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The Wilson loop operator in the UðNÞk × UðNÞ−k Aharony-Bergman-Jafferis-Maldacena theory at large
N and fixed level k has a dual description in terms of a wrapped M2-brane in the M-theory given by the
product of four-dimensional anti de Sitter space ðAdS4Þ and S7=Zk. We consider the localization result for
the 1

2
-Bogomol’nyi-Prasad-Sommerfield circular Wilson loop expectation value W in this regime and

compare it to the prediction of the M2-brane theory. The leading large N exponential factor is matched as
expected by the classical action of the M2-brane solution with AdS2 × S1 geometry. We show that the
subleading k-dependent prefactor in W is also exactly reproduced by the one-loop term in the partition
function of the wrapped M2-brane (with all Kaluza-Klein modes included). This appears to be the first case
of an exact matching of the overall numerical prefactor in the Wilson loop expectation value against the dual
holographic result. It provides an example of a consistent quantum M2-brane computation, suggesting
various generalizations.
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The existence of a consistent quantum supermembrane
(or M2-brane) theory remains an enigma (see, e.g., [1,2]).
The corresponding 3D world-volume theory is formally
nonrenormalizable, apparently requiring a specific defini-
tion like a built-in cutoff. Nevertheless, some simple
semiclassical computations to one-loop order can still be
done in a straightforward way, as one-loop corrections in
3D field theory are free of logarithmic UV divergences, see,
e.g., [3–6] or more recent work in [7].
In this Letter, we present a nontrivial example of one-

loop calculation in the M2-brane theory, which provides
further evidence that the quantization of the supermem-
brane might be under good control, at least within the
semiclassical expansion.
The AdS4=CFT3 duality between the UðNÞk × UðNÞ−k

Aharony-Bergman-Jafferis-Maldacena (ABJM) theory [8]
andM theory on the direct product of four-dimensional anti
de Sitter space ðAdS4Þ and S7=Zk provides a remarkable
opportunity to shed light on the properties of the quantum
M2-brane theory by testing its predictions against exact
results in 3D superconformal gauge theory. In the large N
limit with k fixed, the holographic dual of a Wilson loop
in the fundamental representation is expected to be an

M2-brane wrapping theM-theory circle direction. Note that
this limit is different from the standard large N ‘t Hooft
limit, where N and k are taken to be large with λ ¼ N=k
fixed, and in which Wilson loops are described by funda-
mental strings in type IIA string theory in AdS4 × CP3.
For fixed k, the large N expansion of the Wilson loop

operator in the ABJM theory corresponds to the expansion
in the large effective M2-brane tension R3T2 ∼

ffiffiffiffiffiffi
Nk

p
,

where R is the curvature radius of AdS4 × S7=Zk and
T2 ¼ ð1=ð2πÞ2l3

PlÞ.
Our starting point will be an analytic expression for the

expectation value of 1
2
-supersymmetric circular Wilson loop

in the ABJM theory derived using supersymmetric locali-
zation in [9] (see also [10–17]),
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where AiðzÞ is the Airy function, and C ¼ 2=ðπ2kÞ. This
expression resums all of the perturbative 1=N corrections at
fixed k [19].
In order to compare to the semiclassical expansion in

the M2-brane world-volume theory, one is to expand (1) at
large N with fixed k, which gives
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As wewill show in the section below, the exponential factor
in (2) is reproduced by the classical action of the M2-brane
with AdS2 × S1 world volume, while the k-dependent
prefactor ð2 sinð2π=kÞÞ−1 is matched precisely by the
one-loop correction coming from the functional determi-
nants of the quantum fluctuations around this M2-brane
solution.
Higher-order 1=ð ffiffiffiffi

N
p Þn terms in (2) are expected to

represent higher-loop corrections in the semiclassical
expansion of the partition function of the quantum
M2-brane theory, and checking this is a very interesting
but challenging future problem.
AdS2 × S1 M2-brane in AdS4 × S7=Zk.—The AdS4 ×

S7=Zk metric is given by (φ≡ φþ 2π) [20],

ds2 ¼ R2

4
ds2AdS4 þ R2ds2S7=Zk

; ð3Þ

ds2AdS4 ¼
1

z2
ð−dt2 þ dz2 þ dx21 þ dx22Þ; ð4Þ

ds2S7=Zk
¼ ds2CP3 þ 1

k2
ðdφþ kAÞ2: ð5Þ

The 11D supergravity background also includes the 4-form
field strength

F4 ¼ dC3 ¼ −
3

8

R3

z4
dt ∧ dx1 ∧ dx2 ∧ dz: ð6Þ

The radius R in units of the 11D Planck length lPl is related
to the parameters N and k of the dual ABJM gauge
theory by

�
R
lPl

�
6

¼ 25π2Nk: ð7Þ

The world-volume action for a probe M2-brane in this
background is given by [21–23]

SM2 ¼ T2

Z
d3σ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
þ T2

Z
C3 þ fermionic terms;

ð8Þ

where the M2-brane tension is

T2 ¼
1

ð2πÞ2
1

l3
Pl

: ð9Þ

Classical M2-brane solution.—The action (8) admits a
simple classical solution given by the M2-brane wrapping
the M-theory circle direction [the φ angle in (3)] and
occupying the AdS2 subspace of AdS4 spanned by the
coordinates t, z in (4). The resulting membrane has
the AdS2 × S1 world-volume geometry and is dual to the

1
2
-BPS Wilson loop along the t direction at the boundary of
AdS4. By an appropriate Wick rotation and coordinate
transformation, one may obtain in the same way the
solution dual to the circular Wilson loop, for which the
AdS2 factor is just the Euclidean hyperbolic disk with
circular boundary.
The value of the classical action (8) for this AdS2 × S1

solution is simply given by

SclM2 ¼ T2R3
1

4
volðAdS2Þ

2π

k
; ð10Þ

where ð1=4Þ comes from the AdS4 radius in (3), and the
2π=k is the length of theM-theory φ circle in (5). Using (7)
and (9), and the well-known value of the regularized volume
of the unit-radius hyperbolic disk volðAdS2Þ ¼ −2π, this
gives (we always assume k > 0)

SclM2 ¼ −π
ffiffiffiffiffiffiffi
2N
k

r
: ð11Þ

Thus, e−S
cl
M2 precisely matches the exponential in the

localization prediction (2) [25].
In the next section, we will also compute the one-loop

correction to the M2-brane partition function due to the
quantum fluctuations about this classical solution and will
reproduce precisely the prefactor in (2).
Let us note that, in the case of the 1

2
-BPS Wilson loop

along the infinite straight line, one should use in (10) the
regularized volume of AdS2 in Poincaré coordinates, which
is zero, thus getting SclM2 ¼ 0, consistent with hW1

2
i ¼ 1 in

this case. All quantum corrections also vanish here since
the AdS2 space is homogeneous and hence the quantum
M2-brane free energy is proportional to volðAdS2Þ to all
orders [27].
One-loop correction.—Starting with the action (8), one

may expand it near a classical solution to quadratic order
fixing a 3D reparametrization and κ-symmetry gauge to get
an action for 8þ 8 physical 3D fluctuation fields. The
resulting spectrum of the quantum fluctuations around the
above AdS2 × S1 solution was obtained in Ref. [30], which
we follow below (see also [31]).
It is natural to chose a static gauge identifying two

membrane coordinates σ1, σ2 in (8) with the AdS2
directions and the third σ3 with the S1 angle φ. After a
Kaluza-Klein (Fourier) expansion of the 3D fields in the
periodic coordinate σ3, one obtains a tower of bosonic and
fermionic fluctuations that can be viewed as 2D fields
propagating on the (unit-radius) AdS2 background. Thus,
one gets an equivalent 2D theory with an infinite number of
fields.
The bosonic fluctuations in the two transverse directions

within AdS4 give a tower of complex scalar fields ηn (two
real scalars for each n) with masses
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m2
ηn ¼

1

4
ðkn − 2Þðkn − 4Þ; n ∈ Z; ð12Þ

while from the fluctuations in the six CP3 directions one
finds a tower of three complex fields ζsn (s ¼ 1, 2, 3) with
masses

m2
ζsn
¼ 1

4
knðknþ 2Þ; n ∈ Z: ð13Þ

For the fermionic fluctuations, the Kaluza-Klein (KK)
reduction leads to a tower of eight two-component spinors
ϑAn (A ¼ 1;…; 8) for each value of the KK mode number n,
with masses given by (n ∈ Z) [32]

mϑan ¼
kn
2
� 1 ð3þ 3 modesÞ; mϑin ¼

kn
2

ð2 modesÞ:
ð14Þ

The above masses explicitly depend on the integer k, which
is the inverse radius of the φ circle in (5). Thus, in the type
IIA string limit k → ∞, all KK modes with n ≠ 0 become
infinitely heavy.
For n ¼ 0, this spectrum coincides (as expected upon

double-dimensional reduction [33]) with the spectrum of
bosonic and fermionic fluctuations around the correspond-
ing AdS2 string solution in the type IIA superstring theory
on AdS4 × CP3 [18,34]: we get two scalars of m2 ¼ 2, six
scalars of m2 ¼ 0, 3þ 3 fermions of m ¼ �1, and 2
fermions of m ¼ 0.
One can also check that the full spectrum is consistent

with 2D supersymmetry. The bosonic and fermionic masses
in a N ¼ 1 supermultiplet in AdS2 containing one real
scalar and a Majorana fermion are related as (see, e.g., [35])

m2
B ¼ mFðmF − 1Þ: ð15Þ

Indeed, the bosonic and fermionic modes listed above can
be grouped so that their masses satisfy this relation.
A stronger consistency test of the spectrum is obtained

by checking the vanishing of the vacuum energy in
Lorentzian AdS2 in global coordinates (as that happens
also in the simple case of the flat toroidal M2-brane [3,36]).
The vacuum energies for massive bosons and fermions in
AdS2 are given by (see, e.g., [28])

EBðmBÞ ¼ −
1

4

�
m2

B þ 1

6

�
; EFðmFÞ ¼

1

4

�
m2

F −
1

12

�
:

We find that the total vacuum energy in the present case is
zero separately for each KK level n,

Etot ¼
X∞
n¼−∞

Etot
n ; ð16Þ

Etot
n ¼ −

1

4

�
2

4
ðkn − 2Þðkn − 4Þ þ 6

4
knðknþ 2Þ

− 3

�
kn
2

þ 1

�
2

− 3

�
kn
2
− 1

�
2

− 2

�
kn
2

�
2

þ 2

�
¼ 0:

ð17Þ

Using the above spectrum, we can derive the one-loop
correction to the partition function of the M2-brane theory
expanded around the Euclidean AdS2 × S1 solution with
circular boundary. The semiclassical partition function is
given by

ZM2 ¼ Z1e−S
cl
M2

�
1þO

�
1

R3T2

��
; ð18Þ

where the one-loop term Z1 is the ratio of the determinants
of the corresponding fluctuation operators

Z1 ¼
Y
n∈Z

Zn;F

Zn;B
;

Zn;F ¼
�
det

�
−∇2 þ Rð2Þ

4
þ
�
kn
2
þ 1

�
2
��3

2

�
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�
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4
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− 1
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��3
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4
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4
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;
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�
−∇2 þ ðkn − 2Þðkn − 4Þ

4

��
det

�
−∇2 þ knðknþ 2Þ

4

��
3

: ð19Þ

Here Rð2Þ ¼ −2 is the curvature of AdS2 [37]. The n ¼ 0
factor in (19) is of course the same as the one-loop partition
function [18,34] for the fluctuations near the corresponding
type IIA AdS2 string world sheet ending on a circle at the
boundary of AdS4 × CP3.
The functional determinants in (19) may be computed by

the standard AdSd spectral zeta-function techniques (as was

done in the similar AdS2 string case in, e.g., [18,28,29]).
For a massive boson, one has

Γ1B
¼ 1

2
log detð−∇2 þm2

BÞ

¼ −
1

2
ζð0;m2

BÞ logðΛ2Þ − 1

2
ζ0ð0;m2

BÞ; ð20Þ
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where Λ is a 2D UV cutoff, and

ζBð0;m2
BÞ ¼

m2
B

2
þ 1

6
;

ζ0Bð0;m2
BÞ ¼ −

1

12
−
log2
12

þ logA−
Z

m2
Bþ1

4

0

dxψ

� ffiffiffi
x

p þ 1

2

�
:

ð21Þ

Here A is the Glaisher constant and ψðxÞ ¼ Γ0ðxÞ=ΓðxÞ.
Similarly, for a massive fermion,

Γ1F
¼ −

1

2
log det

�
−∇2 þ Rð2Þ

4
þm2

F

�

¼ −
1

2
ζFð0;mFÞ logðΛ2Þ − 1

2
ζ0Fð0;mFÞ; ð22Þ

ζFð0;mFÞ ¼ −
m2

F

2
þ 1

12
;

ζ0Fð0;mFÞ ¼ −
1

6
þ 2 logAþ jmFj þ

Z
m2

F

0

dxψð ffiffiffi
x

p Þ: ð23Þ

Using these expressions we can first verify the cancellation
of the logarithmically divergent part of the one-loop free
energy Γ1 ¼ − logZ1 in (19). Indeed, from the above
calculation of the vacuum energy, one can see that the
sum over the bosonic and fermionic masses at each KK
level n satisfies

Pðm2
B −m2

FÞ ¼ −2. Then the total coef-
ficient of the logarithmic divergence in the sum of the
corresponding terms in (20), (21) and (22), (23) over the
spectrum is

ζtotð0Þ ¼
1

2

X
n∈Z

ð−2þ 4Þ ¼
X
n∈Z

1¼ 1þ 2ζRð0Þ ¼ 0; ð24Þ

where we have used the Riemann zeta-function regulari-
zation to evaluate the (linearly divergent) sum. Note that the
contribution of all massive KK modes at nonzero n levels
cancels 1 coming from the n ¼ 0 modes, i.e., cancels the
logarithmic UV divergence that was present in the similar
computation in the AdS4 × CP3 superstring regime [18].
The vanishing of the logarithmic divergence in the free

energy was actually expected, as the M2-brane theory we
started with is three dimensional, and there are no loga-
rithmic divergences in the corresponding functional deter-
minants in 3D. The reduction to 2D with all KK modes
included cannot produce logarithmic divergences that were
not present in the 3D formulation [38].
The one-loop free energy is thus finite and is given by

Γ1 ¼ − logZ1 ¼ −
1

2
ζ0totð0Þ; ð25Þ

where according to (19),

ζ0totð0Þ ¼
X
n∈Z

ζ0totð0; nÞ;

ζ0totð0; nÞ ¼ 2ζ0B
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0;
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4
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�
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�
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�
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2
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�
þ 2ζ0F

�
0;
kn
2

�
: ð26Þ

Summing up the bosonic and fermionic contributions,
some remarkable simplifications occur. Combining the
contributions of the positive and negative modes (so that
below n ≥ 0), we find the following result [39]:

ζ0totð0; nÞ þ ζ0totð0;−nÞ ¼

8>>><
>>>:

−2 log ðk2n2
4

− 1Þ; kn > 2;

log π2; kn ¼ 2;

− log 9
4
; kn ¼ 1;

0; n ¼ 0:

If we assume that k > 2, only the n ¼ 0 and kn > 2 cases
in (27) occur, and the complete one-loop free energy is
given by the following simple result:

Γ1 ¼
X∞
n¼1

log

�
k2n2

4
− 1

�

¼ 2
X∞
n¼1

log
kn
2
þ
X∞
n¼1

log

�
1 −

4

k2n2

�
: ð27Þ

Using again the Riemann zeta-function regularization
[ζRð0Þ ¼ − 1

2
; ζ0Rð0Þ ¼ − 1

2
logð2πÞ], we get

2
X∞
n¼1

log
kn
2

¼ 2ζRð0Þ log
k
2
− 2ζ0Rð0Þ ¼ − log

k
4π

: ð28Þ

The second sum in (27) is finite and given by

X∞
n¼1

log

�
1 −

4

k2n2

�
¼ log

Y∞
n¼1

�
1 −

4

k2n2

�

¼ log

�
k
2π

sin

�
2π

k

��
: ð29Þ

Here we used Euler’s expression for the sine as a product of
its zeros, sinðπxÞ ¼ πx

Q∞
n¼1ð1 − ðx2=n2ÞÞ.

Combining (28) and (29), we get the final result for the
one-loop partition function for k > 2,

Z1 ¼ e−Γ1 ¼ 1

2 sinð2πk Þ
; ð30Þ
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which is thus in precise agreement with the localization
result in (2).
Let us now discuss the special cases of k ¼ 1, 2 which

require a separate treatment [40]. For k ¼ 1, all of the cases
listed in (27) occur in the sum over the KK modes, i.e.,

Γk¼1
1 ¼ 1

2
log

9

4
−
1

2
log π2 þ

X∞
n¼3

log

�
n2

4
− 1

�
: ð31Þ

The infinite sum here can be evaluated in a similar
way:

P∞
n¼3 logððn2=4Þ − 1Þ ¼ 2

P∞
n¼3 logðn=2Þ þ

P∞
n¼3×

logð1− ð4=n2ÞÞ ¼ logð16πÞ− log 6, and from (31) we get
Γk¼1
1 ¼ log 4, i.e.,

Zk¼1
1 ¼ 1

4
: ð32Þ

Similarly, Γk¼2
1 ¼ − 1

2
logðπ2Þ þP∞

n¼2 log ðn2 − 1Þ ¼ 0,

Zk¼2
1 ¼ 1: ð33Þ

These results cannot be directly compared to localization,
as the result (1) of [9] is singular for k ¼ 1, 2 [44]. It might
be that the derivation of (1) in [9] is to be reconsidered
specifically for k ¼ 1, 2. The matching in these special
cases thus remains an open problem.
Concluding remarks.—Extending the above computa-

tion to higher loops in the semiclassical expansion of the
partition function (18) would allow one to compare the
quantum M2-brane prediction with the subleading terms in
the expansion of the localization expression at large N. For
instance, the term of order 1=

ffiffiffiffi
N

p
in (2) should come from a

two-loop calculation in the M2-brane theory (recall that
ð1=R3T2Þ ∼ ð1= ffiffiffiffi

N
p Þ). One issue with this computation is

whether the two-loop correction will be UV finite.
The cancellation of logarithmic divergences (despite

apparent nonrenormalizability) may happen due to the
large amount of supersymmetry of the supermembrane
theory (cf. [48]). An example of a cancellation of two-loop
UV divergences in a formally nonrenormalizable theory is
provided by the successful computation of the subleading
ð1= ffiffiffi

λ
p Þ correction to the cusp anomalous dimension

fðλÞ ¼ a0
ffiffiffi
λ

p þ a1 þ ða2=
ffiffiffi
λ

p Þ þ � � � in the AdS5 × S5

superstring theory [49–51], which matched the correspond-
ing term in the strong-coupling expansion of fðλÞ derived
on the N ¼ 4 supersymmetric Yang-Mills (SYM) side
using integrability [52] (the analogous two-loop computa-
tion in the case of the AdS4 × CP3 string was done in [53]).
An alternative possibility could be that the M2-brane

theory has a built-in UV cutoff Λ ∼ lPl
−1 ∼ T−1=3

2 .
However, then a logarithmically divergent term would
scale as logðRΛÞ ¼ ð1=6Þ logðNkÞ þ � � � [see Eq. (7)],
but there is no such logN term in the localization expansion
of the Wilson loop in (2) [54]. This suggests that the

logarithmic divergences may cancel at higher loops in the
M2-brane theory, at least for such a 1

2
-BPS observable.

Let us now comment on the 10D type IIA string theory
limit, which corresponds to k and N both taken to be large,
with the ‘t Hooft coupling λ ¼ N=k kept fixed. In this
regime, the 11D background (3) reduces to AdS4 × CP3,
and a Wilson loop operator is dual to an open string ending
on a loop at the boundary of AdS4. The corresponding type
IIA string coupling constant gs and the effective string
tension T ¼ ð1=2πÞðR2

s=l2
sÞ are then [8]

gs ¼
ffiffiffi
π

p ð2λÞ5=4
N

; T ¼
ffiffiffiffiffi
2λ

p

2
; λ ¼ N

k
: ð34Þ

Note that, to be in the gs ≪ 1 and λ ≫ 1 regime, we need to
assume that k ≪ N ≪ k5.
As was pointed out in [18], the string partition function

computed near the AdS2 minimal surface representing the
1
2
-BPS circular Wilson loop in both type IIB AdS5 × S5 and
type IIA AdS4 × CP3 theories has an expansion in small
gs and then in large tension T of the following universal
form [56]:

hW1
2
i ¼ e2πT

ffiffiffiffi
T

p

gs

	
c0½1þOðT−1Þ� þ c1

g2s
T
½1þOðT−1Þ�

þ c2

�
g2s
T

�
2

½1þOðT−1Þ� þ � � �


: ð35Þ

In our present case, we can see that this is consistent
with the structure of the corresponding large N, large k
expansion of (1), according to which one should get
c0 ¼ ð1= ffiffiffiffiffiffi

2π
p Þ, c1 ¼ ðπ=12Þc0, etc. The presence of the

overall
ffiffiffiffi
T

p
factor was shown in [18] to originate from the

leading one-loop string sigma model correction on the disk
[it is related to the n ¼ 0 contribution in (24)]. The precise
value of the one-loop coefficient c0 ¼ ð1= ffiffiffiffiffiffi

2π
p Þ was not so

far derived directly on the string side (that appears to
require a careful normalization of the measure in the
superstring path integral). Remarkably, the M2-brane
one-loop computation described above effectively deter-
mines this coefficient and, moreover, the coefficients of all
of the leading large tension terms at higher genus (disk with
handles). Indeed, comparing (35) to the corresponding
large N, large k expansion of (1), the leading large tension
terms in (35) can be seen [57] to arise from a resummed
expression,

hW1
2
i ¼ 1

2 sin
h ffiffi

π
2

p gsffiffiffi
T

p
i e2πT ½1þOðT−1Þ�; ð36Þ

where
ffiffiffiffiffiffiffiffiffiffiffiffiðπ=2Þp ðgs=

ffiffiffiffi
T

p Þ¼2πðλ=NÞ¼ð2π=kÞ. Here the sine
factor is just the same as the one found in (2) and (30) [the
exponential factor is also the same as in (18) and (11)].
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Thus, the one-loop M2-brane correction happens to
describe the leading large tension terms at all orders in
the genus expansion in the type IIA string theory [58].
One natural generalization of our calculation is to

consider the 1
6
-BPS Wilson loop [10,61]. In this case, the

localization result derived in [9], expanded in the large N,
fixed k limit, gives

hW1
6
i ¼ i

2 sinð2πk Þ

ffiffiffiffiffiffiffi
2N
k

r
eπ

ffiffiffiffi
2N
k

p
ð1þ � � �Þ: ð37Þ

Note that there is an extra factor i
ffiffiffiffiffiffiffiffiffiffiffi
2N=k

p
compared to the

1
2
-BPS case. The origin of this factor should be similar to
what was discussed in the corresponding string case, where
it was argued [10] that the string solution should be
smeared over a CP1 in CP3, leading to two zero modes
and hence an overall factor ð ffiffiffiffi

T
p Þ2 ∼ ffiffiffi

λ
p

in the partition
function [13,18]. For the M2-brane, we similarly expect
that the solution relevant to the ð1=6Þ-BPS case should be
smeared over a CP1, leading again to an extra tension-
dependent prefactor ∼

ffiffiffiffi
N

p
. It would be interesting to study

the fluctuation spectrum of the corresponding M2-brane in
detail and reproduce from a one-loop calculation the
remaining normalization factor in (37).
Another interesting extension would be to explore the

defect conformal field theory (CFT) defined by the 1
2
-BPS

Wilson loop in the largeN, fixed k limit. The corresponding
problem in the type IIA string regime was studied in [62].
In particular, in that case, one finds that the 8þ 8
fluctuation modes about the AdS2 string solution form a
short supermultiplet containing the displacement operator.
The same multiplet appears for the M2-brane as the n ¼ 0
mode in the KK reduction. It would be interesting to
understand the interpretation of the higher KK modes from
the defect CFT point of view and compute their boundary
correlation functions [63].
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