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We show how the galaxy four-point correlation function can test for cosmological parity violation. The
detection of cosmological parity violation would reflect previously unknown forces present at the earliest
moments of the Universe. Recent developments both in rapidly evaluating galaxy N-point correlation
functions and in determining the corresponding covariance matrices make the search for parity violation in
the four-point correlation function possible in current and upcoming surveys such as those undertaken by
Dark Energy Spectroscopic Instrument, the Euclid satellite, and the Vera C. Rubin Observatory. We
estimate the limits on cosmic parity violation that could be set with these data.
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Introduction.—Among the known fundamental forces,
only the weak interaction violates parity [1–3]. Since the
weak interaction played no role in the evolution of the large-
scale distribution of matter, observation of cosmological
parity violation would imply the existence of new forces at
the time of inflation. The Sakharov conditions [4] for
producing the baryon-antibaryon asymmetry (see, e.g.,
Ref. [5] for a review) require violations of both charge
conjugation invariance (C) and of CP, the combination of C
with parity (P). The weak interactions violate CP as well as
parity [6], but this is well described by the standard model of
particle physics and cannot account for the observed baryon-
antibaryon asymmetry. Whatever new CP-violating force is
responsible for the asymmetry may violate parity as well.
Searches for parity violation have a long history. In 1848,

Pasteur directly observed a parity asymmetry. He found that
artificially synthesized tartaric acid crystals could be
separated into two distinct groups by their shapes. The
crystals in one group were mirror images of those in the
other group. However, tartaric acid produced organically in
grapes yielded crystals of only one group. This occurred
because organic molecules contain tetravalent carbon and
when the carbon atom is attached to four different atoms the
result is a tetrahedral shape that is distinguishable from its
mirror image. That our hearts are on the left side of the
body must owe its ultimate origin to the presence of just
one form of each amino acid and the absence of its mirror
image. Indeed, looking for dominance of organic molecules
with a single chirality has been used in searches for
extraterrestrial life (see, e.g., Ref. [7] for a review).
In this Letter, we present a novel means of testing

parity invariance in 3D large-scale structure, relying on the
same principle as Pasteur’s original separation: in general,

in 3D a tetrahedron and its mirror image cannot be
superimposed.
The possibility of parity violation in large-scale structure is

independent of homogeneity and isotropy: a large jar of
crystals of one of the forms of tartaric acid would be
homogeneous and isotropic to the extent of its volume.
On the other hand, parity violation in 3D detected in the four-
point correlation function (4PCF) would be evidence for
primordial non-Gaussianity, since the 4PCF produced by a
purely Gaussian random field would be simply products of
2PCFs and hence parity-conserving. In addition, the tech-
nique described here can beused to search for parity violation
in a straightforward way in five-point and higher correlation
functions using the algebraic structures described in Ref. [8].
Tests of parity invariance in the cosmic microwave

background have been discussed for more than two decades
[9–16] and carried out in Ref. [17]. Parity violation might
be observable, as well, in primordial gravity waves [18].
Our proposal opens the search to an entirely new class of
experiments: 3D large-scale structure surveys.
Possible sources of cosmological parity violation.—Two

frequently considered potential sources of cosmological
parity violation are represented by the Lagrangian densities

L ∝ ϕFμνF̃μν ð1Þ

and

L ∝ ϕRμνσλR̃μνσλ: ð2Þ

In Eq. (1), Fμν is the field strength of an Abelian field
like that associated with electromagnetism [9,19] and
F̃μν ¼ ϵμναβFαβ is its dual field, with ϵμναβ denoting the
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Levi-Civita tensor. In Eq. (2), Rμνσλ is the Riemann tensor
of general relativity and R̃μνσλ ¼ ϵμναβR

αβ
σλ is its dual. In

both cases ϕ is some scalar field of relevance in the early
Universe, such as the inflaton or quintessence. Now, in both
cases, there is no parity violation if ϕ is constant in space
and time, since then the terms of Eqs. (1) and (2) are total
derivatives. Such terms do not contribute to the equations of
motion since integration by parts removes them from the
action.
In both cases, parity violation leads to a preferred helicity

for fluctuations, respectively, in the gauge field for Eq. (1)
and in the metric for Eq. (2). This in turn induces parity
violation in the correlations between the curvature pertur-
bations and ultimately in the subsequent correlations
between density fluctuations, which seed the formation
of the galaxies we may observe in surveys of the late-time
Universe.
Searching for parity violation with the 4PCF.—To

search for parity violation we separate the parity-
conserving and parity-violating components of the corre-
lation function between fractional density fluctuations
δðrÞ≡ ρðrÞ=ρ̄ − 1 at locations ri; i ¼ 0, 1, 2, 3, where
ρðrÞ is the density and ρ̄ its average. By homogeneity one of
the positions can be taken as the origin. Without loss of
generality we thus set r0 ¼ 0 so that the 4PCF is a function
of three vectors; we denote it ζðr1; r2; r3Þ. By isotropy ζ
must be invariant under simultaneous rotation of r1, r2, and
r3. The 4PCF thus depends on three radial distances r1, r2,
r3 and the collection of angles defining directions r̂1; r̂2; r̂3.
One can straightforwardly show that when the 4PCF is
averaged over all orientations with respect to the line of
sight, redshift-space distortions (RSD) [20] do not produce
any parity-breaking signal.
In previous work [8] two of us showed how to construct a

complete set of isotropic basis functions of an arbitrary
number of unit vectors; for three (which describe a 4PCF),

Pl1l2l3ðr̂1; r̂2; r̂3Þ ¼ ð−1Þl1þl2þl3
X

m1;m2;m3

�
l1 l2 l3

m1 m2 m3

�

× Yl1m1
ðr̂1ÞYl2m2

ðr̂2ÞYl3m3
ðr̂3Þ; ð3Þ

where the matrix is a Wigner 3j symbol. To complete
the specification of the basis functions we label the ri by
the ordering r1 ≤ r2 ≤ r3. Thus ðl1; m1Þ corresponds to the
shortest of the ri, and so on. The triangular inequalities,
jl1 − l2j < l3 < l1 þ l2, are enforced by the 3j symbol.
The parity of the overall state is odd if the sum of the li
is odd.
It follows from the properties of the spherical harmonics

and the Wigner 3j symbols that

Pl1l2l3ð−r̂1;−r̂2;−r̂3Þ ¼ ð−1Þl1þl2þl3Pl1l2l3ðr̂1; r̂2; r̂3Þ
¼ P�

l1l2l3
ðr̂1; r̂2; r̂3Þ: ð4Þ

Consequently, Pl1l2l3 is real if l1 þ l2 þ l3 is even and is
imaginary if the sum is odd. A variety of useful algebraic
relations among the Pl1l2l3

are given in Ref. [8].
The 4PCF can be expanded as

ζðr1; r2; r3Þ ¼
X

l1l2l3

Zl1l2l3ðr1; r2; r3ÞPl1l2l3ðr̂1; r̂2; r̂3Þ:

ð5Þ

It follows from the properties of the Pl1l2l3 that Zl1l2l3 is
real if l1 þ l2 þ l3 is even and imaginary if the sum is
odd. The expansion coefficient Zl1l2l3 is obtained by
averaging over the continuous position x out from which
r1, r2, r3 are measured:

Zl1l2l3
ðr1; r2; r3Þ ¼

Z
d3x
V

Z
dr̂1dr̂2dr̂3 ζ̂ðr1; r2; r3;xÞ

× P�
l1l2l3

ðr̂1; r̂2; r̂3Þ; ð6Þ

where V is the volume over which x ranges. In
the integrand, ζ̂ðr1; r2; r3;xÞ is the estimate of the
4PCF obtained by sitting at a point x, i.e., it is
δðxÞδðxþ r1Þδðxþ r2Þδðxþ r3Þ; we are projecting this
estimate onto the basis of Pl1l2l3 and then, with

R
d3x=V,

averaging over all possible centers x.
The problem of measuring efficiently the large-scale

3PCF in the distribution of galaxies was solved by the
technique developed in Refs. [21–23], with extensions to
4PCF and higher by Ref. [24]. We briefly outline the
approach here.
In practice we have in place of the continuous distribu-

tion of density fluctuations δðrÞ the collection of discrete
galaxy locations. As a first step, we choose a galaxy at an
absolute position xi. Next, we bin the relative distances of
its neighbors into spherical shells which we denote by rbj.
We then expand the angular dependence in each shell in
spherical harmonics as

δðxi; rbj ; r̂Þ ¼
X

l;m

almðxi; rbj ÞYlmðr̂Þ; ð7Þ

where

almðxi; rbj Þ ¼
X

α

Y�
lmðr̂αÞ: ð8Þ

The summation is over galaxies α ¼ 1; 2;… in the radial
bin rbj surrounding the galaxy at xi.
Using Eq. (7) for δðxi; rbj ; r̂Þ and forming the pro-

duct indicated by ζ̂ [defined below Eq. (6)], we then
project onto the basis of Pl1l2l3

[see Eq. (3)] and
average over xi [the discrete analog of

R
d3x=V in

Eq. (6)]. The result is
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Zl1l2l3
ðrb1; rb2; rb3Þ ¼ ð−1Þl1þl2þl3

X

m1m2m3

�
l1 l2 l3

m1 m2 m3

�

×Al1m1;l2m2;l3m3
ðrb1; rb2; rb3Þ; ð9Þ

where we have defined

Al1m1;l2m2;l3m3
ðrb1; rb2; rb3Þ

¼ 1

Ng

XNg

i¼1

al1m1
ðxi; rb1Þal2m2

ðxi; rb2Þal3m3
ðxi; rb3Þ; ð10Þ

and there are Ng galaxies in the survey.
The observables are the Zl1l2l3ðrb1; rb2; rb3Þ. Each is

specified by three integers constrained by the triangular
inequalities, and by three radial bins. A priori there is no
preferred scale for searching parity violation. Searches
where each tetrahedron side is of the order of a few
megaparsecs to 100 or 200 Mpc seem reasonable. With
lmax ¼ 4, a bin width of 10 Mpc, a maximal side length rbj
of 200 Mpc, and excluding coefficients with any two radial
bins identical (to eliminate the shortest-distance correla-
tions), there are 2760 Zl1l2l3ðrb1; rb2; rb3Þ amplitudes.
More daunting is the challenge of determining the

covariance matrix among so many observables. An analytic
expression for the covariance matrix can be obtained by
assuming a Gaussian random density field when evaluating
the appropriate expectation value of eight density fluctua-
tions [25]. This offers a smooth, invertible template, which
can then be calibrated using a reasonably modest number of
mock catalogs. An analytical covariance template can be
used to mitigate the sampling fluctuations that occur when
the covariance is simply drawn from a number of mock
catalogs [26,27], which on their own could lead to a covari-
ance matrix that fails even to be positive semidefinite [28].
Detectability estimate.—We now consider the prospects

for constraining parity violation with the method proposed
herein, in the context of a simplified signal. We first
determine the optimal number of degrees of freedom to
use in such an analysis and then ask what level of parity
violation could be detected at 5σ with data from the BOSS
CMASS sample [29]. We then evaluate the potential impact
of underestimating the covariance matrix. Finally, we make
a full Fisher forecast for current and future datasets such as
BOSS and DESI, using a single-parameter representation
of the signal.
Optimal analysis, detection threshold, and impact of

covariance underestimation.—To explore the possibility of
detection, we need both a covariance matrix to incorporate
statistical fluctuations and a representation of the signal.
Rather than consider any of the theoretical models that can
produce parity violation, here we seek to make a forecast
that is sensitive to any parity violation regardless of its
underlying source. To do this, we use a χ2 test.

In the absence of a physical model, we take guidance
from a covariance matrix that is derived from an analytic
template that assumes the galaxy density fluctuation field is
Gaussian random [25]. The effect of shot noise, a conse-
quence of the discreteness of the galaxies, is incorporated in
the covariance matrix using the parameters of the BOSS
CMASS dataset, as described more completely below.
The eigenvalues λi of the covariance matrix give the

variance on each of the statistically independent eigenvec-
tors and we order them λ1 ≤ λ2…, i.e., from “best” to
“worst” in precision. Our simple representation of the
signal assigns the same amplitude ζ (up to an irrelevant
sign and ignoring the irrelevant factor i in the parity-odd
amplitudes) in each of the eigenvectors that diagonalize the
covariance matrix. We take this uniform (“Laplacian
ignorance” [30]) prior for the independent amplitudes since
without a physical model we lack a basis for distinguishing
among them.
If we use only the N eigenvectors with the highest

precision (smallest λi), then on average

hχ2i¼
XN

i¼1

ð1þζ2λ−1i Þ¼Nþζ2
XN

i¼1

λ−1i ≡NþΔχ2; ð11Þ

where the last line defines Δχ2, the mean excess χ2 relative
to that under the null hypothesis of no signal. We note that
the eigenvalues of the inverse covariance scale as the survey
volume used to evaluate it [25], and hence so does Δχ2.
The standard deviation of the χ2 distribution for N

degrees of freedom is
ffiffiffiffiffiffiffi
2N

p
, and so the average detection

significance S in units of σχ2 is roughly

S ≈
Δχ2ffiffiffiffiffiffiffi
2N

p ¼ ζ2ð2NÞ−1=2
XN

i¼1

λ−1i : ð12Þ

Rather than using all available eigenvectors we maximize
the significance S in Eq. (12) by varying the number N of
eigenvectors; we find

λ−1N ¼ 1

2N

XN

i¼1

λ−1i : ð13Þ

The optimal N is thus when the next value of λ−1i is half the
mean of the preceding λ−1i . See Fig. 1, which shows the
optimal N ¼ 269 for the BOSS CMASS data. For this
calculation, in our initial covariance, we used ten radial bins
and all li ≤ lmax ¼ 4, leading to 2760 total degrees of
freedom for the parity-odd 4PCF; the N ¼ 269 eigenvec-
tors then represent a down-selection among linear combi-
nations of the initial isotropic basis coefficients of Eqs. (9)
and (10). We use the number density of BOSS luminous red
galaxies (LRGs), n̄¼2.2×10−4 ðh−1MpcÞ−3 (from BOSS
DR16 CMASS, ∼800 000 objects) for z ¼ 0.43–0.7 and
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sky fraction implied by 9376 deg2 [31]. We input a non-
linear matter power spectrum scaled by the galaxy bias and
linear RSD [32] and use an effective volume following
Ref. [33]. We emphasize that if the survey volume is scaled
up while all other parameters are held constant, the
significance increases linearly with it and not as its
square root.
We now ask to what level of parity violation a 5σ

detection in BOSS would correspond. Inverting Eq. (12)
with S≡ 5, N ¼ 269, we find, using Fig. 1, ζ ¼
2.7 × 10−5. We may compare this value to the leading
parity-even 4PCF amplitudes in the Gaussian random field
approximation. Since the even and odd basis functions have
the same normalization convention, the magnitudes are
directly comparable. We expect the parity-even amplitudes
to be of order 10−2, roughly the 2PCF squared. Thus parity
violation of a few parts per mille relative to the even 4PCF
is detectable at 5σ in BOSS CMASS under the assumptions
made above.
Underestimating the covariance matrix could lead to a

spurious detection of apparent parity violation. Inadver-
tently taking it to be (1 − ϵ) of its true value would on
average produce a mistaken hΔχ2i ¼ ϵN=ð1 − ϵÞ since this
would result in hχ2i¼P

iðζ2þλiÞ=½ð1−ϵÞλi�¼N=ð1−ϵÞ
if ζ ¼ 0 [Eq. (12)]. The apparent significance would then
be S ¼ ϵ

ffiffiffiffiffiffiffiffiffi
N=2

p
=ð1 − ϵÞ. To produce a spurious 5σ detec-

tion on 200 degrees of freedom would require an under-
estimate of the covariance by 33%; for the same on
400 degrees of freedom, by 26%. To guard against this,
the analytic covariance matrix can be calibrated against an
empirical covariance derived from averaging over many
mock catalogs from simulations [25]. Increasing the survey

volume with number density and galaxy population held
fixed would decrease the covariance matrix, but if the same
fractional error ϵ were made, the size of the spurious
detection would be unchanged. In contrast, if the signal is
real, then its significance will dramatically increase with a
future survey, scaling as volume if a fixed number of
degrees of freedom are used for the analysis [see remark
below Eqs. (11) and (12)].
Power of current and future datasets.—We now compare

of the power of the BOSS CMASS data with that which
will be available for the DESI surveys of LRGs and
emission line galaxies (ELGs). A basic assumption here
is that different galaxy populations trace a common
primordial signal. To enable the comparison between
different samples, we scale the signal from BOSS to
DESI and account for the difference in shot noise.
Scaling of signal.—To enable comparison between

samples, we take a fixed amplitude ζ0 (constant) at all
the eigenvectors, such that the signal in BOSS CMASS
would manifest at 5σ, and then scale to other samples as

ζ ¼ b41D
4ðzÞhð1þ βμ2Þ4i

ðb41D4ðzÞhð1þ βμ2Þ4iÞjBOSS
ζ0: ð14Þ

This scaling includes linear bias b1, growth factor DðzÞ,
and RSD enhancement due to the linear Kaiser factor.
Angle brackets denote averaging over angle to the line of
sight, with μ its cosine, and β≡ ðd ln D=d ln aÞ=b1, with
a the scale factor. The denominator is evaluated at BOSS
CMASS parameters. This scaling captures how different
galaxy populations would trace a common primordial
signal.
Details of covariance.—For each sample, we also scale

the power spectrumentering the covariance appropriately by
these factors, and in the covariance use the number density
for the given class. We note that since the covariance
includes both power spectrum and shot noise [25], while
the scaled signal does not depend on the latter, the scaling
applied to the signal will not cancel with that of the power
spectrum in the covariance; thus the detection significance's
dependence on galaxy bias, growth rate, etc. is nontrivial.
To obtain the n̄ used in the covariance, we integrate nðzÞ,

the number density as a function of redshift, over each
survey’s redshift range. For CMASS we take this from the
actual survey data [31] and for DESI from Ref. [34]. The
effective volume Veff we use is also evaluated based on
these nðzÞ, following Ref. [33].
We explore the impact of variation in number density

while holding number of objects in each class fixed; this
reflects a fixed amount of observing time for a given
sample. This is motivated by possible opportunities to use
the DESI instrument for a subsequent survey (DESI-II).
Furthermore, future missions beyond DESI such as SpecTel
[35] or MegaMapper [36] could produce samples with
number densities much higher, as presented toward the

FIG. 1. Partial sums of the first N eigenvalues λ−1i of the inverse
covariance, divided by

ffiffiffiffiffiffiffi
2N

p
. The detection significance if a

signal is uniform in each eigenvector will always be proportional
to this curve [ζ2 times it; see Eq. (12)]. The same method of
optimizing the number of eigenvectors could be employed with
an explicit model for the signal in each eigenvector. Here, to
evaluate the covariance, we used the number density, galaxy bias,
etc. for BOSS CMASS, with values given in the caption of Fig. 2.
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rightmost region of Fig. 2. We defer full exploration of
survey strategy for a parity-violation search to future work.
Optimal number of eigenvectors N.—We evaluate all

forecasts at the optimal N ¼ 269 found for BOSS CMASS
above. Numerical studies showed that the results for all
BOSS and DESI samples, and over a range in number
density, would be insensitive to changes of N within
�20%. We thus set N ¼ 269 for all classes in Fig. 2.
Discussion.—Overall we see that the BOSS LRG to

DESI LRG improvement is roughly in the ratio of effective
volumes Veff . While the change in volume was not the only
modification of the covariance matrix going from BOSS to
DESI, it was the dominant effect and the result is in accord
with the expectation from Eqs. (11) and (12). For DESI, we
find that the LRGs outperform the ELGs, mainly due to the
difference in galaxy bias.
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