Harrison and Chan Reply: Tallon posits [1] that there is a contribution E^* [black dashed line in Fig. 1(a) from Fig. 10(b) of Ref. [2]] to the antinodal gap Δ (purple line averaged over many measurements in Ref. [3]) whose origin is distinct from pairing and vanishes at $p^* = 0.19$. Were Tallon right, the pairing gap would be $\Delta' = \sqrt{\Delta^2 - E^{*2}}$ [4] and the gap ratio would therefore be $2\Delta'/k_BT_c$. However, because $E^* = 0$ at $p^* = 0.19$, we would still find $\delta\gamma(T_c)$ to peak at the same value of the gap ratio as in our Letter [3]. Tallon's main point [1] is therefore moot.

Tallon's vanishing E^* is widely considered as evidence for a quantum critical point at p^* in the cuprates [6]. We neglect it here because it is determined at $T > T_c$ (e.g., at T = 110 K in Ref. [7]), where it is nontrivial to ascertain whether or not Δ is due to pairing. Moreover, because the entropy $S(E^*)$ [renormalized by that S(0) for $E^* = 0$] saturates for $E^* \leq 30$ meV [see Fig. 1(b)], Tallon's vanishing gap values at $p^* \approx 0.19$ are essentially an artifact of (i) $S(E^*)$ becoming insensitive to E^* once $E^* < 30$ meV and (ii) the introduction of additional assumptions, which are tailored to obtain the desired result [2,7–9].

By contrast, at p = 0.205, Vishik *et al.* [10] present direct spectroscopic evidence for gap in the normal state [labeled $\Delta_{T>T_c}$ in Fig. 1(a)]. Since $0.205 > p^*$, this clearly must be due to pairing. This gap persists for a range of temperatures above T_c before it is suppressed by linebroadening effects, which closely resembles the situation found in the unitary regime of a Fermi gas [11–14].

Without making any assumptions in our scaling analysis, we find there is only a single normal state energy scale [i.e., Δ in Fig. 1(a)] that is universal to *all* cuprates and that persists over a wide range of p and T [3]. Δ is an electronic excitation gap [15]. It is therefore expected to yield a maximum in γ at $T_{\gamma} \approx 0.3\Delta/k_B$ (roughly resembling a Schottky anomaly) and a broad maximum in χ at $T_{\chi} \approx 2\Delta/3k_B$. Such maxima are precisely what we find in the normal state experimental data for *all* cuprates [see Figs. 2(d), 3(a), and 3(b) of our Letter [3]].

FIG. 1. (a) Experimental data for BSCCO from Refs. [3,5], including U(0). (b) $S(E^*)/S(0)$ calculated for a gap E^* .

We respond to Tallon's other points in turn.

Second point: following standard usage, we use the condensation temperature (i.e., T_c) to determine the gap ratio [16–18].

Third point: since $\delta\gamma(T_c)$ often peaks at a different value of p from that $p \sim 0.16$ where T_c is maximum, a distribution of T_c values caused by disorder cannot be the sole origin of the suppression of $\delta\gamma(T_c)$ relative to its peak value. In fact, single crystalline samples of heavily overdoped TBCO with a T_c width of only ≈ 1 K [19] (therefore making them of arguably higher quality than those used for the $\delta\gamma(T_c)$ data in Fig. 1(c) of Ref. [3]) continue to exhibit an anomalously small $\delta\gamma(T_c) \approx 2.6$ mJ mol⁻¹ K⁻² [i.e., $\delta\gamma(T_c)/\gamma \approx 0.37$]. This points to the weakness of the pairing interactions in the limit $p > p^*$ as the cause.

Fourth point: there may be overdoped cuprates where $\gamma_{T\to 0}$ versus *p* peaks at a van Hove Singularity (VHS), but we make no such claim in our Letter [3]. Rather, we claim that the normal state γ exhibits a maximum as a function of *T* that coincides with T_c when $p = p^*$, which is a very different type of behavior and which becomes very clear upon rescaling *T* and T_c by 2Δ (plotted as reciprocals) in Fig. 3(a) of our Letter [3].

Final point: we note that while the VHS can in principle give rise to a maximum in γ [20,21], Δ easily gaps the VHS, causing it to become largely irrelevant at $p < p^*$.

N. Harrison[®] and M. K. Chan National High Magnetic Field Laboratory Los Alamos National Laboratory Los Alamos, NM 87545, USA

Received 7 March 2023; accepted 6 April 2023; published 11 May 2023
DOI: 10.1103/PhysRevLett.130.199702

- [1] J. L. Tallon, preceding Comment, Comment on "Magic Gap
- Ratio for Optimally Robust Fermionic Condensation and Its Implications for High- T_c Superconductivity," Phys. Rev. Lett. **130**, 199701 (2023).
- [2] J. L. Tallon and J. G. Storey, Thermodynamics of the pseudogap in cuprates, Front. Phys. 10, 1160 (2022).
- [3] N. Harrison and M. K. Chan, Magic Gap Ratio for Optimally Robust Fermionic Condensation and Its Implications for High-T_c Superconductivity, Phys. Rev. Lett. **129**, 017001 (2022).
- [4] G. Bilbro and W.L. McMillan, Theoretical model of superconductivity and the martensitic transformation in A15 compounds, Phys. Rev. B 14, 1887 (1976).
- [5] J. W. Loram, J. Luo, J. R. Cooper, W. Y. Liang, and J. L. Tallon, Evidence on the pseudogap and condensate from the electronic specific heat, J. Phys. Chem. Solids 62, 59 (2001).
- [6] J. L. Tallon and J. W. Loram, The doping dependence of *T**—What is the real high-*T* phase diagram?, Physica (Amsterdam) **349C**, 53 (2001).

- [7] J. W. Loram, K. A. Mirza, J. R. Cooper, W. Y. Liang, and J. M. Wade, Electronic specific heat of YBa₂Cu₃O_{6+x} from 1.8 to 300 K, J. Supercond. 7, 243 (1994).
- [8] J. W. Loram, K. A. Mirza, J. R. Cooper, and J. L. Tallon, Specific heat evidence of the normal state pseudogap, J. Phys. Chem. Solids 59, 2091 (1998).
- [9] J. G. Storey, J. L. Tallon, and G. V. M. Williams, Thermodynamic properties of Bi₂Sr₂CaCu₂O₈ calculated from the electronic dispersion, Phys. Rev. B 77, 052504 (2008).
- [10] I. M. Vishik, M. Hashimoto, R.-H. Hed, W.-S. Lee, F. Schmitt, D. Luc, R. G. Moore, C. Zhang, W. Meevasana, T. Sasagawa, S. Uchida, K. Fujita, S. Ishida, M. Ishikado, Y. Yoshida, H. Eisaki, Z. Hussain, T. P. Devereaux, and Z.-X. Shen, Phase competition in trisected superconducting dome, Proc. Natl. Acad. Sci. U.S.A. **109**, 18332 (2012).
- [11] J. P. Gaebler, J. T. Stewart, T. E. Drake, D. S. Jin, A. Perali, P. Pieri, and G. C. Strinati, Observation of pseudogap behaviour in a strongly interacting Fermi gas, Nat. Phys. 6, 569 (2010).
- [12] P. Magierski, G. Wlazłowski, and A. Bulgac, Onset of a Pseudogap Regime in Ultracold Fermi Gases, Phys. Rev. Lett. **107**, 145304 (2011).
- [13] C. Chin, M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, J. Hecker Denschlag, and R. Grimm, Observation of the pairing gap in a strongly interacting Fermi gas, Science 305, 1128 (2004).
- [14] A. Perali, F. Palestini, P. Pieri, G. C. Strinati, J. T. Stewart, J. P. Gaebler, T. E. Drake, and D. S. Jin, Evolution of the

Normal State of a Strongly Interacting Fermi Gas from a Pseudogap Phase to a Molecular Bose Gas, Phys. Rev. Lett. **106**, 060402 (2011).

- [15] S. Hüfner, M. A. Hossain, A. Damascelli, and G. A. Sawatsky, Two gaps make a high-temperature superconductor?, Rep. Prog. Phys. 71, 062501 (2008).
- [16] J. P. Carbotte, Properties of boson-exchange superconductors, Rev. Mod. Phys. 62, 1027 (1990).
- [17] D. S. Inosov, J. T. Park, A. Charnukha, L. Yuan, A. V. Boris, B. B. Keimer, and V. Hinkov, Crossover from weak to strong pairing in unconventional superconductors, Phys. Rev. B 83, 214520 (2011).
- [18] A. G. Moshe, E. Farber, and G. Deutscher, Optical conductivity of granular aluminum films near the Mott metal-toinsulator transition, Phys. Rev. B 99, 224503 (2019).
- [19] A. Carrington, A. P. Mackenzie, and A. Tyler, Specific heat of low- T_c Tl₂Ba₂CuO_{6+ δ}, Phys. Rev. B **54**, R3788 (1996).
- [20] M. Horio *et al.*, Three-Dimensional Fermi Surface of Overdoped La-Based Cuprates, Phys. Rev. Lett. **121**, 077004 (2018).
- [21] B. Michon, C. Girod, S. Badoux, J. Kačmarčík, Q. Ma, M. Dragomir, H. A. Dabkowska, B. D. Gaulin, J.-S. Zhou, S. Pyon, T. Takayama, H. Takagi, S. Verret, N. Doiron-Leyraud, C. Marcenat, L. Taillefer, and T. Klein, Thermo-dynamic signatures of quantum criticality in cuprate superconductors, Nature (London) 567, 218 (2019).