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Gravitational wave (GW) detections of binary neutron star inspirals will be crucial for constraining

the dense matter equation of state (EOS). We demonstrate a new degeneracy in the mapping from tidal
deformability data to the EOS, which occurs for models with strong phase transitions. We find that there
exists a new family of EOS with phase transitions that set in at different densities and that predict neutron
star radii that differ by up to ~500 m but that produce nearly identical tidal deformabilities for all neutron
star masses. Next-generation GW detectors and advances in nuclear theory may be needed to resolve

this degeneracy.
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Introduction.—Gravitational wave (GW) events offer
exciting prospects to constrain the properties of dense
matter (see, e.g., Refs. [1-4]). In particular, the GW signal
emitted during the final orbits of two colliding neutron stars
contains imprints of the tidal deformability parameter A
that can be related to the properties of dense matter in terms
of the equation of state (EOS) (see, e.g., Refs. [5-13]). In
practice, this inference is limited by the sensitivity to which
the tidal deformability can be constrained. For example, for
the GW170817 event, A was constrained to 300f§328 at
90% confidence [14], which has been translated to con-
straints on the neutron star radius of 10 < R < 13 km (see,
e.g., Refs. [5,7-11]).

When advanced LIGO reaches its fifth observing cam-
paign (called “A+"), it is expected that the tidal deform-
ability will be able to be constrained to uncertainties of
o ~ 46 at 68% confidence, for a GW170817-like event.
With next-generation (XG) GW detectors, these bounds on
A will be further improved, leading to anticipated con-
straints of o5 < 8 from the inspiral GW signal for a similar
event and o3 =~ 1-4 for a population of mergers observed
with XG detectors, depending on the merger rate [15].
From the usual quasiuniversal relations that map tidal
deformabilities to the neutron star radius (see, e.g.,
Refs. [10,11,16-18]), one would typically assume that
small uncertainties in o3 directly translate to tight con-
straints on R, potentially to 50-200 m accuracy [4],
assuming that dynamical tides are correctly accounted
for in the extraction of A [19,20]. In all of these efforts,
a key goal is to determine what relevant degrees of freedom
exist in the dense-matter cores of neutron stars—for
example, whether there exists a phase transition (e.g., to
deconfined quark matter), what the nature of the phase
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transition is, and at what densities this transition occurs
(see, e.g., Refs. [21-28]).

In this work, we identify a new degeneracy in the
mapping from the tidal deformability to the neutron star
EOS, which arises specifically for models with strong
phase transitions at densities around nuclear saturation. We
demonstrate this degeneracy with an example Bayesian
inference of the EOS, using mock tidal deformability data
generated from an EOS with a first-order phase transition.
For the sensitivity of the A + LIGO configuration, we find
that it will be difficult to differentiate between certain
classes of EOSs that have first-order phase transitions
setting in at different densities and that even models with
no phase transition at all can mimic the same tidal
deformability data. With the sensitivity of proposed XG
detectors, the constraints on the EOS remain broad, but
the degeneracy between these different phase transitions
starts to resolve.

Using these inference results as motivation, we show that
it is generically possible to construct EOS models that
have phase transitions that set in at significantly different
densities—leading to differences in the predicted stellar
radii of ~300 m—but that predict nearly identical tidal
deformabilities across the entire range of astrophysically
observed neutron star masses (corresponding to, e.g.,
absolute differences of AA <5 and fractional differences
<1%—-2% for intermediate-mass stars). Given the similarity
of these models’ macroscopic features, despite their sig-
nificant differences in underlying microphysics, we refer to
these EOSs as “tidal deformability doppelgingers.”

We demonstrate that, with additional input from nuclear
theory to extend the crust EOS to supranuclear densities
(see, e.g., Refs. [29-32]), combined with the sensitivity of
XG GW observatories, it may be possible to break the
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FIG. 1.

Top row (in purple): Bayesian inference of the EOS for mock data, generated assuming Gaussian errors in tidal deformability,

A, for LIGO at the sensitivity of its fifth observing run (A+), for a series of GW170817-like events (o, = 46). From left to right, we
show the most likely tidal deformability curves, mass-radius curves, and EOSs inferred in our Bayesian inference. To highlight the
degeneracy of the solutions, we randomly sample curves from the 68% confidence interval and color them according to their posteriors,
relative to the most likely solution. Bottom row (in blue): an identical inference, but with Gaussian errors in A for the proposed XG

detector Cosmic Explorer (o, = 8).

degeneracy when inferring strong phase transitions. The
degeneracy will be easiest to break for low-mass neutron
star binaries, if they exist in astrophysical populations. At
present, however, this degeneracy cannot be resolved from
GW data alone, and the inference of at least some families
of phase transitions will be highly sensitive to the choice of
priors assumed.

Inferring strong phase transitions from GW data.—We
begin by introducing the degeneracy with a sample
Bayesian inference of the EOS from mock GW data,
following the statistical framework outlined in Ref. [33].
In our inference scheme, we assume that the crust EOS
(ap3 [34]) is known perfectly to a fiducial density p,, which
we set here to be 1.2p,, where pg, = 2.7 x 10* g/cm? is
the nuclear saturation density. At higher densities, we
parametrize the uncertainty in the EOS using five piecewise
polytropic segments. When performing our inference, we
impose a set of minimal requirements—namely, causality,
stability, and the ability to support massive (2.01M)
neutron stars—and we sample uniformly in the pressure.
Finally, we also require that the maximum mass predicted
by the EOS not exceed 2.3M, in order to be consistent
with inferences from GW170817 and its electromagnetic
counterpart [35-39].

For the example inferences, we construct a series of
mock tidal deformability data which were generated from
an EOS that has a strong, first-order phase transition
starting at 1.7pg,. This EOS (which is shown as the dark
blue curve in the middle row in Fig. 2) predicts the radius of
a 1.4M 4 neutron star to be R;, = 11.6 km and the tidal
deformability at the same mass to be Ay 4 = 257, consistent
with current astrophysical constraints [9,14,40-48].

In the first example inference, we assign Gaussian errors
to the tidal deformabilities based on the projected sensitivity

of the LIGO detectors in their fifth observing run (A+).
We optimistically assume that the A+ detectors observe 16
GW170817-like events, spaced evenly in mass across the
entire range of astrophysically observed neutron star masses
(i.e., from 1.2 to 2M). (We consider the range of astro-
physical neutron star masses to range from the lightest
observed radio pulsar at 1.17M [49] to 2.01M [50,51].
Both quoted values correspond to the 1o lower limit on the
masses. We note that the 90% lower limit on the secondary
mass for GW170817 was also 1.17M and that no lighter
GW sources have yet been detected [52]. In general, the
differences in the tidal deformability are largest at low
masses, so taking the lower limit on the lowest mass
considered provides the most conservative estimates possible
for the degeneracies discussed in this Letter.) For such a
scenario, the anticipated 1o-measurement uncertainties in
the tidal deformability would be 6, = 46 [15]. We addi-
tionally assume that the masses are tightly constrained with
Gaussian uncertainties of 0.025M. (For simplicity, we
also assume that these are equal mass binaries, so that
the component tidal deformabilities are constrained directly.
We explore the impact of unequal mass ratios on the
degeneracy between these tidal deformabilities in
Supplemental Material [53].)

We show the resulting constraints in the top row in Fig. 1
(in purple). In this figure, we include only samples drawn
from the 68% confidence interval for visual clarity, and we
color these according to their normalized posteriors. We find
that, even with this optimistic set of mock data, we are able
only to constrain the radius of a 1.4M 4 neutron star to within
500 m and the pressure at 1.7p, to within a factor of 5.8,
at 68% confidence. Moreover, as the color shading indicates,
there are models on either edge of this broad uncertainty
band that give comparably good posteriors. For example,
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models with a strong phase transition that sets in at lower
densities (1.2p,) or higher densities (1.7p,) fit the data
comparably well, as does an EOS that goes right through the
middle of this uncertainty band with no phase transition at
all. In short, we are not only unable to recover our initial
EOS, but are also unable to rule out or confirm the presence
of exotic nuclear phases, such as deconfined quark matter.

To further illustrate this degeneracy, we consider two
example EOSs drawn from opposite edges of this uncer-
tainty band. We show these EOSs in the middle row in
Fig. 2, where the dark blue curve shows the EOS model
used to generate the mock data and the light blue curve
represents a separate EOS sampled in our inference.
Despite the fact that these models predict first-order phase
transitions at different densities and accordingly differ
significantly in their supranuclear pressures, they fit the
data similarly well with a Bayes factor of 1.9, indicating
insufficient evidence to tell them apart [71].

This presents a significant degeneracy in the mapping
from tidal deformability measurements to the underlying
EOS. It has previously been shown that changing the crust
EOS (at densities below 10'* g/cm?) can change the radius
without significantly affecting the tidal deformabilities [72].
Here, however, we find that large differences in the EOS
at supranuclear densities may also be indistinguishable,
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FIG. 2. Example pairs of EOS models that undergo a first-order
phase transition at significantly different densities (40% frac-
tional difference) and yet produce nearly identical tidal deform-
ability curves. From left to right, we show the EOS models, their
corresponding mass-radius relations, and their corresponding
tidal deformability curves. Each pair of EOS models was
constructed assuming perfect knowledge of the crust EOS to
Psat (top oW, in green), 1.2p , (middle row, in blue), or 1.5p,
(bottom row, in red).

even with optimistic A+ data observed across a wide range
of masses.

In order to understand the sensitivity of this degeneracy
to the measurement uncertainties, we perform a second
Bayesian inference with an identical setup, but now
assuming Gaussian errors on the tidal deformability mea-
surements of 6, = 8. These smaller errors on A correspond
to the projected measurement uncertainty for the proposed
XG detector Cosmic Explorer [73], for a GW170817-like
event [15]. The results of this inference are shown in the
bottom row in Fig. 1 (in blue). Again, we find a large spread
in the inferred R; 4 of ~500 m and in the pressure at 1.7pg,
of 5.7x, at 68% confidence. However, in this case, we see
that the data have more discerning power for the most
extreme EOS models in our inferred sample, as indicated
by the gradient in colors.

To illustrate this point, we again consider the two
example EOSs from the middle row in Fig. 2, which
now have a Bayes factor of 3.3 for the XG data, indicating
“substantial” evidence [71] in favor of the dark blue model
(which was used to generate the mock data). Interestingly,
the lowest-mass data points are the most constraining: For
example, if we excise the mock data point at 1.2M, then
the Bayes factor between these models for the remaining
data is only 1.6, which is insufficient evidence to select the
correct EOS. This suggests that, if low-mass neutron star
binaries exist in nature, they may be particularly powerful
for resolving this degeneracy. We discuss this point
further below.

In principle, with even one year of observations with
Cosmic Explorer, we can expect tighter constraints on the
tidal deformability than assumed here, of potentially
o =~ 1-4, depending on the astrophysical merger rate [15].
With such sensitivity—in particular, if combined with
further input from nuclear theory—it will become possible
to distinguish between these EOS models with higher
confidence, as we show in the following section.

Finally, we note that we have taken very broad priors
in this analysis (namely, flat priors on the pressure with
minimal additional physical constraints). We make this
choice in order to clearly demonstrate the constraining
power of these mock GW data. Additional priors on the
sound speed or on the likelihood of phase transitions in the
EOS would readily differentiate between the inferred EOSs
shown in Fig. 1. Indeed, we performed an additional set of
inferences with more informative priors, and we find that
the inclusion of even a weak prior penalizing variations in
the sound speed acts to restrict the uncertainty bands in
Fig. 1 but that such a prior can also bias the inference to
select the incorrect EOS, even in the limit of high-quality
XG data observed across a range of masses (for details, see
Supplemental Material [53]). This suggests a strong sensi-
tivity of such inferences to the choice of priors, for at least
some regions of the EOS parameter space where the
doppelginger degeneracy is significant. In summary, these

201403-3



PHYSICAL REVIEW LETTERS 130, 201403 (2023)

results demonstrate—for the first time—the limitations of
current GW data in distinguishing between certain classes
of EOS models with strong, supranuclear phase transitions,
from the data directly.

Impact on future gravitational wave detections.—In
order to understand this degeneracy in more detail, we
construct several example pairs of EOS models that mimic
the features identified in Fig. 1. Because of their almost
identical tidal deformabilities despite large differences in
their EOSs, we refer to these models as tidal deformability
doppelgdngers.

We show these “doppelgédnger ” EOSs in Fig. 2. The top
row (in green) shows a pair of EOSs where the crust EOS is
assumed to be known perfectly up to pg,, and the phase
transition is allowed to set in soon thereafter. In the middle
row (in blue), we show an example where the crust EOS is
assumed to 1.2p,; these models correspond to the extreme
edges of our 68% confidence band inferred in Fig. 1, as
discussed in that section. Finally, in the bottom row (in red),
we show an example pair of doppelgéngers where the crust
EOS is assumed to be known to 1.5p,. In all cases, we find
that it is possible to construct pairs of EOS models that have
very different microphysics—with first-order phase tran-
sitions that set in at significantly different densities and
which accordingly predict neutron star radii that differ by
~300 m—and yet that predict tidal deformability curves
that are nearly identical across the entire range of astro-
physically observed masses.

We note that, although these are phenomenological
models, the qualitative features are similar to more realistic
calculations of EOSs with first-order phase transitions to
deconfined quark matter (see, e.g., Refs. [74-76], and
references therein). The difference in the transition den-
sities in Fig. 2 can, thus, be associated with a difference in
the deconfinement transition densities for these models or,
more generally, with the onset densities for an exotic new
degree of freedom.

Although the tidal deformability curves in Fig. 2 are very
similar for a given pair of models, they are not perfectly
identical. We show the differences in A for each of these
pairs of models in Fig. 3, where, for reference, we also
include estimates of the differences in A that could be
resolved at 68% confidence for a population of neutron star
mergers observed for one year with the sensitivity of
current and upcoming detectors. These sensitivity estimates
are shown with the vertical green band for aLIGO, in
orange for A+, and in blue for Cosmic Explorer [15].

We find that, in general, the differences in A for any of
these EOSs are most significant at low masses, consistent
with the findings of the previous section. In addition, as the
crust EOS is assumed to higher densities, the differences in
A become more significant. For example, if the crust EOS
is assumed to be known to pg, (1.5p,), we will likely need
the sensitivity of Cosmic Explorer (A+, for a population
of low-mass neutron star binaries) to distinguish the tidal
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FIG. 3. Absolute differences in the tidal deformability A
between each pair of doppelgéingers shown in Fig. 2. As the
crust EOS is assumed to higher densities, the tidal deformability
curves become more distinct, with the largest differences emerg-
ing at low masses. The vertical shaded bands indicate the
expected 68%-measurement uncertainty in A for a population
of neutron star mergers observed over one year with the
sensitivity of LIGO at design sensitivity (aLIGO), the anticipated
sensitivity of LIGO during its fifth observing run (A+), and the
proposed XG detector Cosmic Explorer (CE) [15].

deformabilities for this example, based on GW data alone.
Thus, adopting stronger nuclear input—in terms of the
density to which the crust EOS is assumed—can help to
resolve this tidal deformability degeneracy. In summary, the
most constraining data will likely come from low-mass
neutron star binaries, which may even be able to resolve
this degeneracy with current GW detectors, if combined
with sufficient input from nuclear theory at supranuclear
densities.

We note that our discussion here focuses on a few
illustrative examples, in order to discuss the implications
for inferences from current and upcoming observations. We
investigate the ubiquity of these doppelgéngers and their
full parameter space in a separate work [77].

Prospects for postmerger GWs.—In addition to provid-
ing tighter constraints on the tidal deformability of inspiral-
ing neutron stars, another exciting prospect of XG detectors
is the possibility of capturing the postmerger GW emission
(see, e.g., Refs. [78-80]). Much work has been devoted to
understanding the connection of EOS models to the
postmerger frequency spectrum. These quasiuniversal rela-
tions rely to a large extent on correlations between the
dominant frequency f, and the tidal deformabilities or radii
of cold neutron stars (see, e.g., Refs. [81-91]). In particular,
several works have investigated the possibility of con-
straining strong phase transitions this way [92-98].

To investigate this scenario, we perform binary neutron
star merger simulations for two extreme pairs of
doppelgédnger EOSs, where the crust EOS is assumed only
to 0.5p4,. In one pair of doppelgénger EOSs, the character-
istic radii are R;4 = 10.8 and 11.2 km, similar to the
examples shown in Fig. 2. We also construct a second pair
of doppelgéngers that are significantly stiffer, such that they
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predict characteristic radii of Ry 4 = 12.8 and 13.2 km, yet
differ by AA;4 < 1. We extend these zero-temperature,
EOSs to finite temperatures and arbitrary compositions
using the framework of Ref. [99] and perform merger
simulations for each EOS using GW170817-like binary
parameters. Two of these fully finite temperature models
have been simulated previously [91,100], and the numerical
setup [101,102] of our simulations here is identical to
that work [100]; we provide key details in Supplemental
Material [53].

From these simulations, we extract the peak frequencies
of the postmerger GW emission and find that they are
nearly indistinguishable for a given pair of doppelgédngers.
For the R; 4 = 10.8 and 11.2 km pair of models, we find
f2 =3.39 kHz in both cases; while for the R, = 12.8
and 13.2 km pair of models, f, =2.71 and 2.65 kHz,
respectively.

These results are consistent with the predictions of
existing quasiuniversal relations, to within the numerical
uncertainties in f,, which we conservatively estimate to
be at the 10% level [103]. In particular, the doppelgéngers
do not violate reported quasiuniversal relations between
f> and the radius of a 1.8M star [90,91] or with the
tidal deformability [104]. For additional discussion, see
Supplemental Material [53].

In summary, to within the current uncertainties of
numerical simulations—which may also be affected by
systematic uncertainties in finite-temperature [105-107]
and neutrino physics [108—111]—we find that the post-
merger peak frequencies may not be able to differentiate
between the strong phase transitions of some doppelgidnger
models. However, the field is likely to progress signifi-
cantly by the XG era.

Summary.—In this work, we have identified a new
degeneracy in the mapping from tidal deformability data
to the underlying EOS, which arises for models with strong
phase transitions. We find that certain families of EOS
models, which have phase transitions that set in at signifi-
cantly different densities and which predict radii that differ
by ~300 m, can predict tidal deformabilities that are nearly
identical across the observed range of neutron star masses.

While this degeneracy may limit the ability of the current
GW detectors to infer some classes of phase transitions
from GW data in the absence of informative priors, we have
shown that XG detectors will potentially have the sensi-
tivity to resolve this degeneracy, depending on the neutron
star mass distribution and merger rate. These results
thus provide additional motivation for the construction
of XG facilities such as Einstein Telescope [112], Cosmic
Explorer [73], or NEMO [113].

Adopting stronger input from nuclear theory can also
help to resolve the degeneracy between certain classes of
these models. Thus, continued advances in nuclear theo-
retical constraints—in particular, around nuclear saturation
[114,115]—will also help to provide further constraints on
these tidal deformability doppelgingers.
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