
Harrison and Chan Reply: Tallon posits [1] that there is
a contribution E� [black dashed line in Fig. 1(a) from
Fig. 10(b) of Ref. [2] ] to the antinodal gap Δ (purple line
averaged over many measurements in Ref. [3]) whose
origin is distinct from pairing and vanishes at p� ¼ 0.19.
Were Tallon right, the pairing gap would be Δ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ2 − E�2p
[4] and the gap ratio would therefore be

2Δ0=kBTc. However, because E� ¼ 0 at p� ¼ 0.19, we
would still find δγðTcÞ to peak at the same value of the gap
ratio as in our Letter [3]. Tallon’s main point [1] is
therefore moot.
Tallon’s vanishing E� is widely considered as evidence

for a quantum critical point at p� in the cuprates [6]. We
neglect it here because it is determined at T > Tc (e.g., at
T ¼ 110 K in Ref. [7]), where it is nontrivial to ascertain
whether or not Δ is due to pairing. Moreover, because the
entropy SðE�Þ [renormalized by that Sð0Þ for E� ¼ 0]
saturates for E� ≲ 30 meV [see Fig. 1(b)], Tallon’s vanish-
ing gap values at p� ≈ 0.19 are essentially an artifact of
(i) SðE�Þ becoming insensitive to E� once E� < 30 meV
and (ii) the introduction of additional assumptions, which
are tailored to obtain the desired result [2,7–9].
By contrast, at p ¼ 0.205, Vishik et al. [10] present

direct spectroscopic evidence for gap in the normal state
[labeled ΔT>Tc

in Fig. 1(a)]. Since 0.205 > p�, this clearly
must be due to pairing. This gap persists for a range of
temperatures above Tc before it is suppressed by line-
broadening effects, which closely resembles the situation
found in the unitary regime of a Fermi gas [11–14].
Without making any assumptions in our scaling analysis,

we find there is only a single normal state energy scale
[i.e., Δ in Fig. 1(a)] that is universal to all cuprates and
that persists over a wide range of p and T [3]. Δ is an
electronic excitation gap [15]. It is therefore expected to
yield a maximum in γ at Tγ ≈ 0.3Δ=kB (roughly resembling
a Schottky anomaly) and a broad maximum in χ at
Tχ ≈ 2Δ=3kB. Such maxima are precisely what we find
in the normal state experimental data for all cuprates [see
Figs. 2(d), 3(a), and 3(b) of our Letter [3] ].

We respond to Tallon’s other points in turn.
Second point: following standard usage, we use the

condensation temperature (i.e., Tc) to determine the gap
ratio [16–18].
Third point: since δγðTcÞ often peaks at a different value

of p from that p ∼ 0.16 where Tc is maximum, a distri-
bution of Tc values caused by disorder cannot be the sole
origin of the suppression of δγðTcÞ relative to its peak
value. In fact, single crystalline samples of heavily over-
doped TBCO with a Tc width of only ≈1 K [19] (therefore
making them of arguably higher quality than those used for
the δγðTcÞ data in Fig. 1(c) of Ref. [3]) continue to exhibit
an anomalously small δγðTcÞ ≈ 2.6 mJmol−1K−2 [i.e.,
δγðTcÞ=γ ≈ 0.37]. This points to the weakness of the
pairing interactions in the limit p > p� as the cause.
Fourth point: there may be overdoped cuprates where

γT→0 versus p peaks at a van Hove Singularity (VHS), but
we make no such claim in our Letter [3]. Rather, we claim
that the normal state γ exhibits a maximum as a function of
T that coincides with Tc when p ¼ p�, which is a very
different type of behavior and which becomes very clear
upon rescaling T and Tc by 2Δ (plotted as reciprocals) in
Fig. 3(a) of our Letter [3].
Final point: we note that while the VHS can in principle

give rise to a maximum in γ [20,21], Δ easily gaps the
VHS, causing it to become largely irrelevant at p < p�.
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