic features and a precise treatment
of further data. This is particularly relevant in the amplitude
analysis that should be carried out for data just released by
LHCb [10] or to be obtained in the near future.
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FIG. 6. B� → K�πþπ− asymmetry in the cosðθÞ < 0 region.
Left: the central value reproduces Fig. 11 in [16]. We have added
here the one (green) and three (yellow) standard deviation bands
due to the crude estimates in Eq. (3) and (4). Right: Same but
using the dispersive ππ → KK̄ data analysis in [25] (black line),
as proposed here. The accuracy improvement is dramatic. In
addition, we show in red the full ΔΓ (Eq. 44 in [16]) but with the
dispersive ππ → ππ isoscalar S wave in [37] instead of just a
f0ð980Þ Breit-Wigner. The high-mass region is now well de-
scribed and the too large f0ð980Þ peak disappears, while
including the f0ð500Þ and f0ð1370Þ. In the 1–1.5 GeV region
the terms containing the ππ → KK amplitude (dashed) largely
dominate those without it (dotted).
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