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The characterization of quantum devices is crucial for their practical implementation but can be costly in
experimental effort and classical postprocessing. Therefore, it is desirable to measure only the information
that is relevant for specific applications and develop protocols that require little additional effort. In this
Letter, we focus on the characterization of quantum computers in the context of stabilizer quantum error
correction. For arbitrary stabilizer codes, subsystem codes, and data syndrome codes, we prove that the
logical error channel induced by Pauli noise can be estimated from syndrome data under minimal
conditions. More precisely, for any such code, we show that the estimation is possible as long as the code
can correct the noise.
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For any quantum device, it is desirable to characterize
both its individual components as well as their interplay
[1,2]. For the characterization of single quantum gates,
protocols such as quantum process tomography (e.g.,
Ref. [3]) or gate set tomography [4–6] can be used. To
characterize the interplay of multiple components, random-
ized benchmarking [7,8] as well as crosstalk detection [9]
and estimation [10,11] protocols are available. The general
goals are (i) to build trust in the correct functioning of the
device, (ii) to be able to reduce the errors on the hardware
level and improve the software calibration, and (iii) to
compare different devices and platforms in a fair way.
However, such characterization protocols can be quite

resource-intensive, requiring many experimental runs of the
device, and such protocols’ output can be challenging to
interpret. Therefore, it has become a pressing issue to
obtain easy-to-use information, such as Pauli error rates
directly [11–14], ideally using only data that is easy to
obtain. The estimation of Pauli noise is also practically
interesting because randomized compiling can be used to
project the actual noise onto Pauli noise [15,16]. This has
explicitly been discussed in the context of quantum error
correction (QEC) [17].
In the context of QEC, it has been suggested to reduce

the experimental effort of characterization by extracting
information from the syndrome data, which is usually
collected during error correction anyway [18–26]. Such an
approach is complementary to the standard benchmarking
before operation. It has the additional advantage of bench-
marking all components in the context of the targeted
application and making it easier to detect crosstalk. Indeed,
syndrome data has been used to calibrate decoders and
observe signatures of crosstalk in experiments on the
[4,1,2] code [27], the repetition code [28], and the surface
code [29]. Finally, estimation based on syndrome data is the

only method of characterization that is not invasive, in the
sense that the encoded logical information is not perturbed
by the measurements. Thus, it is at least in principle suited
for estimation of noise in a time-dependent environment
[23,30].
For general stabilizer codes, however, the theoretical

foundation of such schemes is currently lacking. Since the
syndrome measurements must preserve the encoded state, it
is not a priori clear that they should even contain sufficient
information about the noise to be useful for QEC. For
example, as shown in our previous work [26], a complete
Pauli channel can only be estimated from syndrome data if
it is known that the Pauli errors are not correlated across too
many qubits, quantified by the pure distance. This limit on
correlations can be quite strict, as can be seen for the toric
code, which has a pure distance of d ¼ 4 independent of
system size. Hence, this assumption is violated by natural
noise processes such as error propagation in the stabilizer
measurements, which can introduce data errors on all
participating qubits.
In this Letter, we show that the estimation of error rates is

possible under much more practical conditions if one
focuses only on information that is actually relevant for
QEC. It is not necessary to distinguish between logically
equivalent errors. Thus, it suffices to estimate the logical
noise channel instead of the physical one. At least for
phenomenological Pauli noise models, we prove that the
situation is as good as one could reasonably hope: as long
as the noise affecting a stabilizer code can be corrected by
it, one can also estimate the logical noise channel from the
corresponding syndrome measurements.
The proof is based on our general framework [26], but

extended to consider the logical instead of the physical
channel. Similar to randomized benchmarking, we consider
the problem in Fourier space [12]. This representation
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corresponds to a description of the logical channel in terms
of moments instead of probabilities. Exploiting a weak
assumption of limited correlations, we can further simplify
the description by switching from regular moments to a set
of canonical moments. Both the logical channel and the
syndrome measurements can be represented by linear
equations on a small set of canonical moments. By
considering the ranks of these two linear systems, we then
show that the syndrome measurements determine the
logical channel. Computing the ranks boils down to
counting a specific subset of logical operators of the code,
which we solve by employing a recent generalization of the
cleaning lemma [31] of QEC.
Stabilizer codes.—Let us quickly recap the most impor-

tant features of stabilizer codes for our purposes. A more
thorough introduction can, e.g., be found in the books
[32,33]. A stabilizer code is described by a commuting
subgroup S ⊆ Pn of the n-qubit Pauli group, called
“stabilizer group.” It must fulfill −I ∉ S . The “codespace”
is then the simultaneous þ1 eigenspace of all the stabiliz-
ers. As is usual in the context of QEC, we disregard phases
and view S as a subgroup of the “effective Pauli group”
Pn ≔ Pn=f�1;�ig. This is an Abelian group, but the
relevant commutation relations of Pn can be encoded in the
“bicharacter” h·; ·i on Pn, given by

ha; ei ≔
�þ1; a and e commute inPn

−1; a and e anticommute inPn
: ð1Þ

By definition, all elements ofS act trivially on the encoded
states. We can also consider Pauli operators that map the
codespace to itself, but do not necessarily act as the identity.
These form the set L ⊆ Pn of “logical operators.” It can be
shown that L is exactly the set of Pauli operators that
commute with all stabilizers. Formally, we can express this
as the “annihilator” S⊥ of S in Pn under the above
bicharacter, i.e.,

L ≔ S⊥ ≔ fl ∈ Pn∶ hs; li ¼ þ1 ∀ s ∈ S g: ð2Þ

In particular, we haveS ⊆ L since each stabilizer is itself a
logical operator that implements the logical identity. If a
logical operator (other than a stabilizer) occurs as an error,
this cannot be detected and the encoded state is corrupted.
The distance d of a code is defined as the minimal weight of
an element of LnS . This measures the error correction
capabilities of the code. We call a set of qubits R ⊆
f1;…; ng “correctable” if it only supports trivial logical
operators. This definition is inspired by the discussions in
Refs. [34,35]. In particular, if jRj < d, then R is correctable.
This is however generally not an equivalence, and there can
be many correctable regions of size much larger than d. For
example, any rectangular region of side length at most
d − 1 on the d × d toric code is correctable, but contains
more than d qubits.

We will focus on phenomenological Pauli noise models
and thus do not take into account the details of error
propagation inside the measurement circuits. We can then
consider rounds of error correction, and between two
rounds a new Pauli error occurs. These Pauli errors are
described by a quantum channel P, which is given by a
probability distribution

P∶ Pn ↦ ½0; 1�: ð3Þ

Later we will also impose some locality assumptions on
this channel.
Standard error correction using a stabilizer code pro-

ceeds as follows: in each round, a set of generators
g1;…; gm ∈ S is measured. Ideally, the state lies in the
codespace and thus all measurements return þ1. However,
if an error e ∈ Pn occurred beforehand, the outcome of the
measurement of gi is hgi; ei ¼ �1. The collection of
measurement outcomes of all generators is called the
“syndrome” SðeÞ of an error e. Based on the syndrome,
a decoder tries to guess the error that occurred, and applies
it as a correction r. Since errors that only differ by
stabilizers are logically equivalent, the ideal decoding
strategy for a given syndrome S is to return a maximum
likelihood estimate of the form

r ¼ argmax
e∈Pn∶ SðeÞ¼S

X
s∈S

PðesÞ: ð4Þ

Thus, full knowledge of the physical channel P is not
necessary for optimal decoding. Instead, it is sufficient to
know the “logical channel” PL, which we define by
averaging P over cosets of S :

PL∶ Pn → ½0; 1�; PLðeÞ ¼
1

jS j
X
s∈S

PðesÞ: ð5Þ

We note that often the term “logical channel” is defined to
be a map acting only on the logical information, condi-
tioned on each syndrome (e.g., Refs. [36–38]). That is, if
the code encodes k qubits there is one distribution on Pk for
each syndrome. However, this definition depends on the
choice of correction for each syndrome since the state
needs to be mapped back to the codespace. Here, we define
the logical channel in a decoder-independent way. In
particular, we only consider “predecoding” noise, i.e.,
the noise before any potential decoding operation. In other
words, our definition, Eq. (5), can be viewed as a lift of the
logical channels for each syndrome from Pk to Pn, resulting
in a distribution PL, which is constant on cosets of S . In
particular, PL contains all the same information as the
logical channels in the usual sense. In standard error
correction, it is assumed that the logical channel is known,
and the task is to find a good decoding for each syndrome.
Here, however, we will consider a “reverse” problem: given
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(an estimate of) the syndrome statistics, can we (uniquely)
obtain the logical channelPL? Perhaps surprisingly, wewill
show that this is possible as long as the noise affecting the
code is correctable in a certain sense.
Moments.—To tackle this estimation problem, we will

first switch our description of P via a Fourier transform.
The Fourier transform F ½f� of a function f∶ Pn → R is
defined as

F ½f�∶Pn → R; F ½f�ðaÞ ¼
X
e∈Pn

ha; eifðeÞ: ð6Þ

This is also sometimes called “Walsh-Hadmard transform”
[12]. From the definition, we see that for any stabilizer
s ∈ S , F ½P�ðsÞ is exactly the expectation of s in repeated
rounds of error correction. It can thus be computed from
the measured syndrome statistics. In analogy, we denote
E ¼ F ½P� and call this the set of moments, i.e., there is one
moment EðaÞ for each a ∈ P. One should however keep in
mind that only the moments corresponding to stabilizers
can be measured without destroying the encoded informa-
tion. Since the Fourier transform is an invertible trans-
formation, with inverse given by

F−1½f�ðeÞ ¼ 1

jPnj
X
a∈Pn

ha; eifðaÞ; ð7Þ

knowing all moments E is equivalent to knowing the
complete error distribution P.
Since we are only interested in learning the logical

channel, only a subset of all moments needs to be
estimated. These are exactly the moments corresponding
to logical operators. To see why this is the case, let us first
introduce the convolution on Pn. For two functions
f; g∶ Pn → R, their convolution is defined by

ðf � gÞðeÞ ¼
X
e0∈P

fðe0Þgðee0Þ: ð8Þ

As expected, it can be shown that convolutions transform
into products under Fourier transform:

F ½f � g� ¼ F ½f� · F ½g�: ð9Þ

The logical channel PL, defined in Eq. (5), can be written as
the convolution of the physical channel P with the uniform
probability distribution over stabilizers US ,

PL ¼ P �US : ð10Þ

It is well known that F ½US � ¼ ΦS⊥ ¼ ΦL, where ΦL is
the indicator function of L [39]. Therefore the logical
channel can be characterized in Fourier space by the
moments

EL ≔ E ·ΦL: ð11Þ

This is a special instance of the averaging versus subsam-
pling duality explained in [39]. To summarize the above
discussion, the logical channel is fully characterized by the
moments corresponding to logical operators. The estima-
tion problem can then be phrased as follows: given the
moments ES of all stabilizers, compute the moments EL of
all logical operators.
Correctable noise.—The above estimation problem can-

not be solved for arbitrary channels P, since in general the
moments are independent of each other. Here, our
assumption of limited correlations becomes important.
To formalize this assumption, consider a set of “supports”

Γ ⊆ 2f1;…;ng, where 2f1;…;ng denotes the powerset of
f1;…; ng. These supports are allowed to overlap with each
other. We assume that on each support γ ∈ Γ, there acts an
independent Pauli channel Pγ∶ Pγ → ½0; 1�. Thus, the noise
is correlated across each support, but not between different
supports. If the supports are small, any high weight error
must arise as a combination of independent lower weight
errors. This is the scenario where error correction has a
chance to improve the fidelity. On the other hand, if the
supports are too large, error correction usually fails. Thus,
we assume that the noise is “correctable” in the follow-
ing sense.
Definition 1.—A Pauli channel P described by a set of

supportsΓ ⊆ 2f1;…;ng is called “correctable” if the following
two conditions are fulfilled: (1) for all γ1; γ2 ∈ Γ, the union
γ1 ∪ γ2 is a correctable region; (2) PγðIÞ > 1

2
for all γ ∈ Γ.

We see from the definition of distance that the first
condition is fulfilled, in particular if jγj ≤ bðd − 1Þ=2c for
all γ ∈ Γ. The second condition simply states that the error
rates should not be too large. It guarantees that all moments
are positive, i.e., EðaÞ > 0 for all a ∈ Pn. We would like to
emphasize that our definition of correctable noise requires
quite a weak condition: actual QEC requires the noise level
to be below some code-dependent threshold, which is
always lower than the one imposed by our condition (2).
Definition 1 is also distinct from the Knill-Laflamme
condition [40], [ [32], Theorem 10.1], which is usually
applied to a subnormalized part of the full error channel.
Since the multiplication of independent Pauli random

variables corresponds to a convolution of their probability
distributions, the full channelP can be written as a convolu-
tion of the independent local channels:

P ¼ �γ∈ΓPγ: ð12Þ

In this notation, we set PγðeÞ ¼ 0 if suppðeÞ⊈γ. In order to
better capture this structure in Fourier space, we can
introduce a set of “canonical moments” F (which we
called “transformed moments” before [26]). For a; b ∈ Pn,
let us write b ≤ a if b is a substring of a. Then we define the
canonical moments as
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F∶ Pn → R; FðaÞ ¼
Y

b∈Pn∶ b≤a
EðbÞμðb;aÞ; ð13Þ

where μ is the Möbius function defined by

μðb; aÞ ¼
� ð−1Þjaj−jbj; b ≤ a

0; otherwise
; ð14Þ

which is well known in combinatorics [41]. The Möbius
function is defined in such a way that in Eq. (13), we divide
out that part of the moment EðaÞ that is already described
by substrings b ≤ a, without “double counting” any sub-
string. Essentially, while the regular moments E also
capture correlations across all subsets of their support,
the canonical moments only capture correlations across
their full support. The advantage is that a small set of
canonical moments is sufficient to fully describe the
channel. In particular, the following two facts about
canonical moments are shown in the Supplemental
Material [42]. First of all, we only need to consider the
canonical moments that lie completely inside a channel
support γ, since FðaÞ ¼ 1 if suppðaÞ⊈γ for all γ ∈ Γ. The
set of such canonical moments is FΓ0 ¼ ½FðaÞ�a∈Γ0 , where

Γ0 ¼ fa ∈ Pn∶ ∃ γ ∈ Γ such that suppðaÞ ⊆ γg: ð15Þ

Furthermore, the regular moments E are obtained from the
canonical moments F by

EðaÞ ¼
Y
b≤a

FðbÞ: ð16Þ

Identifiability.—Since the moments ES can be obtained
from the syndrome measurements, and the channel is fully
described by the canonical moments FΓ0 , estimation of the
physical channel boils down to solving the system of
equations

EðsÞ ¼
Y

a∈Γ0;a⊆s

FðaÞ: ð17Þ

For correctable noise, all moments are positive. Then,
Eq. (17) can be transformed into a system of linear
equations by taking logarithms. This system can be
expressed by the coefficient matrix DS , whose rows are
labeled by stabilizers and whose columns are labeled by
elements of Γ0, with entries

DS ½s; a� ¼
�
1; a ⊆ s

0; otherwise
: ð18Þ

As we have proven before [26], a unique solution exists if
the range of correlations of the error channel P is smaller
than the pure distance of the code. Correctable noise
generally does not fulfill this strict condition. Thus, the

system is underdetermined and the physical channel P
cannot be estimated just from the syndrome measurements.
We are, however, only interested in estimating the logical

channel, Eq. (5), which contains less information. As deri-
ved above, Eq. (11), it suffices to consider the moments EL.
The question is now whether the moments EL can be
computed from the measured moments ES , i.e., whether
the corresponding equations of the form Eq. (17) are
linearly dependent after taking logarithms. In other words,
the logical channel can be uniquely estimated from the
syndrome measurements if

rankðDS Þ ¼ rankðDLÞ: ð19Þ
This condition is equivalent to rankðDT

SDS Þ ¼
rankðDT

LDLÞ. We will prove this by showing the even
stronger statement

DT
SDS ∝ DT

LDL: ð20Þ
First, note that DT

SDS can be easily computed from its
definition,

DT
SDS ½a; b� ¼ jfs ∈ S ∶ a ≤ s and b ≤ sgj: ð21Þ

The analogous statement holds for DL. By rewriting
Eq. (20) in terms of individual entries, we see that the
logical channel can be uniquely estimated from the syn-
drome statistics if for all a; b ∈ Γ0,

jfs ∈ S∶ a; b ≤ sgj ¼ cjfl ∈ S⊥∶ a; b ≤ lgj; ð22Þ
where c is a constant independent of a, b. This is a counting
problem that depends only on global properties of the stabi-
lizers and logical operators, but not on their specific form.
To solve this counting problem, we will employ the well-
known cleaning lemma, which was first stated by Bravyi
and Terhal [34]. Informally, this lemma states that any
correctable region can be cleaned from logical operators.
Lemma 1.—Let R be a correctable region. Then any coset

½l� ∈ L=S of logical operators has a representative l ∈ L
that has no support on R, i.e., suppðlÞ ∩ R ¼ =0.
Using this lemma, we can prove Eq. (22). For all

a; b ∈ Γ0 we have

jfl ∈ L∶ a ≤ l and b ≤ lgj
¼

X
l∈L

½a ≤ l andb ≤ l�

¼
X

½l�∈ðL=S Þ

X
s∈S

½a ≤ ls andb ≤ ls�

¼
X

½l�∈ðL=S Þ

X
s∈S

½a ≤ s and b ≤ s�

¼ jL=S j · jfs ∈ S ∶a ≤ s and b ≤ sgj:

In the second equality, we split the total sum into smaller
sums over logically equivalent subsets of logical operators.
Then, the third equality follows from the cleaning lemma:
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since a and b correspond to canonical moments, they
must be fully contained in some supports γa; γb ∈ Γ. For
correctable noise, γa ∪ γb is a correctable region. Thus, if
the union of the supports of a and b is fully contained in
γa ∪ γb, it must also be a correctable region. By the
cleaning lemma, we can choose the representative l of
the coset [l] such that it acts trivially on that region. Then, a
is a substring of ls if and only if it is a substring of s, and the
same holds for b. This finishes the proof of Eq. (22).
We can summarize the discussion of the main text in the

following theorem.
Theorem 1.—A Pauli channel P can be estimated up to

logical equivalence from the syndrome measurements
of a stabilizer code if P is correctable in the sense of
Definition 1.
Note that while we focused on stabilizer codes with

perfect measurements for simplicity, several generaliza-
tions of this result are possible. Measurement errors can be
incorporated using the framework of quantum data syn-
drome codes [53]. Furthermore, we can also consider
subsystem codes [54], which generalize stabilizer codes
by allowing for some noncommuting measurements. A full
account of these generalizations, including all proofs that
are omitted in the main text, is given in the Supplemental
Material [42]. The main theorem presented there might also
be interesting in contexts other than QEC.
Conclusion.—We have shown that the measurements

performed during QEC contain enough information to
estimate a large class of phenomenological Pauli noise
models up to logical equivalence. Informally, as long as the
code can correct the noise, it can also be estimated from the
syndrome measurements. This result opens up new char-
acterization possibilities since the previous results have
focused only on estimating physical channels. Our result
applies to data syndrome codes and general subsystem
codes, which encompass most codes in the literature.
While the focus of this Letter is on the fundamental

identifiability of Pauli noise from syndrome data in the
setting of general subsystem codes, our proofs also suggest
a concrete estimation scheme. Since it is sufficient to
consider as many equations as there are free parameters
in the polynomial system, Eq. (17), this system can in
principle be solved in polynomial time in the code size. The
sample complexity, however, depends on the conditioning
of this system, and hence on the specifics of the code. We
note, however, that for, e.g., topological codes, estimation
is expected to be possible from local subregions of the
code, which implies an efficient sampling complexity [26].
In order to work out these ideas, a specific analysis of
concrete codes is required, which is ongoing research.
The focus of this Letter is on phenomenological noise

models. For quantum communication or storage, this might
be a reasonable assumption. In the context of fault-tolerant
quantum computing, however, full circuit level noise
models are more realistic than phenomenological ones,

which introduces additional complications already for
decoding in the first place. A common approach to this
problem is to consider approximate noise models. For
example, a minimum-weight perfect matching decoder
maps the actual noise to a simplified graph with weighted
edges [23,55]. Here, our results apply directly, and the edge
weights can be estimated up to logical equivalence by
solving our equation system, Eq. (17).
The situation is less clear if one is interested in more

details than such an effective noise model provides. In this
case, one might attempt to transfer our results using a cutoff
for late errors, following Delfosse et al. [56], or using a
mapping from circuit noise to subsystem codes, as given in
Refs. [43–45]. We think that our work can serve as a basis
for many possible research questions on characterization in
the context of QEC.
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