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We investigate the elasticity of an unsupported epithelial monolayer and we discover that unlike a thin
solid plate, which wrinkles if geometrically incompatible with the underlying substrate, the epithelium may
do so even in the absence of the substrate. From a cell-based model, we derive an exact elasticity theory and
discover wrinkling driven by the differential apico-basal surface tension. Our theory is mapped onto that for
supported plates by introducing a phantom substrate whose stiffness is finite beyond a critical differential
tension. This suggests a new mechanism for an autonomous control of tissues over the length scale of their
surface patterns.
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Introduction.—Complex shapes and patterns often arise
even in simple physical setups [1–3]. For instance, a
uniaxial in-plane compression makes a thin plate attached
to an elastic foundation wrinkle due to the competition
between the bending energy of the plate and the bulk elastic
energy of the substrate [4,5]. This competition yields the
length scale of wrinkles, which scales with the ratio of the
stiffness coefficient of the foundation K and the bending
modulus of the plate B as [5–7]

λ0 ∼
�
K
B

�
−1=3

: ð1Þ

In proliferating epithelia, cell division causes areal growth
of the tissue relative to the underlying stroma. The pro-
liferation-driven differential growth leads to a geometric
incompatibility between the epithelium and the stroma,
triggering wrinkling with the wavelength given by Eq. (1)
much like an external compressive force [8,9].
Periodic surface patterns in epithelia may also arise from

the intrinsic curvature due to apico-basal differential sur-
face tension, which is known to drive characteristic local
deformations such as epithelial curling and buckling in vitro
[10–12] as well as folding during morphogenesis and
organogenesis [13–15]. This mechanism may be particu-
larly relevant in unsupported epithelia, whose deformations
mostly rely on internal active stresses. We previously
investigated such cases and we showed that the differential
tension alone can produce periodic deformation patterns
even if the tissue is not attached to a substrate [16–18].
However, these studies only considered the large-
deformation regime where the equilibrium wavelength is
mainly determined by steric interactions between cells, and
they neither identified the parameters that control the
wavelength of shape patterns at the onset of wrinkling

nor did they show why epithelia wrinkle in the absence of
the substrate in the first place.
Here, we address these issues by deriving an elasticity

theory from the cell-level mechanics based on surface
tension. Our theory describes a new type of tension-
controlled transition whereby tissues switch between the
buckling instability, where they buckle out of plane, and the
wrinkling instability, where their deformation pattern is
characterized by a finite wavelength. We show that the
effect of surface tensions can be translated into the stiffness
of a phantom bulk substrate, which becomes finite at the
critical point. This concept reconciles the wrinkling of
unsupported epithelia with that of thin solid plates sup-
ported by substrates, and it serves as a basis of a novel
mechanism for autonomous control of shape patterns in
epithelia.
The model.—Our model tissue is represented by a chain

of quadrilateral cell cross sections [Fig. 1(a)]. The basal,
apical, and lateral cell sides are under effective line
tensions Γb, Γa, and Γl, respectively, which account for
cortical tension, apico-basal differential surface tension,
describing apico-basal tension polarity, and cell-cell

basal side

apical side

(a) (b)

lateral side

FIG. 1. (a) Waveform of a wrinkled epithelial monolayer, its
wavelength denoted by λ0. (b) Schematic of a cell cross section,
parameterized by two lengths (li and δsi) and two angles (φi and
ψ i). The line tensions of the basal, apical, and lateral sides read
Γb, Γa, and Γl, respectively.
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adhesion. Following previous models, we view all three
terms as strain-independent and we model them by
constant line tensions [16,18,19]. The cells are assumed
incompressible, and therefore their cross-section areas are
fixed and equal in all cells (Ai ¼ A0 for all i).
We parameterize the shape of ith cell by the lengths of its

lateral sides li and liþ1, cell width δsi, the orientation of
lateral sides relative to the vertical axis given by angles φi
and φiþ1, respectively, and the orientation of cell midline
relative to the horizontal axis given by angle ψ i [Fig. 1(b)].
The constant-cell-area constraint allows us to express δsi in
terms of all other variables, so that in dimensionless form,
where energy and lengths are given in units of Γl

ffiffiffiffiffi
A0

p
andffiffiffiffiffi

A0

p
, respectively, the energy of a single cell reads

wi ¼
Γb

Γl
lþ
i þ Γa

Γl
l−
i þ 1

2
ðli þ liþ1Þ; ð2Þ

where the lengths of basal and apical cell sides lþ
i and l−

i ,
respectively, depend on li, liþ1, φi, φiþ1, and ψ i
(Supplemental Material, Sec. I [20]). Next we define the
average and the differential apico-basal surface tension

Γ ¼ Γa þ Γb

Γl
and Δ ¼ Γa − Γb

Γl
; ð3Þ

respectively, and we study homogeneous tissues where Γ is
the same in all cells and so isΔ. The energy of the tissue is a
sum of single-cell terms: W ¼ P

N
i wi.

Epithelial elasticity.—Unlike the classical plate theory
that stems from the strain distribution within the plate, the
elasticity of our model tissue arises from surface mechan-
ics. Interestingly, this affects the scaling of the stretching
and bending moduli (Ks and B, respectively) with tissue
thickness l0. Considering only pure stretching and bending
deformation modes, we find that Ks ∼ l20 and B ∼ 1,
which differs from the well-known results for solid plates
where Kplate

s ∼ l0 and Bplate ∼ l30 (Supplemental Material,
Sec. II [20]). Since wrinkles result from the competition
between the two deformation modes, this scaling suggests
that epithelial wrinkling is phenomenologically distinct
from that in plates.
To derive the exact elastic theory, we consider a

deformation from the flat reference state where li ¼ l0 ¼
σ−10 , φi ¼ 0, and ψ i ¼ 0; here, σ0 ¼ Γ−1=2 is the reference
cell width. We view li, δsi, φi, and ψ i as continuous
functions of the distance σ along the reference-state midline
so that li → lðσÞ, etc., and we relate their values in the
(iþ 1)th and ith cell by their derivatives with respect to σ:
liþ1 ≈ lðσÞ þ _lðσÞσ0, etc. In the continuum limit, the sum
over cells is replaced by the integral over the reference-
state midline and the energy reads W¼RNσ0

0 Ldσ¼
Γ1=2

RNσ0
0 ½wðl;φ;ψ ;_l; _φÞþμδsðl;φ;ψ ;_l; _φÞcosψ �dσ. Here,

the Lagrange multiplier μ represents the compressive force.

We expand the Lagrangian densityL for small deviations
from the reference state up to the second order and we
obtain

L ≈ 2Γþ μ −
μffiffiffi
Γ

p δl −
Δ

ffiffiffi
Γ

p

2
_φþ Γ − μ

2
ðψ − φÞ2

þ μ

2
ψ2 þ Γþ μ

Γ
δl2 þ δl

�
1ffiffiffi
Γ

p δ_l −
Δ
2
_φ

�

þ ðψ − φÞ
�
Δ
2
δ_l −

ffiffiffi
Γ

p

2
_φ

�
−

μ

2
ffiffiffi
Γ

p ψ _φ

−
Δ

2
ffiffiffi
Γ

p δ_l _φþ 2ðμþ ΓÞ þ Γ3

8Γ2
δ_l2 þ μþ Γ

4Γ
_φ2; ð4Þ

where δl ¼ l − l0 is the deviation of the lateral-side length
from the reference value. Next we spell out the Euler-
Lagrange equations (Supplemental Material, Sec. III [20])
and Fourier transform δlðσÞ, φðσÞ, and ψðσ): δlðσÞ ¼R
δl̃ðqÞ exp ðiqσÞdq=2π, etc. where q ¼ 2π=λ. These trans-

formations reduce the Euler-Lagrange equations to a single
algebraic equation for the wave number of the instability:

q40 þ F̃q20 þ K̃ ¼ 0; ð5Þ

where F̃ and K̃ are functions of Γ, Δ, and μ (Supplemental
Material, Sec. IV [20]). Surprisingly, even though our
epithelial sheets are neither thin (as their thickness is
generally not negligible compared to the wrinkle wave-
length) nor supported by a substrate, Eq. (5) is equivalent to
the version of Eq. (7) in Ref. [7] that describes wrinkling of
thin plates on a liquid foundation [21]. By this analogy, F̃
and K̃ can be viewed as an effective in-plane force and an
effective stiffness of a “phantom” substrate, respectively,
both expressed relative to the bending modulus of the
epithelium.
Our system becomes unstable at a critical in-plane

compressive force μ ¼ μc (Supplemental Material,
Sec. IV [20]), with the mode of instability switching from
buckling to wrinkling as the magnitude of the differential
surface tension jΔj is increased beyond Δc ¼

ffiffiffi
2

p
. This

transition is nicely reflected in the critical values of the two
effective parameters F̃c and K̃c corresponding to μc. In
particular, for jΔj < Δc the critical in-plane force F̃c > 0,
whereas the critical substrate stiffness K̃c ¼ 0 so that the
phantom substrate is absent [Fig. 2(a)]. In this regime,
Eq. (5) simplifies to q20ðq20 þ F̃cÞ ¼ 0 and its only real
solution q0 ¼ 0 implies buckling under compression
[Fig. 2(b)] as expected for unsupported plates.
However, at jΔj > Δc, F̃c is negative (indicating a

contractile tissue), whereas K̃c is positive, which signals
the presence of a phantom substrate [Fig. 2(a)]. In this
regime, Eq. (5) has a double real solution at a critical
in-plane compressive force μc [Fig. 2(b)], implying
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F̃c ¼ −2K̃1=2
c . Thus, Eq. (5) reduces to ðq20 − K̃1=2

c Þ2 ¼ 0

and its solution q0 ¼ K̃1=4
c describes wrinkles with a

wavelength

λ0 ¼ 2πK̃−1=4
c : ð6Þ

This result agrees with that for thin elastic plates supported
by a thick liquid foundation [7]. Importantly, the scaling
exponent in Eq. (6) differs from −1=3 obtained in the case
where the epithelium is treated as a thin plate attached to a
thick elastic substrate [Eq. (1) and Ref. [8] ].
Interestingly, the critical external in-plane force μc also

changes sign at jΔj ¼ ffiffiffi
2

p
, such that an extensile force is

required in the wrinkling regime so as to prevent tissue
collapse. If a collapse is allowed, the equilibrium wave-
length is determined by steric repulsion and is of the order
of twice the cell height (λ0 ∼ 2σ−10 ) and almost independent
of Δ [16].
Vertex model.—To address cell-level mechanisms of the

buckling-to-wrinkling transition, we next employ the

vertex model where the tissue shape is parameterized by
the positions of cell vertices. The equilibrium wrinkled and
buckled states are computed by minimizing the total energy
W ¼ P

N
i wi and the size of the simulation box is varied so

as to find the critical compressive force at which the
instability occurs [Figs. 3(a) and 3(b) and Supplemental
Material, Sec. V [20] ].
We compute the equilibrium wavelength λ0 for a wide

range of parameters Γ and Δ. By interpreting q0 ¼ 2π=λ0
and jΔj as an order and a control parameter, respectively,
we find a second-order buckling-to-wrinkling transition at
jΔj ¼ Δc ¼

ffiffiffi
2

p
. We compare the results to the elastic

theory by plotting the wave number of wrinkles q0 versus
the control parameter jΔj and in the regime where the
wavelengths are much longer than the typical cell size and
the continuum approximation is justified, we find perfect
agreement [Fig. 3(c)]. The data also agree with the critical
scaling of the wave number

q0 ≈
25=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ − 2=Γ

p ðjΔj − ΔcÞ1=2 ð7Þ

obtained by studying our theory around jΔj ¼ ffiffiffi
2

p
.

Furthermore, the data can be collapsed onto a universal
curve given by Eq. (6) by plotting the equilibrium wave-
length versus the critical substrate stiffness K̃c given by
Eq. (S34) [Fig. 3(d)]. This confirms that in the context of
wrinkling, the surface tensions of the cells give rise to
mechanics that are indistinguishable from the bulk elastic-
ity of thick substrates.
Cell-height modulation.—The origin of the wrinkling

instability can be intuitively understood by inspecting the
shape of individual cells along the waveform. This shows
that cell height is modulated in agreement with the elastic
theory, which predicts that the modulation is proportional

(a) (b)

FIG. 2. (a) F̃cðΔÞ (green curve) and K̃cðΔÞ (red curve).
(b) Left-hand side of Eq. (5) for Δ ¼ 1, Δcð¼

ffiffiffi
2

p Þ, and 2.2
(blue, black, and purple curves, respectively). In both panels,
Γ ¼ 4.

(a) (b)

(c) (d)

(e) (f)

FIG. 3. (a),(b) Buckled and wrinkled shapes at Δ ¼ 1 (a) and Δ ¼ 1.76 (b); Γ ¼ 3.6 in both cases. (c) Numerically obtained
equilibrium wave number q0 vs jΔj − Δc. Solid and dashed lines show the exact result [Eq. (S35)] and the result for small jΔj − Δc

[Eq. (7)], respectively. (d) Equilibrium wavelength λ0 vs critical phantom-substrate stiffness K̃c given by Eq. (S33). (e) Cell-height
modulation in a tissue with Δ > Δc (top) and two-cell scheme (bottom). Inset: cell-height modulation vs curvature modulation; solid
line is identity predicted by Ref. [22]. Data points deviate from the identity at small λ0, where the discrete nature of tissue becomes more
pronounced. (f) Compressed tissues for large strains ϵ ¼ 0.2, 0.3, and 0.4.
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to the local curvature _ψðσÞ: δlðσÞ ≈ Δ _ψðσÞ=4 [Fig. 3(e) and
Ref. [22] ]. Since cells are incompressible, this modulation
implies symmetry breaking between the number density of
cells in groove (where _ψ > 0) and that in the crest (where
_ψ < 0), such that the energetically favorable cells in the
segment with the preferred local curvature are packed more
densely than elsewhere. For instance, for Δ > 0 the low-
energy cells in the groove are taller and narrower than the
high-energy cells in the crest [Fig. 3(e)]. We note that in our
model, the phase of cell-height modulation depends on the
sign of Δ and is not universal like in a wrinkled supported
solid plate where the grooves are always thinner than the
crests [23] and in a fluidlike film anchored to a solid
substrate by a fibrous scaffold where it is the opposite [24].
In our model, cell-height modulation is an emergent

phenomenon that occurs even though the properties of the
cells are homogeneous across the epithelium. This implies
that the wrinkling instability cannot be predicted from the
behavior of individual cells whose preferred shape
is a trapezoid with height h0 ¼ Γ1=2 and curvature c0 ≈
−2Γ1=2Δ [18]. In line with the Gauss-Bonnet theorem, a
sheet described by an in-plane periodic curve that carries a
bending energy dwb=ds ¼ kðc − c0Þ2=2 favors a flat con-
figuration despite the spontaneous curvature c0.
To explain the loss of stability in a flat tissue as simply as

possible, we consider a waveform consisting of two circular
arcs of curvatures −c and þc (i.e., groove and the crest,
respectively) subtending an angle ϕ [Fig. 3(e)]. All groove
cells are identical and so are those in the crest; we denote
the two cell types by indices 1 and 2. The total energy of
the waveform is a weighted sum of single-cell energies w1

and w2: W ¼ Nðh1w1 þ h2w2Þ=ðh1 þ h2Þ (Supplemental
Material, Sec. VI [20]). In agreement with our elasticity
theory, the energy is minimized when groove and crest cells
assume different heights (h1 ≠ h2), thereby breaking the
groove-crest symmetry. The height difference agrees
with the magnitude of cell-height modulation from the
elasticity theory: h1 − h2 ¼ cΔ=2. Furthermore, this min-
imal scheme gives the exact critical point jΔj ¼ ffiffiffi

2
p

, where
the difference of the energies of the model waveform and
the flat tissue δW ¼ Nð2 − Δ2Þc2=ð16Γ1=2Þ changes sign.
In all, this calculation demonstrates that the emergent
groove-crest asymmetry in cell height is the dominant
mechanism of the wrinkling instability. Previous theories of
epithelial elasticity captured this effect to a certain extent,
but they did not manage to reproduce the instability due to
geometric oversimplifications [17,25].
To check whether the exact mapping of epithelial

elasticity to the plate-substrate system [Eq. (5)] also holds
for large deformations, we investigate tissue shapes at large
strains; we note that the vertex model includes the nonlinear
mechanics absent in our harmonic theory. Unlike thin
plates that undergo period bifurcations and wrinkle-to-fold
transition when supported by solid and liquid substrates,
respectively [4,5,7], we find that epithelia remain wrinkled

with a single mode even at large deformations [Fig. 3(f)].
The absence of the wrinkle-to-fold transition, which
appears in thin plates attached to fluid substrates, can be
intuitively understood from the point of view of cell-height
modulation. The groove-crest asymmetry allows the tissue
side subjected to a higher surface tension to decrease its
area compared to the opposite, less tense, side. Compared
to the wrinkled configuration, this effect would be much
less pronounced in a fold configuration, where most of the
tissue would be flat with cells having apical and basal sides
of equal size.
3D model.—Our reduced-dimensionality model consid-

ers the cross section of the tissue along the waveform,
effectively assuming a fixed cell dimension in the
perpendicular direction. To show that the buckling-to-
wrinkling transition is not an artifact of this assumption,
we employ a 3D vertex model [26] where the epithelium is
represented by a sheetlike packing of six coordinated
polyhedral cells—and we observe buckled states at small
Δ and wrinkled states at large Δ in agreement with the 2D
model. This is illustrated in Figs. 4(a) and 4(b), which show
that depending on Δ, a small isotropic in-plane compres-
sion results either in a buckled state characterized by a wave
number defined by patch size D [Fig. 4(a)] or in a wrinkled
state with a well-defined q larger than 2π=D [Fig. 4(b)]. A
detailed analysis of the transition including the evaluation
of the critical differential surface tension carried out in a
model that permits topological changes is beyond the scope
of this work and is relegated to a forthcoming publication.
Discussion.—Our elasticity theory of unsupported epi-

thelial monolayers demonstrates that intraepithelial ten-
sions drive the formation of wrinkles similar to those
observed in thin plates supported by thick substrates even
though the underlying physics relies solely on surface
mechanics and includes no bulk deformations. These
results are important because they show that a sheetlike
biological tissue can wrinkle even when its mechanical
interaction with the environment is weak, say, because the
adjacent substances are gel-like and cannot sustain long-
term shear stresses. Our model suggests that these effec-
tively unsupported epithelial tissues, which appear, e.g., in
some early embryos [27] and in various tissue-derived

(a) (b)

FIG. 4. Epithelial sheets at Γ ¼ 3 for Δ ¼ 1 (a) and Δ ¼ 2
(b) at isotropic in-plane strain of ϵ ¼ 0.02. Insets show Fourier
transforms of the apical surfaces, averaged over 100 instances
obtained from randomly perturbed flat initial configurations.
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epithelial organoids [28–33], can autonomously control
their surface patterns just as if they rested on a substrate.
At the cell scale, epithelial wrinkling is based on the

breaking of the groove-crest symmetry due to cell-height
modulation along the waveform [Fig. 3(e)], which was
observed in cell monolayers cultured on wavy substrates
[34,35] and described using the same microscopic cell-level
framework as employed here [Eq. (2)].
According to our results, the wrinkling wavelength can

range between less than ∼10 and ∼100 cell sizes when the
apico-basal differential tension jΓa − Γbj is comparable to
the lateral tension Γl [Fig. 3(c)]. Given that the surface
tensions are often of similar magnitude as shown, e.g.,
in Ref. [13], our proposed wrinkling mechanism can be
readily studied either in vitro or in vivo—say, using
optogenetic tools or genetic manipulations [36] and pos-
sibly employing explants [10]—so as to verify its postu-
lated role in embryonic and organoid morphogenesis. If
confirmed, our mechanism would complement existing
theories of tissue wrinkling, including constrained expan-
sion [7–9,37,38], packing of cell nuclei [39], and the
buckling-without-bending effect [24].
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