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Learning a many-body Hamiltonian from its dynamics is a fundamental problem in physics. In this
Letter, we propose the first algorithm to achieve the Heisenberg limit for learning an interacting N-qubit
local Hamiltonian. After a total evolution time of Oðϵ−1Þ, the proposed algorithm can efficiently estimate
any parameter in the N-qubit Hamiltonian to ϵ error with high probability. Our algorithm uses ideas from
quantum simulation to decouple the unknown N-qubit Hamiltonian H into noninteracting patches and
learns H using a quantum-enhanced divide-and-conquer approach. The proposed algorithm is robust
against state preparation and measurement error, does not require eigenstates or thermal states, and only
uses polylogðϵ−1Þ experiments. In contrast, the best existing algorithms require Oðϵ−2Þ experiments and
total evolution time. We prove a matching lower bound to establish the asymptotic optimality of our
algorithm.
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Learning an unknown Hamiltonian H from its dynamics
UðtÞ ¼ e−iHt is an important problem that arises in quan-
tum sensing and metrology [1–9], quantum device engi-
neering [10–15], and quantummany-body physics [16–23].
In quantum sensing and metrology, the Hamiltonian H
encodes signals that we want to capture. A more efficient
method to learnH implies the ability to extract these signals
faster, which could lead to substantial improvement in
many applications, such as microscopy, magnetic field
sensors, and positioning systems. In quantum computing,
learning the unknown Hamiltonian H is crucial for cali-
brating and engineering the quantum device to design
quantum computers with lower error rates. In quantum
many-body physics, the unknown Hamiltonian H charac-
terizes the physical system of interest. Obtaining knowl-
edge of H is hence crucial to understanding microscopic
physics. A central goal in these applications is to find the
most efficient approach for learning H.
In this Letter, we focus on the task of learning many-

body Hamiltonians describing a quantum system with a
large number of constituents. For concreteness, we consider
an N-qubit system with geometrically local interactions.
Given any unknown N-qubit geometrically local
Hamiltonian H, we can represent H as

H ¼
XM
a¼1

λaEa: ð1Þ

Here, λ1;…; λM are the unknown parameters and S ¼
fE1;…; EMg ⊆ fI; X; Y; Zg⊗N is a subset of N-qubit

Pauli operators. Each Pauli operator Ea acts nontrivially
on at most k ¼ Oð1Þ qubits, and each qubit is acted on by
Oð1Þ of the Pauli operators in S. Many-body Hamiltonians
with nearest-neighbor interactions on one-dimensional
chains, two-dimensional square lattices, and three-
dimensional cubic lattices are all special cases of geomet-
rically local Hamiltonians. The goal is to learn the
parameters λa in the unknown Hamiltonian H. In previous
works on learning many-body Hamiltonians [24–35], in
order to reach an ϵ precision in estimating the parameters
λa, the number of experiments and the total time required
to evolve the system have a scaling of at least ϵ−2.
However, the ϵ−2 precision scaling is likely not the
best-possible scaling for learning an unknown many-
body Hamiltonian H.
In quantum sensing and metrology, the scaling of ϵ−2 for

learning an unknown parameter to ϵ error is known as the
standard quantum limit. For simple classes of Hamiltonians,
such as a single-qubit Hamiltonian H ¼ ωZ with unknown
parameter ω, one can surpass the standard quantum limit
using quantum-enhanced protocols [1,3,7,36–38]. The true
limit set by the basic principles of quantum mechanics is
known as the Heisenberg limit, which suggests a scaling of
ϵ−1. There are two well-known approaches for achieving
the Heisenberg limit for learning H ¼ ωZ. The first
approach [3–5] considers evolving a highly entangled state
over l ¼ Oðϵ−1Þ qubits of the system under l parallel
Hamiltonian evolutions ðe−iHtÞ⊗l with t ¼ Oð1Þ. The
second approach [1,39,40] considers long-time coherent
evolution e−iωtZ with t ¼ Oðϵ−1Þ over a single qubit.
While the first approach was proposed earlier, the second
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approach has the advantage of requiring only a single qubit
without entanglement.
The ϵ−1 scaling underlying the two approaches corre-

sponds to the “total evolution time.” If a protocol uses J
experiments, where the jth experiment uses the unknown
Hamiltonian evolution e−iHtj;1 ;…; e−iHtj;Kj , then the total
evolution time is defined as

T≜XJ
j¼1

XKj

k¼1

tj;k: ð2Þ

In the first approach, each experiment usesOðϵ−1Þ constant
time Hamiltonian evolutions in parallel, while the second
approach uses Oðϵ−1Þ constant time Hamiltonian evolu-
tions sequentially resulting in a single long-time evolution.
Both quantum sensing approaches result in a total evolution
time of Oðϵ−1Þ.
These quantum-enhanced approaches could be applied

to noninteracting systems as studied in multiparameter
quantum sensing [41–44]. However, they are challenging to
apply in interacting systems with a large system size N and
many unknown parameters. The difficulty stems from the
many-body interactions in the Hamiltonian H. As time t
becomes larger, the entanglement growth in e−itH will
cause all the unknown parameters in H to tangle with one
another. The many-body entanglement can be seen as a
form of decoherence, which kills the quantum enhance-
ment. To prevent the system from becoming too entangled,
prior work on learning many-body Hamiltonians focuses
on a short-time t, which loses the quantum enhancement
and obtains, at best, an ϵ−2 scaling.
In this Letter, we propose the first learning algorithm to

achieve the Heisenberg limit for learning interacting many-
body Hamiltonian. Figure 1 illustrates our algorithm. We
prove the following performance guarantee.
Theorem 1: There is an algorithm robust to state

preparation and measurement error [45] that achieves the
following: For any unknown N-qubit geometrically local
Hamiltonian H ¼ P

M
a¼1 λaEa with jλaj ≤ 1, after a total

evolution time T ¼ Oðϵ−1 logðδ−1ÞÞ, the learning algo-
rithm can obtain estimates λ̂a from the experiments, such
that Pr ½jλ̂a − λaj ≤ ϵ� ≥ 1 − δ for all a ∈ f1;…;Mg.
In quantum sensing and metrology, one often considers

the standard deviation of the estimate. We can show that to

ensure the standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½jλ̂a − λaj2�

q
≤ ϵ, we only

need a total evolution time of T ¼ Oðϵ−1Þ. This is because
each estimate λ̂a comes from a linear combination of Oð1Þ
eigenvalue estimates through a Hadamard transform, as
shown in [ [51], Eq. (25)]. Each eigenvalue estimate has
standard deviation at most OðϵÞ as guaranteed by [ [40],
Theorem I.1]. Consequently, their linear combination λ̂a
also has a standard deviation that scales as OðϵÞ. Hence,
our algorithm saturates the Heisenberg limit in terms of the

standard deviation. Our algorithm has the additional
advantage of not requiring eigenstates or thermal states
of the Hamiltonian H. Each of our experiments consists of
the preparation of a noisy all-zero state j0Ni, the evolution
under the Hamiltonian H interleaved with single-qubit
Clifford gates, and a noisy Z-basis measurement. The total
number of experiments is only Oðpolylogðϵ−1ÞÞ, which is
significantly smaller than Θðϵ−1Þ. After running the experi-
ments, the classical computational time to estimate all
parameters is only OðNpolylogðϵ−1ÞÞ. Detailed statements
can be found in [ [51], Theorems 13 and 21]. We note that
our result generalizes to all low-intersection Hamiltonians
as given in [ [51], Definition 2].
To establish the optimality of the proposed algorithm, we

prove a matching lower bound.
Theorem 2: Suppose there is a learning algorithm

robust to state preparation and measurement error that
achieves the following. For any unknown N-qubit geomet-
rically local Hamiltonian H ¼ P

M
a¼1 λaEa with jλaj ≤ 1,

after a total evolution time T, the learning algorithm can
obtain estimates λ̂a from the experiments, such that
Pr ½jλ̂a − λaj ≤ ϵ� ≥ 1 − δ for all a ∈ f1;…;Mg. Then,
T ¼ Ωðϵ−1 logðδ−1ÞÞ.
Thus, there is no algorithm that can perform asymptoti-

cally better than the one given in Theorem 1. Moreover, the
lower bound can be seen as an algorithmic proof of the
Heisenberg limit with the failure probability δ taken into
account. It holds not only for algorithms with a fixed set of
experiments but also for adaptive experiments that use
information from previous experiment outcomes, following
the setup in [52–55].

(a) (b)

(c)

FIG. 1. Algorithms for learning many-body Hamiltonians.
(a) Our algorithm for achieving the Heisenberg limit ϵ−1. We
perform long-time coherent evolutions interleaved with random
Pauli operators. The effective Hamiltonian is decoupled into
noninteracting patches and can be efficiently learned. The
algorithm only needs Oðpolylogðϵ−1ÞÞ experiments and a total
evolution time of Oðϵ−1Þ. (b) Previous algorithms for achieving
the standard quantum limit ϵ−2. Previous methods [26,29,33,34]
repeatedly run a short-time evolution for many times. One needs
Oðϵ−2Þ experiments and a total evolution time of Oðϵ−2Þ.
(c) Symbols: The symbols used in (a), (b). The unknown
Hamiltonian evolution is UðtÞ ¼ e−iHt.
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In the following, we provide the ideas for designing the
proposed learning algorithm and establishing the proof of
the main results. All parts except for the last are devoted to
Theorem 1. The last part is Theorem 2.
Reshaping an unknown Hamiltonian.—A key technique

used throughout the design of our learning algorithm is the
idea of reshaping an unknown Hamiltonian using
Hamiltonian simulation techniques. Recall that given a
set of Hamiltonians H1;…; HK and the ability to imple-
ment the unitaries e−itH1 ;…; e−itHK , many Hamiltonian
simulation techniques allow one to approximately imple-

ment the unitary e−it
P

K
k¼1

Hk. Note that these approximation
formulas are valid for unitaries and no knowledge of the
underlying Hamiltonian is required. As such, they are
applicable to the learning problem considered here.
For example, a randomized Hamiltonian simulation

algorithm known as qDRIFT [56–58] considers an approxi-
mation (as a quantum channel) given by

e−it
P

K
k¼1

Hk ≈ e−iðt=rÞHkr…e−iðt=rÞHk1 ; ð3Þ

where r is an integer that sets the approximation error,
k1;…; kr are independent random variables sampled
according to some probability distribution over f1;…; Kg.
Alternatively,we can also use the second-orderTrotterization
method [59–61] in our algorithm to reduce the asymptotic
scaling of the number of Clifford gates required. Higher-
order Trotterizations are not used because they require
evolving backward in time.
Now, consider the unknown N-qubit Hamiltonian H that

we hope to learn. We want to reshape it into the following
Hamiltonian to facilitate learning:

H̃≜XK
k¼1

wkHk; ð4Þ

where Hk≜wkUkHU†
k and Uk is a unitary for each

k ¼ 1; 2;…; K. The weights wk ≥ 0. Any choice of uni-
taries Uk and weights wk can be used. Later, to achieve the
Heisenberg limit, we will choose specific Uk and wk to
ensure H̃ disentangles the many-body system into non-
interacting patches involving few qubits and has known
eigenvectors irrespective of what H is. Our choice for each
Uk will be a tensor product of Pauli operators. Using either
qDRIFT or Trotterization, we only need to implement
e−iHk , which can be done through e−iHkt ¼ Uke−iðwktÞHU†

k.
To be more specific, we can implement e−iHKt by first
applying the unitary U†

k, letting the system evolve for time
wkt, and then applying Uk. Using Hamiltonian simulation
techniques, we can evolve under the N-qubit unitary e−itH̃.
This reshaping technique is related to experimental
approaches for engineering Hamiltonians through pulse
sequences or strong fields [62–68]. Similar ideas have

also been used to project H into the quantum Zeno
subspace [69,70]. The reshaping will lead to a small
approximation error, which we discuss later (for a detailed
discussion, see [ [51], Sec. IV and VI]).
Learning a few-qubit Hamiltonian.—We now show how

the Hamiltonian reshaping technique is useful in learning
Hamiltonians. We begin with a simple question: how can
one learn a few-qubit Hamiltonian on Oð1Þ qubits with
Heisenberg-limited precision scaling? If we naively apply
quantum process tomography [54,71–77] to learn the
unknown Hamiltonian, we would have an ϵ−2 dependence
in the number of measurements needed, where ϵ is the
desired precision of the Hamiltonian parameters. Current
methods with a Heisenberg-limited scaling typically
require the Hamiltonian to be of a simple form, e.g.,
H ¼ λX [1–9,39,40]. Therefore we need to consider a
different method.
We show that for a few-qubit Hamiltonian we can learn

all the parameters involved using Oðϵ−1 logðδ−1ÞÞ total
evolution time, and Oðpolylogðϵ−1Þ logðδ−1ÞÞ number of
experiments. As an example, let us consider an arbitrary
two-qubit Hamiltonian,

H ¼
X

P;P0∈fI;X;Y;Zg
λPP0P ⊗ P0; ð5Þ

with jλPP0 j ≤ 1. Suppose we want to estimate the parameter
λXZ. Then we can consider reshaping the unknown
Hamiltonian H using U1 ¼ I, U2 ¼ X1, U3 ¼ Z2,
U4 ¼ X1Z2, and w1 ¼ w2 ¼ w3 ¼ w4 ¼ 1

4
. The new

unknown Hamiltonian, after reshaping, is given by

H̃≜ 1

4
ðH þ X1HX1 þ Z2HZ2 þ X1Z2HX1Z2Þ

¼ λXZX1Z2 þ λXIX1 þ λIZZ2: ð6Þ

The second equality is because the linear combination over
the four terms eliminates all Pauli terms in H that do not
have I or X on the first qubit and I or Z on the second qubit.
This new unknown Hamiltonian H̃ gives us one crucial

advantage: we have access to its eigenstates. This is
because in H̃, for each qubit, there is only one (nonidentity)
Pauli operator associated with it. The eigenbasis for the
new unknown Hamiltonian H̃ is always given by
fjþij0i; jþij1i; j−ij0i; j−ij1ig regardless of the values
of the unknown coefficients. We can use this information,
together with the robust phase estimation algorithm in [40],
to estimate the differences between pairs of eigenvalues,
which in turn yield the parameters λXZ; λXI; λIZ through a
Hadamard transform. The procedure for applying random
Pauli operators and obtaining parameters from eigenvalue
estimation is described in detail in [ [51], Sec. II.B and
III.B]. By using different choices of U1;…; U4 to reshape
H, we can get all the parameters λPP0 in the two-qubit
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Hamiltonian H. The same idea generalizes to arbitrary
Hamiltonians on Oð1Þ qubits.
Learning a many-qubit Hamiltonian through divide and

conquer.—If wewant to learn a many-qubit Hamiltonian by
directly applying the above method, the total evolution time
will scale exponentially with the number of qubits. Here, we
present a divide-and-conquer approach to address this
problem. To illustrate the proposed approach, let us consider
a simple example of an inhomogeneous Heisenberg model
on N qubit with a Hamiltonian given by

H ¼
XN−1

α¼1

ðλαxXαXαþ1 þ λαyYαYαþ1 þ λαzZαZαþ1Þ; ð7Þ

where λαx; λαy; λαz are the unknown parameters, andXα, Yα,Zα

are the Pauli operators acting on qubit α. Suppose we want
to learn the parameter λ1x on the first two qubits. In order
to achieve this, we reshape the unknown Hamiltonian H
with U1 ¼ I, U2 ¼ X3, U3 ¼ Y3, U4 ¼ Z3, and
w1 ¼ w2 ¼ w3 ¼ w4 ¼ 1

4
. The new unknown Hamiltonian

after the reshaping is given by

H̃ ¼ 1

4
ðH þ X3HX3 þ Y3HY3 þ Z3HZ3Þ

¼ H̃1;2 þ H̃≥4; ð8Þ

where

H̃1;2 ¼ λ1;2x X1X2 þ λ1;2x Y1Y2 þ λ1;2x Z1Z2 ð9Þ

and H̃≥4 only contains terms acting on qubits 4; 5;…; N.
The second equality in Eq. (8) holds for the following
reason: for each Pauli operator P ∈ fI; X; Y; Zg⊗N, if it acts
nontrivially on the third qubit, then we can show that

1

4
ðPþ X3PX3 þ Y3PY3 þ Z3PZ3Þ ¼ 0: ð10Þ

On the other hand, for Pauli operator P that acts as identity
on the third qubit, we can show that

1

4
ðPþ X3PX3 þ Y3PY3 þ Z3PZ3Þ ¼ P: ð11Þ

Therefore from Eq. (8), after the reshaping, the new
Hamiltonian H̃ does not generate entanglement between
qubits 1,2 and the rest of the system, and these two qubits
evolve under the Hamiltonian H̃1;2. This enables us to apply
the learning algorithm for few-qubit Hamiltonians to H̃1;2 to
estimate λ1x.
We can apply the above idea to learn every parameter in

the Hamiltonian with a number of experiments that scales
linearly in the system size N rather than exponential in N.
We show that one could do better than linear scaling by a

parallelization technique. In particular, we discuss how one
could learn all the parameters λ1x; λ4x; λ7x; � � � in parallel.
Consider reshaping the unknown N-qubit Hamiltonian H
given in Eq. (7) using U1 ¼ I, U2 ¼ X3X6X9…, U3 ¼
Y3Y6Y9…,U4 ¼ Z3Z6Z9…, andw1¼w2¼w3¼w4¼ 1=4.
Then the new Hamiltonian under reshaping is given by
H̃ ¼ H̃1;2 þ H̃4;5 þ H̃7;8 þ � � �, where H̃α;αþ1 is supported
on qubits α and αþ 1 for all α ¼ 1; 4; 7;…. Using a
reshaping based on four unitaries U1;…; U4, we have
turned the unknown N-qubit interacting Hamiltonian H
into a new Hamiltonian H̃ with many noninteracting
patches of two qubits. Each two-qubit patch is now
evolving independently from the others. This decoupling
enables us to estimate the parameters in parallel using the
algorithm for learning few-qubit Hamiltonians.
This divide-and-conquer method works for any local

Hamiltonian defined in Eq. (1). For this more general class
of Hamiltonians, we determine how the reshaping is done by
performing a coloring over its cluster interaction graph
(a graph consisting of clusters of qubits that are acted on
by a Pauli term in the Hamiltonian) [ [51], Lemma 5]. The
coloring enables us to choose qubits, on which we apply
random I, X, Y, Z operators to decouple clusters of the same
color from each other, thus enabling parallel estimation of
the parameters associated with these clusters. For details,
see [ [51], Sec. I.B, II, and V]. A complete description of
our algorithm for general local Hamiltonians can be found
in [ [51], Algorithm 2]. The cost of the algorithm is
summarized in [ [51], Theorems 13 and 21] (for the ran-
domization and Trotterization approaches, respectively).
Characterizing approximation error in reshaping

Hamiltonians.—The estimation error of the proposed
learning algorithm depends on the quantum measurement
error as well as the approximation error when we reshape
the unknown Hamiltonian into other forms. One way to
analyze the approximation error is through the error
analysis considered in [56] if we use qDRIFT to reshape
or in [78] when using the second-order Trotter formula.
However, these analyses are concerned with the error in the
worst-case scenario over all possible input states and all
observables. For the learning task given here, it leads to an
overestimation of the approximation error as some key
properties of the problem are not incorporated.
Consider the example of learning an inhomogeneous

Heisenberg model onN qubits given in the previous section.
To evolve under the N-qubit Hamiltonian reshaped H̃ for
time t, the analysis in [56] shows that the approximation error
of qDRIFT with r steps is given by OðN2t2=rÞ. Here, H̃ is
decoupled into many two-qubit patches that do not interact
with each other, which prevents errors from propagating
across the entire N-qubit system. We are interested only in
the accuracy of evolving each patch, and the error from
elsewhere in the system should not affect estimations of
local observables. Similar considerations have been used
to improve the error analysis of Hamiltonian simulation
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methods based on observable and initial state inform-
ation [79–83]. In our case, a tighter analysis [84] using these
facts shows that the approximation error is given byOðt2=rÞ
without anN dependence.We give the improved analysis for
reshaping Hamiltonians using the randomization approach
in [ [51], Sec. IV]. The improved analysis for using the
second-order Trotter formula is given in [ [51], Sec. VI].
Establishing a matching lower bound.—We prove a

matching lower bound of T ¼ Ωðϵ−1 logðδ−1ÞÞ on the total
evolution time T [86]. The optimality with respect to the ϵ
dependence is obtained by the Heisenberg limit. However,
the optimalitywith respect to the failure probability δ has not
been proven in the literature. We consider any learning
algorithm that can run new experiments based adaptively on
the outcomes of previous experiments. In order to handle
adaptivity, we consider the rooted tree representation of the
learning algorithm [53,55], and consider the task of dis-
tinguishing between two distinct HamiltoniansH� ¼ �ϵZ.
We begin by considering how well one could use a single

experiment to distinguishH�, which is characterized by the
total variation (TV) distance between the probability
distribution over experimental outcomes under H�. We
characterize the TV distance in a single experiment. Then
we consider an induction over every subtree of the learning
algorithm to establish the TV distance over multiple
experiments. A central technique is to control how each
additional experiment improves one’s ability to distinguish
H�. The proof of the lower bound is given in [ [51],
Sec. VII].
Discussion.—Our work shows that the Heisenberg limit

can be achieved in the task of learning a large class of
many-body local Hamiltonians with many unknown
parameters. On the theoretical side, the central open
question is whether our result can be extended to learning
other classes of many-body Hamiltonians. For example, in
an N-qubit Hamiltonian with all-to-all two-body inter-
actions, our techniques achieve the Heisenberg limit with
a quadratic dependence on system size N by learning all
pairwise interactions one by one. This gives rise to the
following question: can we achieve a scaling of T ¼
Oðϵ−1 logðδ−1ÞÞ for N-qubit Hamiltonians with all-to-all
interactions? In addition to the above example, can we
achieve the Heisenberg limit for learning fermionic or
bosonic many-body Hamiltonians? Answering these ques-
tions is important for applications such as reconstructing
the structure of large molecules or learning the interactions
in an exotic quantum material. Even more ambitiously, can
one achieve the above scaling for learning the unknown
parameters in an arbitraryN-qubit Hamiltonian without any
structure? On the practical side, the central question is how
to achieve the Heisenberg limit with minimal controllable
quantum operations. For example, could one achieve the
scaling T ¼ Oðϵ−1 logðδ−1ÞÞ for learning N-qubit local
Hamiltonian H in a restricted model where we cannot
interleave the unknown Hamiltonian evolution with

single-qubit gates and can only control state preparation
and measurement? Understanding these questions will be
crucial for physically achieving the Heisenberg limit in
learning many-body Hamiltonians.
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