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Symbolic expressions for cosmic backreaction and mean redshift drift in a range of two-region models in
terms of average quantities are presented. The demonstration that these expressions can be obtained
constitutes the opening of a new avenue towards understanding the effects of cosmic backreaction in our
universe: With a symbolic expression for the redshift drift at hand, the redshift drift can be used to constrain
cosmological parameters including the large-scale expansion rate and backreaction. In addition, by
introducing symbolic expressions for cosmic backreaction, this quantity can be constrained with
observations such as redshift-distance measures.
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Introduction.—The observed redshift of an astronomical
object generally changes with time. This effect is known as
redshift drift [1,2]. In the Friedmann-Lemaitre-Robertson-
Walker (FLRW) limit the redshift drift, δz, is given by

δz ¼ δt0½ð1þ zÞH0 −HðzÞ�; ð1Þ

where δt0 is the observation time.
As seen, redshift drift represents a direct measurement

of the cosmic expansion rate and is thus considered an
important future observable. However, the equation written
above is only valid for FLRW spacetimes. The real universe
contains structures which may affect the large-scale or
average dynamics of the Universe. This effect is known as
cosmic backreaction and was introduced in [3] where it was
shown that the large-scale dynamical equations of a general
inhomogeneous dust universe can be written as (c ¼ 1 and
dots indicate time derivatives)

3H2
D ¼ 8πGρD −

1

2
RD −

1

2
Q; ð2Þ

3
äD
aD

¼ −4πGρD þQ: ð3Þ

These equations are known as the Buchert equations and
are valid for irrotational dust spacetimes with spatial
hypersurfaces orthogonal to the dust flow.
Subscripted D’s indicate the averaging domain, required

to be larger than the assumed homogeneity scale. The
Buchert equations are obtained by defining scalar
averaging as

sD ≔
R
D sdV
R
D dV

; ð4Þ

where s is some scalar, and applying this scheme to the
Hamiltonian constraint and Raychaudhuri equation (see

Ref. [3]). The kinematical backreaction Q ≔ 2=3½ðθ2ÞD−
ðθDÞ2� − ðσμνσμνÞD is obtained from the dust expansion
rate, θ, and its shear tensor σμν. The volume averaged scale
factor, aD, is computed as aD ¼ ðV=V0Þ1=3, where V is the
proper (Riemannian) volume of the spatial averaging
domain. The spatially averaged spatial curvature, RD,
may deviate from being proportional to a−2D (its behavior
in the FLRW limit). Together with Q, this deviation is
called cosmic backreaction. While HD can be computed as
_aD=aD, it is also identical to a third of the average of the
local expansion rate: HD ¼ ð1=3ÞθD.
Since cosmic backreaction affects the dynamics of the

Universe, it may be involved in observational cosmological
tensions such as the H0 tension [4,5] as studied in [6]. In
addition, backreaction can lead to large-scale accelerated
expansion without local acceleration [7–10], implying that
backreaction could, in principle, make dark energy obsolete
or at least significantly affect our phenomenological under-
standing of it.
Whether or not backreaction truly is a good contestant

to explain the accelerated expansion and, indeed, be of
any significance in our universe at all, has been heavily
debated [11–17]. The bottom line is that we do not know and
weprobably cannot hope to learnuntilwe are able to construct
realistic relativistic models with full-fledged nonlinear struc-
ture formation including virialization so that we can study
how backreaction appears and behaves in these. Additionally,
we must find a connection between backreaction and obser-
vations. This latter point is the topic of interest here.
Observations in an inhomogeneous universe.—It has

been shown [18–20] that backreaction and spatially aver-
aged quantities defined as in [3] can be related to the
redshift-distance relation according to [18]

HD
d

dhzi
�

ð1þ hziÞHD
dhDAi
dhzi

�

¼ −4πGρDhDAi; ð5Þ
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where backreaction implicitly appears through HD.
Triangular brackets are used for denoting mean relations,
i.e., the mean redshift and redshift-distance relation
obtained by averaging over several random lines of sight.
With the above redshift-distance relation one ingredient is
still missing before we can begin to sensibly constrain
backreaction: We need to parametrize backreaction in terms
of the volume averaged scale factor (or, equivalently, the
mean redshift hzi ¼ 1=aD − 1 [18]). In addition, it is not all
observables that can be as simply related to spatial averages
as the redshift-distance relation can. It has, for instance,
been shown [19–22] that the mean redshift drift is not equal
to the drift of the mean redshift in a general inhomogeneous
universe, even if spatial averages can be computed on
hypersurfaces with statistical homogeneity and isotropy—
i.e., hδzi ≠ δhzi. This means that, for a general spacetime,
we cannot currently write a relation between spatial
averages and the mean redshift drift.
A new avenue towards overcoming these obstacles is

introduced here where toy models are used in an initial
study into the possibility of using symbolic regression to
obtain phenomenological expressions for the redshift drift
and cosmic backreaction in terms of spatially averaged
quantities.
Two-region models.—For simplicity, the task of

obtaining symbolic expressions for backreaction and red-
shift drift is in this initial study done for two-region models
which are simple toy models for which it is easy to generate
backreaction and redshift drift data. Two-region models are
disjoint ensembles of two different FLRW regions. It is
straightforward to compute the spatial averages in such
models [23] and light propagation can be studied sensibly
by arranging the two FLRW regions sequentially so that
light rays propagate consecutively through each type of
region. For such a model, the redshift drift along a light ray
can be computed by simultaneously solving

dt
dr

¼ −a; ð6Þ

dz
dr

¼ ð1þ zÞ _a; ð7Þ

dδz
dr

¼ _aδzþ ð1þ zÞäδt; ð8Þ

dδt
dr

¼ − _aδt; ð9Þ

where δt is the difference in emission time of the two
redshift signals. For results presented here, the initial
condition for δt was chosen as δt0 ¼ 30 yr. This is

consistent with typical values used in the literature but
note that the precise value has no impact on the results
presented here since the main effect of δt0 is a scaling of δz.
In the set of ODEs shown above, the scale factor, a, is to be
evaluated according to the particular FLRW region the light
ray is propagating through.
Here, the two FLRW regions are chosen to be an empty

FLRW region and an overdense matter þ curvature FLRW
region. The time coordinate of the models is parametrized
in terms of a development angle, ϕ, introduced through the
standard parametric description of the matter þ curvature
FLRW model. Present time is chosen according to
ϕ0 ¼ 3=2π. We then have

t ¼ t0
ϕ − sinðϕÞ
ϕ0 − sinðϕ0Þ

; ð10Þ

au ¼
f1=3u

π
½ϕ − sinðϕÞ�; ð11Þ

ao ¼
f1=3o

2
½1 − cosðϕÞ�; ð12Þ

where ao and au are the scale factors of the over- and
underdense regions, respectively. Different two-region
models are parametrized by f ≔ fo which represents the
volume fraction of the overdense region at ϕ ¼ π. For
details on the studied model, the reader is referred to the
accompanying paper [24].
Regression.—Symbolic expressions for redshift drift, Q

and kD ≔ RD=a2D were obtained by using AI Feynman
[25,26], a publicly available code for symbolic regression.
The goal with symbolic regression is to discover symbolic
expressions describing given datasets. While this can in
principle be done solely using human skills (A famous
example of this, pointed out in [25], is when Johannes
Kepler spent 4 years doing “symbolic regression” to
identify a mathematical description of Mars’ orbit about
the Sun.), symbolic regression is here used to mean the
automated approach where machine learning algorithms
based on, e.g., artificial neural networks (as in the case of
AI Feynman) are utilized.
To obtain a symbolic expression for Q, data of the form

ðz; f; 100QÞ was presented to AI Feynman. The data were
generated with z ∈ ½0; 2� and f ∈ ½0.1; 0.25� (see Ref. [24]
for a discussion of the choice of parameter ranges and the
scaling of Q). Several runs with different choices of
parameters for AI Feynman yielded no expressions
with high (sub-percent) accuracy. The most accurate
expression that was found is (f1 þ f3 þ f2 in the notation
of [24])
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100Q ¼ 3.58069 tan−1ðff ½zþ expðzÞ�gÞ − 0.00002 exp½expðzÞ� þ 0.089282 z4 þ 1.19043 z3f

− 0.51380 z3 − 15.87238 z2f2 þ 0.60670 z2f þ 0.82042 z2 þ 4.19790 zf2 þ 2.86470 zf

− 0.83058zþ 12 f2 þ 11.67448 f2 − 4.43136 f þ 0.38435; ð13Þ

where the first term encapsulates the main trends of the data
while the second term has minimal significance. A plot of
the expression is shown in Fig. 1 together with data points.
Figure 1 also shows the relative deviation between the data
points and the symbolic expression. As seen, the symbolic
expression is not very accurate at low redshifts but from
z ≈ 0.5 the expression is accurate at the percent level for
most of the considered f interval.
Once a symbolic expression for Q is known, RD can be

obtained through the integrability condition

a−6D ða6DQÞ: þ a−2D ða2DRDÞ: ¼ 0; ð14Þ

which must be fulfilled in order for the two Buchert
equations to be consistent with each other. The opposite

is also true: One could do symbolic regression to obtain an
expression for RD and use the integrability condition to
obtain Q. Which procedure is the most useful depends on
which quantity AI Feynman obtains the most accurate
description for. For the models studied here, it turned out
that the expressions obtained for RD are more accurate than
those obtained for Q. In addition, accurate expressions
could be obtained on larger feature intervals. This is seen
in Fig. 1, where the subfigures in the bottom row show the
most accurate expression obtained for kD ≔ RDa2D using
data on the feature intervals z ∈ ½0; 5� and f ∈ ½0.01; 0.3�.
Note that the relative accuracy depicted for kD has spikes.
These come from division by zero and are not due to large
inaccuracy. The symbolic expression depicted in Fig. 1

FIG. 1. Symbolic expressions for Q and kD together with data. The top part of this figure shows the same as part of Fig. 13 in [24].
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for ðz; f; 108kDÞ is

108 kD ¼ −0.00219 z6 þ 0.03768 z5f þ 0.03168 z5 − 0.64965 z4f2 − 0.43309 z4f − 0.17684 z4

þ 8.84545 z3f2 þ 1.52360 z3f þ 0.49810 z3 þ 8.09975 z2f3 − 45.06587 z2f2 − 1.95429 z2f

− 0.78006 z2 − 40.49877 zf3 þ 80.42749 zf2 þ 9.97251 zf þ 0.67266 zþ 67.56565 f3

− 25.90655 f2 þ 7.02894 f − 5.75576: ð15Þ

The expression is only accurate inside the feature
intervals used for generating data for AI Feynman and
quickly becomes highly inaccurate outside this feature
region.
A symbolic expression for the mean redshift drift was

obtained with data in the form ðz; f; 1010ΔzÞ. The quantity
Δz is defined as the difference between the
mean redshift drift and the drift of the mean redshift.
Remembering that triangular brackets indicate taking the
mean over many random observations or lines of sight, we

can write Δz ≔ hδzi − δhzi, where

δhzi ¼ δt0½ð1þ zÞHD0
−HD�: ð16Þ

By presenting this to the AI Feynman algorithm, several
fairly accurate (percent-level) symbolic expressions were
obtained, although only by considering the smaller feature
interval also used for the kinematical backreaction, i.e.,
z ∈ ½0; 2� and f ∈ ½0.1; 0.25�. The expression depicted in
Fig. 2 is the polynomial

Fðz; fÞ ¼ 1010Δz

¼ −10−5 z6 − 0.05383 z5f − 0.16136 z5 − 51.42798 z4f2 þ 16.24516 z4f − 0.71557 z4

− 1.41156 z3f3 þ 207.32051 z3f2 − 58.40215 z3f þ 4.05026 z3 − 0.01453 z2f4 þ 4.26328 z2f3

− 191.11012 z2f2 þ 41.45695 z2f − 5.05871 z2 − 7 × 10−5 zf5 þ 0.02924 zf4 − 2.61453 zf3

− 30.04826 zf2 − 56.13623 zf þ 2.28806 zþ 7 × 10−5 f5 − 0.00896 f4 − 0.20814 f3

− 16.98247 f2 þ 6.61763 f − 0.72982; ð17Þ

but it is noted that other, simpler expressions were also
found to be accurate on major parts of the studied feature
region. The choice of prioritizing accuracy over simplicity
regarding which expressions to show is based on an
expectation that accuracy is more important for parameter

constraints than simplicity. It is unclear from the current
literature to what extent this is true and this expectation is
therefore the topic of an ongoing study.
As shown in Fig. 16 in [24], the expression found above

is also accurate when extrapolated somewhat outside
the interval of f used for generating data for AI Feynman.
The expression does not extrapolate well to values of the
redshift above 2.
Figure 2 includes a close-up of the low-z region to show

that the symbolic expression is inaccurate at low values of
the redshift, especially for the smaller values of f. This is
also seen in Fig. 3 which shows the relative accuracy of the
symbolic expression. As seen, the symbolic expression is
accurate within a few percent for the major part of the
studied feature region and is even subpercent on part of it.
The poor accuracy at low redshift values is not considered
too discouraging since the data presented to AI Feynman
are actually local redshift and redshift drift rather than mean
values. While the local redshift and redshift drift compu-
tations coincide closely with the mean values in the studied
models, using the local values means that the data contain
noise in the form of statistical fluctuations. These fluctua-
tions are most prominent at low redshift and could be

FIG. 2. Symbolic expression (solid line) for ðz; f; 1010 ΔzÞ
together with data points (stars). A close-up is included to show
the lack of accuracy at low values of the redshift.
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removed by taking the mean over several light rays with
observers placed differently in the two types of FLRW
regions.
With Fðz; fÞ at hand, we can write the mean redshift

drift as

hδzi ¼ δt0½ð1þ zÞHD0
−HD� þ 10−10 Fðz; fÞ: ð18Þ

Discussion and conclusions.—Expressions obtained
with symbolic regression lack theoretical underpinning
and must, as an onset, be considered phenomenological.
The expressions can nonetheless be useful for guiding a
theoretical understanding of under what circumstances
backreaction becomes relevant and how realistic it is to
obtain general parametrizations of the quantity in terms of,
e.g., the mean redshift. This can, e.g., be done by focusing
studies on obtaining symbolic expressions that extrapolate
well outside the parameter regions used for obtaining the
expressions. Similarly, expressions obtained for redshift
drift can be used to guide theoretical studies into the
circumstances required for the mean redshift drift and drift
of the mean redshift to be similar.
Even without theoretical underpinning, it is valid to use

the symbolic expressions together with data to constrain
model parameters. However, this must not be done blindly
with any result obtained using machine learning but must
instead be done in combination with considerations of the
theoretical setup which can, e.g., inform on the relevance of
combining different features and targets. The symbolic
expressions presented here are only valid for two-region
models in the studied model parameter and redshift
intervals. By applying the method to more realistic
models—the topic of future work—the presented approach
constitutes a new avenue within the field of inhomogeneous
cosmology, with the goal to connect backreaction to
observables in a physically motivated manner. In relation
to this it may be insightful to study generalizations of the

simple two-region models considered here such as the
multiscale models of [27,28] or the more sophisticated
timescape version [29].
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