
Test of Causal Nonlinear Quantum Mechanics by
Ramsey Interferometry with a Trapped Ion

Joseph Broz , Bingran You , Sumanta Khan , and Hartmut Häffner
Department of Physics, University of California, Berkeley, California 94720, USA

and Challenge Institute for Quantum Computation, University of California, Berkeley, California 94720, USA

David E. Kaplan and Surjeet Rajendran
Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218, USA

(Received 27 June 2022; accepted 6 April 2023; published 15 May 2023)

Quantum mechanics requires the time evolution of the wave function to be linear. While this feature has
been associated with the preservation of causality, a consistent causal nonlinear theory was recently
developed. Interestingly, this theory is unavoidably sensitive to the full physical spread of the wave
function, rendering existing experimental tests for nonlinearities inapplicable. Here, using well-controlled
motional superpositions of a trapped ion, we set a stringent limit of 5.4 × 10−12 on the magnitude of the
unitless scaling factor ϵ̃γ for the predicted causal nonlinear perturbation.
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Introduction.—Quantum mechanics (QM) is central to
our understanding of nature. Its principles are used to
predict phenomena ranging from the microscopic world of
atoms and nuclei, to the mesoscopic world of solids and
materials, and the macroscopic behavior of the cosmos.
Given its central importance to all branches of physics, it is
important to test its foundations. One of the key founda-
tions of QM is that the time evolution of a quantum system
is described by a linear equation of motion. This axiom
underpins a number of important results in QM [1]
including the no-cloning theorem [2].
Given that linearity is an approximation in every other

known physical theory, why should linearity be an absolute
requirement of QM? There have been many theoretical
suggestions [3–6] for incorporating nonlinear evolution in
single particle QM. But QM needs to be able to describe
multiple particles that can exist together in an arbitrarily
complicated entangled state. Naive generalizations of [3–6]
to such states generally lead to violations of causality (i.e.,
instantaneous communication of information) [7–9], con-
tributing to a widespread belief that linearity is necessary
for causality [10]. However, as first pointed out by
Polchinski [9], causal nonlinear quantum mechanical
(NLQM) evolution of multiparticle states is possible if
the nonlinear terms in the Schrödinger equation are
restricted to a specific form.
Recently, Kaplan and Rajendran [11], building on earlier

work by Kibble [12], have developed a systematic
approach for incorporating causal nonlinear evolution into
quantum field theory (QFT). The introduction of non-
linearities directly into QFT as opposed to the single
particle Schrödinger equation is motivated by the fact that
QFT is the natural framework to describe the causal
evolution of multiparticle states. And it was shown in

[11] that the seemingly unmotivated [13] nonlinear struc-
ture demanded by [9] for multiparticle states was a direct
physical consequence of QFT.
Importantly, [11] and [9] recognized that, unlike linear

QM where the physical spread of the wave function is
irrelevant for QM observables such as energy levels of
quantum systems, any causal NLQM theory is highly
susceptible to the physical spread of the wave function.
This aspect of NLQM was not appreciated in prior exper-
imental work [14–19] and thus the bounds on causal NLQM
theories imposed by these experiments are quite weak [11].
In light of the existence of possible causal NLQM theories
and the weak nature of these bounds, it is important to
robustly experimentally test parametrized nonlinear devia-
tions from QM. These tests are particularly important since
deviations away from linear QM may open new doors to
solving long-standing problems in physics such as the black
hole information problem while potentially enabling a
variety of new technological possibilities [11].
The basic approach of [11] is to start with a given QFT

and introduce nonlinearities by shifting bosonic field
operators by a small amount proportional to the expectation
value of the field operator acting on the full quantum state.
When applied to single particle systems, the procedure
yields a nonlinear Schrödinger equation. For example, the
time evolution of a single particle with charge q and
Hamiltonian H is described in this theory by

iℏ∂tΨðt;xÞ¼
�
Hþ ϵ̃γ

q2

4πε0

Z
d4x1jΨðt1;x1Þj2Grðt;x;t1;x1Þ

�
×Ψðt;xÞ; ð1Þ
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where ϵ̃γ is a small unitless parameter scaling the non-
linearity of the theory [20] andGr is the relativistic retarded
Green’s function from the spacetime coordinates ðt1;x1Þ to
ðt;xÞ. Gr naturally appears in this expression from the
underlying QFT derivation and enforces causality. The new
term added to the Hamiltonian in Eq. (1) admits the simple
interpretation of a classical Coulomb potential causally
sourced by the quantum probability distribution of the
particle’s position.
One might expect that strong bounds set from previous

searches for NLQM [14–19] would limit this theory. But
this expectation turns out to be false for the following
fundamental reason. The tests performed by [14–19] are on
energy levels of various bound states. In linear QM, the
level structure is independent of the center of mass spread
of the bound state wave function. This is not true in causal
NLQM where nonlinear effects alter time evolution via the
position space wave function as in Eq. (1). These effects are
highly suppressed if the center of mass wave function is
spread out.
To illustrate this point, it is helpful to take the non-

relativistic limit of Eq. (1). When kHk=ℏ ≪ c=jx1 − xj the
nonlinear Schrödinger equation becomes

iℏ∂tΨðt;xÞ ¼
�
H þ ϵ̃γ

q2

4πε0

Z
d3x1

jΨðt;x1Þj2
jx1 − xj

�
Ψðt;xÞ:

ð2Þ

Here one can see that the denominator of the integrand
scales with the full position-space spread of the wave
function, damping the perturbation accordingly. This is a
simple consequence of the Coulomb potential that sources
the nonlinearity, but the implication is that any sensitive test
based on standard atomic or nuclear spectroscopy must also
pin down the test system’s center of mass motion to a
dimension comparable to the spread of the internal degrees
of freedom—particularly for neutral test particles. This
condition was not well satisfied in previous tests for NLQM
[14–19], but by requiring the nonlinear correction to be
smaller than the uncertainty in recent Lamb shift measure-
ments of hydrogen, Kaplan and Rajendran have set a
modest bound of jϵ̃γj ⪅ 10−4, giving a sense for the
limitations of atomic spectroscopy [11].
For a more precise test, one can take advantage of the net

charge of a trapped ion by performing Ramsey spectros-
copy [21] on a superposition of the Fock states jni
describing one of its harmonic vibrational modes [11].
The state jψðt ¼ 0Þi ¼ αnjni þ αmjmi can be prepared and
then allowed to freely evolve for an interrogation time τ.
The Coulomb field sourced by the position-space expect-
ation value of jψi interacts differently with the two
branches of the wave function leading to an energy shift
and thus measurable accumulated phase difference between
them [22]. If jni is chosen to be more spatially localized
than jmi, one can increase (decrease) the strength of the

nonlinearity by increasing (decreasing) the relative pop-
ulation jαnj2 of jni.
For n ¼ 0 and m ¼ 1 this already results in a significant

effect. Replacing H in Eq. (2) with the Hamiltonian for a
three-dimensional, isotropic harmonic oscillator [23] and
assuming the vibrational modes in the transverse plane
remain in their ground state, the phase difference accumu-
lated between the ground and first excited state of the
superposition after a time τ is given by

ϕNLðτ; fαigÞ ¼ ϵ̃γ
10α20 þ α21
30

ffiffiffiffiffiffi
2π

p
ℏ

e2

4πε0x0
τ; ð3Þ

where the αi are assumed to be real and x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mν

p
is the

characteristic length scale of a harmonic oscillator with
mass m and natural frequency ν. Note that the state
dependence of ϕNL, i.e., its dependence on the weight of
the energy eigenstates via αi, is a characteristic nonlinear
effect, which has no analog in the linear theory. For an ion
localized to x0 ¼ 10 nm, a phase of up to order 1010 × ϵ̃γ is
accumulated for every millisecond of interrogation time. In
this Letter we perform such a Ramsey experiment designed
to maximize the signal ϕNL and thus tighten the bound on
ϵ̃γ by 8 orders of magnitude relative to the current best
estimate.
Experimental implementation.—Experiments were per-

formed using a single 40Caþ ion confined inside of a radio-
frequency (rf) Paul trap in a parameter regime where the
center of mass motion is well modeled as a three-
dimensional anisotropic harmonic oscillator [Fig. 1(a)]
with vibrational frequencies νx ≈ 2π × 1.01, νy ≈ 2π×
2.52, and νz ≈ 2π × 2.79 MHz.
The ion’s internal state is manipulated by shining reso-

nant laser light on various electronic transitions [Fig. 1(b)].
The short-lived 42S1=2 ↔ 42P1=2 and 32D5=2 ↔ 42P3=2
dipole transitions are used for entropy-altering operations
like cooling and measurement. Measurement, in particular,
is performed via the electron shelving method on 42S1=2 ↔
42P1=2 and allows us to determine the population of the
42S1=2 manifold [24]. For coherent operations, narrow band
light at 729 nm is used to couple the j42S1=2; mJ ¼ −1=2i
and j32D5=2; mJ ¼ −1=2i states, whose degeneracy is
broken with a static magnetic field of B ≈ 4 G. We call
this our qubit transition and reference it as jSi ↔ jDi.
To prepare the ion in a well-defined state, we first cool its

temperature to several hundred microkelvins using Doppler
cooling and then optically pump its electronic state into jSi.
Afterward, resolved sideband cooling is applied along the x
direction, driving the axial vibrational mode into its ground
state with high probability [25]. Once this process is comp-
lete, the ion is measured to be in the state jS; nx ¼ 0iwith a
confidence greater than 99%, where nx refers to the phonon
number of the vibrational mode along the x direction. The
two transverse vibrational modes are left in thermal states

PHYSICAL REVIEW LETTERS 130, 200201 (2023)

200201-2



with mean phonon occupations determined by the Doppler
limit of hny;zi ≈ 3. These modes remain separated from the
jS; nxi state and so we ignore them in what follows except
for taking into account the additional spread of the wave
function in position space to determine the nonlinearity in
Eqs. (2) and (3).
In order to create the desired superposition state, we use

laser light resonant with a motional sideband of the qubit
transition. From the ion’s perspective, a laser pointing
along one of its vibrational axes will appear to be phase
modulated by motion along that direction. By detuning the
laser from the qubit frequency by an amount equal to þνx,
this effect can be used to couple the states jS; ni ↔
jD; nþ 1i, which we refer to as blue sideband transitions
[Fig. 1(e)] [26]. The energy of the blue sideband transitions
is already sensitive to the nonlinear perturbation and, in
principle, can be used for our Ramsey experiment. But the
electronic states are first-order sensitive to ambient mag-
netic field fluctuations leading to a coherence time an order
of magnitude less than that of the vibrational mode—
unnecessarily limiting the Ramsey interrogation time.
So, instead we first map the desired Ramsey super-

position onto the ion’s internal states by resonantly driving
the qubit transition for a fixed duration, generating the state
ðα1jSi þ α0jDiÞj0i, in an appropriate rotating frame. Here
α0 ¼ sinðθ=2Þ, α1 ¼ cosðθ=2Þ and the value of θ is con-
trolled by adjusting the intensity of the addressing laser.
Next, we drive a blue sideband π pulse that nominally
transfers all of the population from jS; 0i to jD; 1i but
leaves the population in jD; 0i untouched [Figs. 1(d)–1(e)].
Together, these operations result in the separated state
jψðt ¼ 0Þi ¼ jDiðα0j0i þ α1j1iÞ, where the qubit state in-
formation has been written onto the vibrational mode [22].

Once the state jψi has been prepared, it is allowed to
evolve freely for a time τ so that a relative phase Φðτ; θÞ is
accumulated and jψðτÞi ¼ jDiðα0j0i þ eiΦðτ;θÞα1j1iÞ. To
extract this phase, we repeat the steps used to generate
jψð0Þi in a time-reversed order (with the value of θ now
fixed at π=2 where the signal is maximized) and then
measure jDi, which will be occupied with a probability of

PðτÞ ¼ B −
AðτÞ
2

cos½Φðτ; θÞ þ ξL�; ð4Þ

where 0 ≤ AðτÞ ≤ 1 is the signal contrast which will
generally be less than one when θ ≠ π=2, B ≈ 1=2 is an
offset whose precise value is sensitive to errors in state
preparation or measurement, and ξL is the laser phase of the
final qubit π=2-pulse relative to the initial θ pulse. Since
PðτÞ is an expectation value, a single estimate is obtained
by repeating the experiment 200 times, which is large
enough that the propagation of the quantum projection
noise (QPN) converges when inverting Eq. (4). The full
pulse sequence is illustrated in Fig. 1(c).
In order to gauge the performance of the Ramsey

experiment, we conduct a test experiment where we apply
a detuning Δ from resonance of several kHz to the first
blue sideband pulse. In the rotating frame, this breaks the
degeneracy of j0i and j1i leading to a phase of ΦðτÞ ¼ Δτ
and, thus, sinusoidal oscillations of PðτÞ. The result is
plotted in Fig. 2(a), where one can see that the signal
contrast AðτÞ exhibits a clear time dependence due to zero-
mean noise effects beyond the simple model described
in Eq. (4).
The dominant source of this noise is found to be a

Markovian heating of the vibrational mode caused by

FIG. 1. Experimental implementation. (a) A 40Caþ ion is trapped using a combination of rf and dc electric fields. In a time-averaged
sense, the confinement is well modeled by a three-dimensional harmonic potential. (b) Motion along the x direction is excited by
resonantly coupling to the internal electronic Zeeman sublevels of the 42S1=2 ↔ 32D5=2 transition using narrow band light near 729 nm.
The degeneracy of the Zeeman states is broken through application of a strong magnetic field of ≈4 G. Measurement is performed by
scattering photons of the short-lived 42S1=2 ↔ 42P1=2, which are then focused onto an EMCCD camera. (c) The experimental pulse
sequence. Pulses that address the qubit are colored gray and those that address the blue sideband, blue. After preparing the state jS; 0i,
the first pair of pulses is used to generate the state jψðt ¼ 0Þi ¼ jDiðα0j0i þ α1j1iÞ. This is then allowed to freely evolve for a time τ,
accumulating a relative phase of ΦðτÞ, which is sensitive to the proposed causal nonlinear perturbation. Afterward, the information is
mapped onto the qubit with a blue sideband pulse and then the expectation value of the Pauli spin operator cosðξLÞσx þ sinðξLÞσy is
measured. (d) An illustration of the two-step process for generating the state jψðt ¼ 0Þi, as described in more detail in the main text. The
key feature is the fact that the state jD; 0i is transparent to the resonant blue sideband drive as illustrated in (e). This allows us to map an
arbitrary qubit state onto the ground and first excited state of the vibrational mode.
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ambient electric field fluctuations at the position of the ion
and, perhaps, high frequency noise on the trapping poten-
tial [27]. This means that during free evolution, the vibra-
tional mode may spontaneously absorb a phonon from its
environment with a probability that grows linearly in time.
When n phonons are absorbed, the state of the system after
the final blue sideband pulse will be jSiðα0jni þ α1jnþ 1iÞ
and the result of the final π=2 pulse, regardless ofΦ, will be
a symmetric distribution of fjSi; jDig—diminishing the
averaged signal contrast. The dashed line in Fig. 2(a) is a
simulated decay envelope computed assuming only this
heating process as characterized by the heating rate
_̄n ≈ 10 quanta=s, independently measured by monitoring
the red sideband [26]. The good agreement between the
simulated and measured decay validates our earlier claim
that the contrast is limited by environmental heating.
For a precise determination of the nonlinearity it is most

convenient to estimateΦðτÞ at a fixed τ. But since A, B, and
Φ are all empirical quantities, inverting Eq. (4) requires at
least three independent measurements. We obtain these by
repeating the experiment for three different values of ξL
spaced by ninety degrees such that ξð3ÞL ¼ ξð2ÞL þ π=2 ¼
ξð1ÞL þ π. The targeted value of ξð1ÞL is chosen to minimize
the standard deviation of ΦðτÞ:

jδΦðτÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

�
∂Φ
∂Pi

δPi

�
2

s
; ð5Þ

which occurs when ΦðτÞ þ ξð1ÞL ¼ π=2. Here Pi is the

population measurement associated with ξðiÞL and δPi is its
standard deviation, nominally dominated by QPN.
A single measurement of ΦðτÞ contains the nonlinear

signature ϕNLðτÞ, as described by Eq. (3), but also includes
information about the detuning Δ of the blue sideband
pulses from resonance and any ac Stark shifts that occur
during state preparation and readout. Explicitly:
Φðτ; θÞ ¼ ϕNLðτ; θÞ þ Δτ þ ϕSS, where ϕSS is the phase
imprinted by the Stark shifts. Ideally, the frequency of the
blue sideband pulses are calibrated such that Δ ¼ 0, but
slow drifts of the trapping potential on a timescale that is
long relative to the Ramsey interrogation time generally
cause this condition to be violated. Likewise, Stark shifts
incurred while driving the blue sideband cause a phase
offset. But importantly, both Δ and ϕSS are independent of
θ meaning that we can obtain an unbiased estimate of the
nonlinearity by repeating the measurement for two different
values of θ and taking their difference:

ΔϕNLðτ; fθigÞ ¼ Φðτ; θ1Þ −Φðτ; θ2Þ
¼ ϕNLðτ; θ1Þ − ϕNLðτ; θ2Þ: ð6Þ

We choose θ1 and θ2 such that the ground state
population of jψðt ¼ 0Þi is 0.2 and 0.8, respectively. We
also verify that there is no phase difference due to the Stark
shift for both preparation sequences.
The nonlinear signal ΔϕNL grows linearly with inter-

rogation time τ. But this effect must contend with the
contrast decay and QPN, both of which increase the
uncertainty of the signal [Eq. (5)] and both of which favor
shorter, more frequent measurements [28]. The combina-
tion of these effects results in an optimal interrogation time,
which we determine experimentally by measuringΔϕNLðτÞ
at various τ and computing the sample standard deviation.
These results are normalized to an integration time of 1 s
and plotted in Fig. 2(b). The blue-shaded region is a
corresponding simulation that assumes only QPN and
vibrational heating bounded by 7 ≤ _̄n ≤ 13 quanta=s.
Based on this data, we fix τ ¼ 15 ms.
To determine a more rigorous bound on ϵ̃γ we repeat the

measurement of ΔϕNLðτ ¼ 15 msÞ many times. Before
each ϕNL measurement, we independently measure the
initial qubit excitation to determine the precise values of θi
which may change slightly over time due to intensity drifts
of the addressing light. We also perform a preliminary
three-point Ramsey measurement with the population of
j0i set to 0.5 to produce a maximum signal that we use to

optimally bias ξð1ÞL . Next, we perform 1200 measurements
of the Ramsey signal, 200 for each of the 3 Ramsey points
for θ1 and θ2. The ordering of these experiments is
randomized so as to avoid a bias due to drifts in ΦðτÞ.
From this data we computeΔϕNL, the average contrast A of
the two runs and the average offset B. For a single day of

(a)

(b)

FIG. 2. Experimental performance.—(a) Measured PðτÞ, as
described by Eq. (4) (red). The black dashed line is the
predicted decay envelope taking into account only heating of
the vibrational mode at a rate of 10 quanta=s. The reasonable
agreement between the predicted and measured decay suggests
that the Ramsey signal contrast is dominated by this heating
process. (b) The black circles represent the sample standard
deviation from repeated measurements of ΔϕNLðτÞ taken at
various interrogation times and normalized to an integration
time of 1 s. The blue shaded region bounds the simulated pre-
dictions assuming only QPN and a heating rate between 7 and
13 quanta=s (lower and upper edge of the region, respectively).
The dark blue line corresponds to 10 quanta=s.
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data, this is plotted in Fig. 3(a). The blue dots show data
taken at τ ¼ 15 ms. The red dots show data taken at 15 ms
divided by the golden ratio ð1þ ffiffiffi

5
p Þ=2 ≈ 9.27 ms, which

does not improve the estimate of the nonlinearity but allows
us to rule out the remote possibility that ΔϕNLðτ ¼ 15 msÞ
modulo 2π vanishes even though the perturbation is
not small.
The distribution of ϵ̃γ computed from the measured

values of ΔϕNLðτ ¼ 15 msÞ and θi is shown in Fig. 3(b).
The black curve is a Gaussian fit. The mean value is
determined to be 5� 5.4 × 10−12 where the reported
uncertainty corresponds to 1 standard deviation. The
average uncertainty of the individual measurements com-
puted using standard propagation of error when solving the
system of equations Eqs. (5), (6) and assuming only QPN is
found to be 7.7 × 10−11, which is in good agreement with
the sample standard deviation 8.2 × 10−11.
In summary, we have improved the bound on causal

NLQM from jϵ̃γj ⪅ 10−4 to jϵ̃γj ⪅ 5.4 × 10−12 while illus-
trating the challenges and highlighting a generalizable
solution for designing sensitive probes of causal NLQM
with a simple and easy-to-understand experiment. Better
sensitivity could be achieved via technical improvements,
e.g., longer averaging times, longer coherence times, higher
mass atoms, larger trapping potentials or superpositions of
the ground and higher order Fock states. In addition, one
could use vibrational Fock state superpositions of the
center-of-mass mode of many identical ions in the same
trap [29] and/or more sophisticated quantum measurement
protocols such as a superposition of squeezed states.
As a final note, we emphasize that though we probe for

nonlinearities sourced from electromagnetic fields, the
framework outlined in [11] is quite general and permits
the incorporation of nonlinearities in any interacting field
theory—including gravitation. Thus, the framework could
potentially be extended to gravitational collapse models
where gravitational interactions are believed to cause a

quantum state to collapse when it evolves toward a macro-
scopic superposition. While trapped ion systems are ill
suited for probes of gravitational interactions, this work
may serve to inspire future searches of nonlinearities
sourced from gravity or one of the other forces.
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Note added.—Recently, we became aware of related
work [30].
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