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In the limit of many fermion flavors it is demonstrated that the sextic Gross-Neveu theory in three
dimensions displays a line of interacting UV fixed points, characterized by an exactly marginal sextic
interaction. We determine the conformal window of UV-complete theories, universal scaling dimensions,
and the phase diagram using renormalization group methods. Massless theories arise naturally, and the
generation of mass proceeds without the breaking of a discrete symmetry. Striking similarities with critical
scalar theories at largeN are highlighted, and implications from the viewpoint of conformal field theory and
the AdS=CFT conjecture are indicated.
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Introduction.—The large N limit, where N denotes the
number of particle species or flavors, is an important tool
in quantum and statistical physics [1]. Large N limits often
enable rigorous control over fluctuations and critical
points [2–4] including beyond perturbation theory [5,6],
and offer wide-ranging applications from proofs of non-
perturbative renormalizability [7] and new quantum criti-
cal points [8,9] or symmetry breaking mechanisms [10], to
equivalences [11,12], dualities [13,14], and the AdS=CFT
conjecture [15], which further relates large N field theories
to higher-dimensional duals [16].
The 3D Gross-Neveu theory of interacting fermions,

originally introduced for the study of chiral symmetry
breaking [17], is an important toy model in particle and
condensed matter physics. Its four-fermion coupling
∼ðψ̄aψaÞ2 makes the theory perturbatively nonrenormaliz-
able; yet nonperturbatively, it develops an interacting fixed
point [18], including at large N [7], which renders the
theory UV complete and predictive at all scales [19,20].
Besides offering a benchmark for 3D conformal field
theories and chiral symmetry breaking, it has also been
shown to be dual to Vassiliev’s higher spin theories under
the AdS4=CFT3 conjecture [16,21], and serves as a toy
model for asymptotic safety of gravity [22].
In this Letter, we investigate large N Gross-Neveu

theories in the absence of chiral symmetry [23]. The gene-
ration of mass is no longer protected by symmetry, and the
impact of chirally odd interactions such as∼ðψ̄aψaÞ3 on the
short distance physics needs to be clarified. Our method of
choice is functional renormalization [24–27], which, in

combination with the large N limit, enables a nonpertur-
bative study of fixed points, scaling dimensions, and UV-IR
connecting trajectories [28–32] in a purely fermionic
formulation [33]. We thereby determine all UV-complete
Gross-Neveu theories, with or without chiral symmetry. We
also uncover striking similarities between large N fer-
mionic and large N bosonic theories, and indicate links
with conformal field theory and higher spin gauge theories.
Sextic Gross-Neveu theory.—We consider UðNÞ sym-

metric classical actions for N Dirac fermions ψa in three
Euclidean dimensions, given by

Sf ¼
Z
x

�
ψ̄að=∂þMÞψaþ

G
2
ðψ̄aψaÞ2þ

H
3!
ðψ̄aψaÞ3

�
: ð1Þ

In addition to the kinetic term and a mass term M, we
observe a four-fermion interaction with coupling G, and a
six-fermion interaction with coupling H. In the limit M ¼
H ¼ 0 the theory reduces to the standard Gross-Neveu
model [17] with manifest invariance under

ψ → γ5ψ ; ψ̄ →−ψ̄γ5; ψ̄ψ →−ψ̄ψ ; ð2Þ

which corresponds to chiral symmetry (parity) in even
(odd) dimensions. In the chiral limit, interactions include
even powers of the bilinear ðψ̄aψaÞ, the leading one being
the four-fermion (4F) interaction with coupling G. Owing
to its negative canonical mass dimension, ½G� ¼ −1, the
theory is perturbatively nonrenormalizable by power count-
ing, yet nonperturbatively renormalizable due to the exist-
ence of an interacting ultraviolet fixed point [7,18]. The 4F
coupling becomes a relevant interaction while all higher-
order chirally invariant interactions remain irrelevant. The
discrete symmetry, Eq. (2), further entails that the theory is
fundamentally massless, although mass can be generated
dynamically in the infrared.
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Without chiral symmetry, mass terms M ≠ 0 and new
interactions such as odd powers in ðψ̄aψaÞ become avail-
able, the leading one being the six-fermion (6F) coupling
H. It is the central purpose of this work to establish that
theories with H ≠ 0 can be defined fundamentally, despite
of the fact that negative mass dimension of the 6F coupling
½H� ¼ −3 implies that the theory is power-counting non-
renormalizable in perturbation theory.
Renormalization group.—To achieve our claims, we

investigate the theory, Eq. (1), nonperturbatively with the
help of Wilson’s renormalization group (RG) [24–27]
based on the successive integrating out of momentum
modes from a path integral representation of the theory.
The scale dependence of the quantum effective action Γk is
given by an exact identity [25],

∂tΓk ¼
1

2
STrf½Γð2Þ

k þ Rk�−1 · ∂tRkg; ð3Þ
where k denotes the RG momentum scale with t ¼ ln k,

Γð2Þ
k denotes the matrix of second functional derivatives,

and the supertrace STr stands for a sum over all momenta
and fields, also accounting for relative minus signs through
fermionic degrees of freedom. As a function of k, the flow,
Eq. (3), interpolates between the microscopic action in the
ultraviolet ð1=k → 0Þ and the full quantum effective action
in the infrared (k → 0). Within a few constraints, the
infrared cutoff function RkðqÞ can be chosen freely
[34–36]. It ensures that the propagation of momentum
modes is suppressed for q2 ≪ k2 and that the flow remains
finite and well-defined for all scales. Further, Wetterich’s
RG, Eq. (3), reproduces standard perturbation theory at
weak coupling and is related to Polchinski’s RG (based on
an UV cutoff) [24] by a duality transform [29,32]. We use
Eq. (3) to identify interacting UV fixed points in the
fermionic theory, Eq. (1). For similar studies in scalar
and supersymmetric theories, see [20,30–32,37,38].
Fermionic flow.—The theory, Eq. (1), is investigated by

writing its effective action as

Γk½ψ̄ ;ψ � ¼
Z

d3xfψ̄a=∂ψa þ Vkðψ̄aψaÞg; ð4Þ

where the function Vk accounts for all nonderivative
interactions. In the large N limit, the functional flow,
Eq. (3), does not generate derivative interactions other
than those already present in the initial action [29].
Consequently, the anomalous dimension vanishes, and
Eq. (4) is exact under the flow, Eq. (3), and valid for all
scales. The flow for the function Vk is obtained by inserting
the ansatz Eq. (4) into Eq. (3) and projecting onto constant
fields [33,39]. Introducing dimensionless variables z ¼
ψ̄aψa=k2 and vðz; tÞ ¼ Vkðψ̄aψaÞ=k3 gives

∂tvþ 3v − 2zv0 ¼ −3A
Z

∞

0

dy
y5=2ð1þ rÞr0ðyÞ
yð1þ rÞ2 þ ðv0Þ2 ; ð5Þ

where y ¼ q2=k2, v0 ¼ ∂zv, and RkðqÞ ¼ =qrðyÞ with rðyÞ
the cutoff shape function [34,35]. The terms on the left-
hand side account for the canonical scaling of v and z,
while the integral on the right-hand side, a remnant of the
operator trace in Eq. (3), is due to quantum fluctuations. We
remove the constant A ¼ 4N S3=ð2πÞ3 with S3 the surface
area of a unit 3-sphere by rescaling it into v → v=A and
z → z=A, implying that couplings are now measured in
units of perturbative loop factors, in accord with naïve
dimensional analysis [40].
Running couplings and line of fixed points.—Fixed

points are the t-independent solutions v�ðzÞ of ∂tv ¼ 0.
The free theory of noninteracting fermions corresponds to
v0� ¼ 0. To find interacting fixed points, we expand vðzÞ ¼P∞

n¼1 λnz
n=n! in terms of couplings λn describing the 2n

fermion (2nF) interactions, with λ1;2;3 the dimensionless
counterparts ofM, G, H in Eq. (1). Their flows ∂tλn follow
from Eq. (5) by projection. For concreteness, we use an
optimized regulator rðyÞ ¼ ð1= ffiffiffi

y
p − 1Þθð1 − yÞ that per-

mits simple analytical expressions [34–36,41]; key results
are independent of this choice.
Starting with the dimensionless mass, we find that its

flow is driven by the mass and the 4F coupling,

∂tλ1 ¼ −λ1
�
1 −

2λ2
ð1þ λ21Þ2

�
: ð6Þ

We observe that the fermion mass is natural [42] in that
quantum fluctuations or interactions cannot switch it on if it
has been set to zero initially, even if chiral symmetry is
absent. Contributions proportional to the chirally odd 6F
coupling do not arise because the exact flow, Eq. (5), does
not involve v00 on its right-hand side. Turning to the 4F
coupling, we observe that its flow is driven by the mass and
the 4F and 6F couplings

∂tλ2 ¼ λ2 þ
ð2 − 6λ21Þλ22
ð1þ λ21Þ3

þ 2λ1λ3
ð1þ λ21Þ2

: ð7Þ

Fluctuations and interactions can switch on 4F interactions
even if they were set to vanish initially. However, any
dependence on the chirally odd interactions drop out as
soon as the mass term vanishes, leading to

∂tλ2jλ�
1
¼0 ¼ λ2ð1þ 2λ2Þ: ð8Þ

Besides the free fixed point we observe an interacting one
for the 4F coupling λ�2 ¼ − 1

2
. It coincides with the well-

known ultraviolet fixed point in the chirally symmetric
limit [7,18,20,22,43–46].
We now turn to the 6F coupling, which is the lowest-

order chirally odd interaction. Its RG flow is driven by the
mass and the 4F, 6F, and 8F couplings

∂tλ3 ¼ 3λ3 þ 6λ2λ3
1 − 3λ21
ð1þ λ21Þ3

þ 2λ1
λ4 − 12

λ3
2
ð1−λ2

1
Þ

ð1þλ2
1
Þ2

ð1þ λ21Þ2
: ð9Þ
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Fluctuations can switch on 6F interactions even if they were
absent initially. However, provided the mass term vanishes,
the beta function simplifies into

∂tλ3jλ�
1
¼0 ¼ 3ð1þ 2λ2Þλ3: ð10Þ

Most notably, ∂tλ3 vanishes identically, and independently
of λ3, provided that the mass and the 4F coupling take their
respective fixed point values. In other words, quantum
fluctuations have turned the perturbatively irrelevant 6F
coupling into an exactly marginal one, which takes the role
of a new fundamental parameter.
For all higher-order interactions, solving ∂tλn≥4 ¼ 0

gives the 2nF couplings at a fixed point as functions of
the 6F coupling, λ�n≥4 ¼ Pnðλ�3Þ, with Pn polynomials of
degree n − 2 with vanishing constant term for n odd. Then,
all 2nF interactions with n > 3 are found to be irrelevant
nonperturbatively without offering new fundamentally free
parameters. We conclude that the theory displays a line of
critical points parameterized by λ�3, which reduces to known
results in the chiral limit.
Global fixed points.—Next, we show that the line of

interacting fixed points is limited to a finite range in λ�3
values. To that end, we integrate Eq. (5) at a fixed point
directly, without first resorting to a polynomial expansion.
Using the method of characteristics [28,31,32,37] leads to
solutions of the form z ¼ zðv0Þ with

z ¼ 4λ�3ðv0Þ2 − v0
�
2þ 3ðv0Þ2
1þ ðv0Þ2 þ 3v0 arctan v0

�
; ð11Þ

whose validity is confirmed by direct inspection. Further,
inverting the solution into v0ðzÞ and expanding it in a power
series for small z, we recover all 2nF fixed point couplings
determined previously. The virtue of the closed expression,
Eq. (11), is its validity even beyond the radius of con-
vergence of polynomial expansions.
As a physical requirement, we demand fixed points

with Eq. (11) to exist “globally,” meaning for all fields z.
Interestingly, this requirement is not empty: if and only if
jλ�3j remains below a critical vale λcrit3 , the fixed point vðzÞ
exists for all values of the field z [47] (similar restrictions
are known from other large N critical theories at strong
coupling [20,30–32,37,38]). This can also be appreciated
from recursively solving all ∂tλn≥1 ¼ 0 to find λ�nþ1 as
functions of λ�1. Resumming the expressions shows that
global solutions do not exist if λ�1 ≠ 0, leading to the same
constraint. All in all, we conclude that

λ�1¼ 0; λ�2 ¼−
1

2
; 0≤ jλ�3j< λcrit3 ð12Þ

characterizes the complete set of interacting and globally
well-defined fixed points. While the values λ�2 and λcrit3 are
nonuniversal (λcrit3 ¼ ð3π=8Þ, here), we have checked by

varying the cutoff shape function in Eq. (5) that the existence
of a line with an upper bound is universal [31,47]. Chiral
symmetry is only available if λ�3 ¼ 0. Figure 1 illustrates two
examples for viable fixed points.
Scaling dimensions and fundamental parameters.—In

the vicinity of a fixed point, Eqs. (4) and (5) can be
expanded in a basis of scaling operators On that scale
∼k−3þϑn with universal exponents ϑn. In the free theory
that is an infrared fixed point, we have On ∼ ðψ̄ψÞn and
exponents are given by (minus) their canonical mass
dimensions,

ϑðIRÞn ¼ 2n − 3 ðn ≥ 1Þ; ð13Þ

with the mass being the sole relevant perturbation ϑðIRÞ1 . In
turn, the fixed points, Eq. (12), are all UV. For the universal
scaling dimensions of small perturbations we find

ϑðUVÞn ¼ n − 3 ðn ≥ 1Þ: ð14Þ

The relevant perturbations ϑðUVÞ1;2 and the marginal ϑðUVÞ3

relate to the mass, the 4F and the 6F interactions,
respectively. Fluctuations have shifted scaling dimensions
substantially away from canonical values, Eq. (13),

ϑðIRÞn − ϑðUVÞn

ϑðIRÞn

¼ nþ 1

2n − 1
; ð15Þ

a testament to the theory being strongly coupled in the UV.
We note that even though scaling dimensions are the same
along the line of fixed points, the underlying discrete
symmetries are not. Further, at the endpoints of the critical
line (jλ�3j ¼ λcrit3 ) scale symmetry is broken spontaneously,
akin to the Bardeen-Moshe-Bander phenomenon [5,10,48],
and scaling dimensions deviate from the values given in
Eq. (14) (see [47] for a detailed analysis). We conclude that
the perturbatively nonrenormalizable theories, Eq. (1), are
well-defined due to the line of fixed points, Eq. (12), and

FIG. 1. Shown are ultraviolet fixed point solutions v0�ðzÞ for all
fields, comparing UV-complete quartic and sextic Gross-Neveu
theories (axes scaled as x → ½x=ð2þ jxjÞ�).
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fundamentally characterized by the exactly marginal cou-
pling λ�3 and the relevant perturbations δλ1 ¼ λ1 − λ�1 and
δλ2 ¼ λ2 − λ�2 at the high scale Λ.
Generation of mass.—The absence of chiral symmetry

on the level of the fundamental action implies that mass can
be generated explicitly as soon as δλ1 ≠ 0 at the high scale.
If so, this relevant perturbation triggers an RG flow towards
the IR, for all couplings, which invariably entails a massive
fermionic theory.
As soon as δλ1 ¼ 0, however, mass is not generated

explicitly. This is noteworthy in that it shows that chiral
symmetry, which removes all 2nF interactions λn¼odd, is
not necessary to ensure massless fermions. Rather, the
significantly milder constraint δλ1 ¼ 0 is already sufficient,
courtesy of λ1 being natural, Eq. (6).
Still, mass can be generated dynamically through strong

interactions. Parametrically, this takes the form of a second
order quantum phase transition controlled by the micro-
scopic parameter δλ2, with δλ2 < 0 (δλ2 > 0) leading to a
massive (massless) phase. In the presence of chiral sym-
metry, Eq. (2), strong 4F interactions are responsible for the
generation of mass (Fig. 2, upper panel). In the absence of
chiral symmetry, 6F interactions additionally enhance the
mass with growing jλ3j, until it becomes indeterminate for
finite sextic coupling jλ3j → λcrit3 right at the endpoint of the
conformal window (Fig. 2, lower panel). We emphasize
that mass is generated without the breaking of a discrete
symmetry. Moreover, for δλ2 > 0, we observe the “emer-
gence” of chiral symmetry in the IR, courtesy of the fully
attractive free fixed point. Lastly, mass can also be
generated explicitly as soon as δλ1 ≠ 0, which then takes
the form of a crossover as a function of δλ2.
Fermionic phase diagram.—We are now in a position to

discuss the full phase diagram of the theory. Figure 3
shows the UV line of chirally nonsymmetric fixed points,
Eq. (12), where λ�3 ≠ 0, its endpoints, and the chirally
symmetric UVand IR fixed points, all in the ðδλ2; λ3Þ plane
and for δλ1 ¼ 0. Arrows point from the UV to the IR.

Trajectories emanating from the blue line correspond to
UV-complete fundamental theories (red-shaded areas).
In region I (δλ2 > 0 and 0 < jλ�3j < λcrit3 ), they connect
interacting UV conformal fixed points with the free
theory in the IR. These theories remain strictly massless.
Moreover, even though chiral symmetry is absent micro-
scopically, it emerges in the IR. In region II (δλ2 < 0 and
0 < jλ�3j < λcrit3 ), strong interactions lead to the dynamical
generation of mass. Here, chiral symmetry is manifestly
absent at all scales, and trajectories connect UV conformal
fixed points with massive Gross-Neveu theories in the IR.
Region III relates to all trajectories that do not start out at
the UV line. These “swampland” theories are not UV-
complete and must be seen as effective rather than
fundamental. As soon as δλ1 ≠ 0, mass is also generated
explicitly and trajectories starting from the UV line or in
the swampland invariably lead to massive theories.
Bosonic phase diagram.—It is interesting to compare our

results withOðNÞ [orUðNÞ] symmetric sextic scalar theory
of 3D real [or complex] bosons ϕa at large N [31,32,49]
with action

Sb ¼
Z
x

�
1

2
ð∂ϕÞ2 þM2

2
ϕ2 þ G

2
ðϕ2Þ2 þ H

3!
ðϕ2Þ3

�
: ð16Þ

The bosonic theory is super-renormalizable in the UV
where it achieves a line of conformal fixed points owing to
an exactly marginal sextic scalar self-coupling [49]. It also
displays a strongly interacting Wilson-Fisher fixed point in
the IR (Fig. 4). In turn, the fermionic theory, Eq. (1), is
perturbatively nonrenormalizable, yet it develops a line of
strongly interacting critical points in the UV owing to an
exactly marginal six fermion coupling, alongside the
isolated free fixed point in the IR (Fig. 3).

FIG. 2. The dynamical generation of a fermion mass M takes
the form of a second order quantum phase transition in δλ2ðΛÞ,
irrespective of whether the underlying Lagrangian is chirally
invariant (upper panel) or not (lower panel).

FIG. 3. Phase diagram of the fermionic theory, Eq. (1), in the
ðδλ2; λ3Þ plane with δλ1 ¼ 0. For λ3 ≠ 0 chiral symmetry is
absent fundamentally and “emerges” at the IR fixed point.
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Most notably, we observe that the sets of UV and IR
scaling dimensions of the bosonic theory [31,32,48,49] are
identical to those of the fermionic theory, Eqs. (13) and
(14), respectively. We conclude that strongly interacting 3D
fermions in the UV can be viewed as “quasibosons” in that
they display the same conformal scaling dimensions as free
bosons along the entire line of fixed points. By the same
token, strongly interacting 3D scalars can be viewed as
“quasifermions.”
Comparing the large N phase diagrams and UV-IR

connecting trajectories (Fig. 3 vs Fig. 4), either of which
has been obtained using Eq. (3), we observe that both admit
massless (region I) and massive theories (region II), and
theories without UV completion (region III) [50]. Beyond
large N, the line of fixed points collapses to a point. For the
fermionic theory, this follows because the sextic becomes
marginally irrelevant at 1=N, which is mirrored in the scalar
theory [31,32,49]. This is also in accord with the fact that
the Townsend-Pisarski fixed point for scalars [51,52] and
the Gat-Kovner-Rosenstein fixed point for fermions [53] at
order 1=N. We take these quantitative and structural
similarities at large N as a hint for a deeper link between
the theories, Eqs. (1) and (16), including away from critical
points [47].
Discussion.—Using the renormalization group, we have

studied large N Gross-Neveu models in three dimensions in
the absence of chiral symmetry. We find that the theory
remains nonperturbatively renormalizable, much like its
chirally symmetric counterpart. The main novelty is that
classically irrelevant 6F interactions of mass dimension −3
have become exactly marginal due to quantum fluctuations.
This is also in agreement with earlier findings [53] based on
a Gross-Neveu-Yukawa version of the theory. Hence,
relaxing chiral symmetry adds a new fundamentally free
parameter, and opens up an entire line of interacting UV

fixed points. Fixed point solutions are well-defined glob-
ally, and limited by endpoints where scale symmetry is
broken spontaneously [47]. Moreover, and even though
fermion mass is no longer protected by symmetry, we find
that massless theories prevail naturally, without any fine-
tuning, and with chiral symmetry emerging in the IR.
Further, the dynamical generation of mass, a combined
effort of 4F and 6F interactions, proceeds without the
breaking of a discrete symmetry.
An intriguing aspect of our results are the striking

similarities with 3D scalar theories at large N. This
includes equivalent conformal fixed points, phase dia-
grams, scaling dimensions, and UV-IR connecting trajec-
tories. It will therefore be interesting to see whether
explicit maps can be found relating RG flows in the
theory of fermions, Eq. (1), to those in the theory of
bosons, Eq. (16), in the spirit of a large N equivalence
between a priori fundamentally different quantum field
theories, e.g., [12]. While many large N equivalences
or dualities in 3D involve Chern-Simons gauge fields,
e.g., [13,14], the latter make no appearance in our setup. In
the spirit of [53], it will also be interesting to cross-check
the findings of this work within a Gross-Neveu-Yukawa
formulation of the theory [39], given that their critical
points are expected to be equivalent.
Finally, we look at our findings from the viewpoint of

conformal field theory or higher spin gauge theories. The
links between renormalization group fixed points and
conformal field theories [54] can be exploited to extract
further conformal data beyond scaling dimensions from
our study. Moreover, certain versions of Vassiliev’s higher
spin theories on AdS4 have been shown to be dual to
free or interacting largeN bosonic [55] or fermionic theories
[21] on the boundary of AdS4, with the parity-even Gross-
Neveu UV fixed point (λ3 ¼ 0) relating to type-B Vassiliev
theories [16]. Our study offers new largeN critical fermions
without parity symmetry ðλ3 ≠ 0Þ. It would also be interest-
ing to understand whether critical endpoints ðλ3 ¼ λcrit3 Þ
continue to have higher spin duals [13], and whether the
absence of parity or broken scale symmetry alters conformal
field theory three-point functions of quasiboson or quasi-
fermion theories [56,57].
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