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We study a two-dimensional, nonreciprocal XY model, where each spin interacts only with its nearest
neighbors in a certain angle around its current orientation, i.e., its “vision cone.”Using energetic arguments
and Monte Carlo simulations, we show that a true long-range ordered phase emerges. A necessary
ingredient is a configuration-dependent bond dilution entailed by the vision cones. Strikingly, defects
propagate in a directional manner, thereby breaking the parity and time-reversal symmetry of the spin
dynamics. This is detectable by a nonzero entropy production rate.
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A growing number of papers demonstrate that nonre-
ciprocal (NR) interactions which break the action-reaction
principle are the origin of intriguing physical phenomena in
nonequilibrium systems [1–9]. A prominent example is
traveling-wave phases in binary fluids, which can be caused
by NR coupling between the two fluid components [2,3].
These time-dependent phases break the PT symmetry of
the system, and their emergence has been linked to the
existence of underlying exceptional points [1]. In solids and
soft crystals it was recently shown that NR interactions may
introduce odd elasticity [4,5]. A common source of non-
reciprocity in biological and artificial systems is perception
within a finite “vision cone,” which naturally leads to
interactions that are NR and orientation dependent.
For example, which neighbors a pedestrian in a crowd [10],
a car driver in a traffic jam [11], or a bird in a flock [12]
reacts to may depend on its current orientation.
The few studies on this subject in the area of motile
active matter have shown that vision cone interactions can
lead to the formation of new self-organized patterns and
aggregates [13–16].
To gain deeper insights into the physical mechanisms

induced by nonreciprocity, we study in this Letter how NR
vision cone interactions affect the behavior of many-body
systems on a lattice. Indeed, lattice models have proven
invaluable to study fundamental questions of statistical
physics, in particular concerning the emergence of phases
and phase transitions, in addition to having numerous

applications in physics, engineering, socioeconomics,
and biology. Here, we implement vision cone interactions
into the XY model with short-range coupling (Fig. 1),
which allows us to study the interplay between a continu-
ous rotational dynamics, alignment interactions, and vision
cones. We uncover two intriguing phenomena. First, NR
interactions can induce a true long-range ordered (LRO)
phase. This is in sharp contrast to the standard short-ranged
XY model, in which a LRO phase is forbidden by the
Mermin-Wagner theorem. Remarkably, LRO even arises
for vision cones that are almost 360°. Second, the vision
cone interactions cause defects to propagate in a direc-
tional, parity-broken manner. This directional spin dynam-
ics also breaks the time-reversal symmetry, which we
measure by the entropy production rate (EPR). Indeed,
we have recently shown that nonreciprocity generally
causes EPR > 0 [6]. Here, we find that the EPR has a
maximum close to the onset of the disordered (DO) phase.
Using a NR version of the classical XY model enables us to
rationalize these phenomena by adapting a language and
toolbox well known from equilibrium statistical mechanics,

FIG. 1. (a) Illustration of the model on a hexagonal lattice. Each
spin interacts only with those nearest neighbors lying in its vision
cone of size θ. (b) If the spin orientation ϕ lies in the EUR
(six gray shaded regions), the total number of coupled neighbors
is reduced by one.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW LETTERS 130, 198301 (2023)

0031-9007=23=130(19)=198301(6) 198301-1 Published by the American Physical Society

https://orcid.org/0000-0002-5946-5684
https://orcid.org/0000-0001-5736-6108
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.130.198301&domain=pdf&date_stamp=2023-05-09
https://doi.org/10.1103/PhysRevLett.130.198301
https://doi.org/10.1103/PhysRevLett.130.198301
https://doi.org/10.1103/PhysRevLett.130.198301
https://doi.org/10.1103/PhysRevLett.130.198301
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


including spin wave excitation, energy minimization, and
bond percolation.
Model.—We consider a two-dimensional lattice of spins

Si∈R2, i ∈ f1; 2;…; L2g, whose orientationsϕi∈ ½0;360°Þ
can continuously rotate in the lattice plane. All spins are
connected to a heat bath at temperatureT. The total energy of
the system is Etot ¼

P
i Ei, with

Ei ¼ −
X
hji

JijðϕiÞ cosðϕi − ϕjÞ; ð1Þ

where the sum runs over all nearest-neighboring lattice sites
of i. Different from the standard XY model, the coupling
constant Jij explicitly depends on the orientation of Si and
the lattice position of Sj, since only neighbors within the
vision cone of size θ ∈ ð0; 360°� are coupled; namely,

JijðϕiÞ ¼
�
J minf360°− jϕi −ϑijj; jϕi −ϑijjg ≤ θ

2

0 else;
ð2Þ

where ϑij ∈ fk360°=ng, k ∈ f1;…; ng denotes the angle of
the connecting line between Si and Sj, with n being the
number of nearest neighbors per spin. As typical represent-
atives for two-dimensional lattice geometries, we consider
the hexagonal lattice (where n ¼ 6) and the square lattice
(n ¼ 4). In the theoretical considerations, we however do
not specify the lattice geometry, so that our results are more
general.
We investigate the spin-flip dynamics by Monte Carlo

simulationswithGlauber transition rates [17]wðϕi → ϕ0
iÞ ¼

(1 − tanhf½EiðϕiÞ − Eiðϕ0
iÞ�=2Tg)=2, with the Boltzmann

constant set to unity, and apply periodic boundary con-
ditions. We set J to 1 (ferromagnetic coupling). For
θ ¼ 360°, the model reduces to the standard XY model.
For θ < 360°, the coupling matrix J with elements Jij
[Eq. (2)] is generally asymmetric, meaning that the coupling
between two spins may be NR, Jij ≠ Jji. In particular, some
bonds are unidirectional (Jij ≠ 0, but Jji ¼ 0), and some
bonds are missing (Jij ¼ Jji ¼ 0). Furthermore, J is con-
figuration dependent. From the viewpoint of network
science, this is a dynamic or temporal network and, due
to the presence of NR links, a directed graph. However, the
fact that J is a function of the orientations fϕiðtÞg crucially
differentiates our model from other spin models on directed
graphs [18–20]. Here, the spin dynamics and network
structure are mutually interrelated.
Phase behavior.—The standard XY model (θ ¼ 360°)

displays a low-temperature quasi-long-range ordered
(QLRO) phase that crosses at high temperatures by an
infinite-order Berezinskii-Kosterlitz-Thouless (BKT) tran-
sition to a disordered phase. Our most striking finding is
that for vision cone sizes θ < 360°, a LRO ferromagnetic
phase at finite T emerges, for both lattice geometries.
The LRO phase is marked by an average magnetization

hmi → 1 and a large spin-spin correlation hSiSiþdi that
spans the entire system (Fig. 2). Averages h·i are taken over
all spins and multiple realizations. For both lattices, the
LRO is absent, if θ is a multiple of ð360°=nÞ (i.e., a multiple
of 60° for the hexagonal, or of 90° for the square lattice).
Besides this, the phase behavior and related transitions
differ between both lattices. On the hexagonal lattice, the
system displays a QLRO phase in between the LRO and
DO phase, marked by algebraically decaying hSiSiþdi.
(In the Supplemental Material, we also consider a second
measure to distinguish the phases [21].) We detect traces of
two corresponding transitions in the form of two peaks in
the specific heat, Cv ¼ L2ðhE2

toti − hEtoti2Þ=T2 [Figs. 2(d)
and 2(f)]. The peak heights and positions do not scale with
the system size, suggesting that both transitions are of
infinite order. On the square lattice, we do not detect a
QLRO phase (unless θ=90° ∈ N; see below). The order-
disorder transition on the square lattice is marked by peaks
in Cv that increase with L, indicating critical behavior
[Fig. 2(k)]. (The higher moments of m, concretely the
Binder cumulants and susceptibility, also express behavior
typical of second-order phase transitions; see Ref. [21].)
For the special cases θ=ð360°=nÞ ∈ N, we detect on both
lattices a QLRO and a DO phase, reminiscent of the
standard XY model.
To understand this nonequilibrium phase behavior, one

feature of the vision cone interactions turns out to be
especially important. Namely, the total number of
neighbors Sj of a spin Si for which Jij ≠ 0 is generally
configuration dependent. In particular, the number is
reduced by one, if ϕi lies in what we call the “energetically
unfavorable range” (EUR). The EUR nullifies for
θ=ð360°=nÞ ∈ N and otherwise consists of n angular
regions [gray areas in Fig. 1(b)] which in total amount
to an angle of nfð360°=nÞ − ½θ mod ð360°=nÞ�g. In a LRO
configuration, Etot is invariant under global rotation of all
spins, but only as long as the rotation does not bring hϕii in
the EUR. Thus, the rotational U(1) symmetry of the system
is in general broken. Still, the ground state is generally
infinitely degenerate. If the EUR nullifies, the U(1) sym-
metry is restored.
Based on energetic considerations, we can now explain

the emergence or absence of LRO for different θ. Consider
a fully ordered system. In the standard XY model, the
energy required to rotate a spin Si by a small angle ψ i is
Ei ∼ ψ2

i , which follows from Eq. (1). In contrast, if
θ < 360°, the number of bonds can change, yielding
Ei ∼ ψ2

i þ J if the spin enters the EUR due to the rotation,
and Ei ∼ ψ2

i else. Rotating all spins by an angle ψ ¼ 2π=L
with respect to their neighbor in one given spatial direction
forms the spin wave of longest wavelength that fully
destroys the orientational order (Fig. 3). In cases where
the EUR nullifies, the excitation of such a spin wave takes
an energy increase of Etot ¼

P
i Ei ¼ L24π2=L2 ¼ 4π2,

which is finite even in the thermodynamic limit L → ∞.
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Thus, thermal noise at any nonzero T can excite this mode
and LRO is found only at T → 0. In contrast, if
θ=ð360°=nÞ ∉ N,

Etot ¼ L2ð4π2=L2 þ ηJÞ ¼ 4π2 þ L2ηJ; ð3Þ

with η ∈ ½0; 1Þ denoting the fraction of spins that enter the
EUR by the rotation. For large L, η approaches

η → 1 − ½θ mod ð360°=nÞ�=ð360°=nÞ; ð4Þ

which is independent of L. The energetic cost of forming a
spin wave [Eq. (3)] thus diverges for L → ∞. For large
enough systems, this mode cannot be excited by noise
and therefore does not destabilize the ground state.

This rationalizes the emergence of a LRO phase for
θ=ð360°=nÞ ∉ N. This argument also explains why the
nonreciprocity alone does not suffice for LRO.
Also the emergence and absence of the QLRO on the

hexagonal versus square lattice [for θ=ð360°=nÞ ∉ N],
respectively, can be rationalized from the EUR. Specifi-
cally, for low temperatures, the EUR effectively restricts
the accessible spin orientations to n angular regions. A
quasidiscretized spin dynamics with 4 effective states does
not provide sufficient rotational freedom to form a QLRO
with its typical topological defects, while 6 states suffices.
See Ref. [21] for more details.
Another observation is the general absence of (Q)LRO

phases for narrow cones, θ < ð360°=nÞ. This can be
explained by a bond percolation argument. The main point
is that, as it is well known from bond-diluted, standard XY
models, the bond concentration p must be above the
bond percolation threshold pc to form (Q)LRO for finite
T [31–36]. Otherwise, the ground state may comprise
disjoint, noninteracting clusters, whose orientations are
independent from each other, preventing global ordering.
Here, for vision cones θ < ð360°=nÞ, the total fraction of
bonds p does not exceed the respective bond peculation

FIG. 2. (a)–(f) Hexagonal lattice. (a) Average of magnetization m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP cosϕiÞ2 þ ðP sinϕiÞ2

p
=L2 as function of T and θ.

(b) Decay of spin-spin correlations hSiSiþdi with distance d for θ ¼ 270° and θ ¼ 330° (L ¼ 192). (c),(d) hmiðTÞ and CvðTÞ for
θ ¼ 330° and various system sizes L. (e),(f) hmi and Cv for θ ¼ 300°. The black and gray symbols in (a) depict the positions of the peaks
in Cv and are rough estimators for the positions of the phase boundaries. (g)–(l) Square lattice. (g) Magnetization map and (h) spin-spin
correlations. The black symbols in (g) show the LRO-DO transition temperatures estimated from the crossing of the Binder cumulants
U ¼ 1 − ðhm4i=3hm2i2Þ. (i)–(k) U, hmi, and Cv for θ ¼ 315°. (l) Cv for θ ¼ 270°.

FIG. 3. Spin wave of longest wavelength and lowest energy that
fully destroys the order in x direction. Here, L ¼ 17.
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threshold, which is pc ¼ 2 sinðπ=18Þ ≈ 0.347 for the
hexagonal and pc ¼ 1=2 for the square lattice [37].
(Specifically, p ∈ ½0; 1=3� for the hexagonal, and p ∈
½0; 1=2� for the square lattice [21].) Remarkably, it is not
the concentration of bidirectional bonds pbi (where Jij ≠ 0

and Jji ≠ 0) that matters. (Indeed, pbi > pc only holds for
θ ≥ 240° on the hexagonal and θ ≥ 270° on the square
lattice [21].) Rather, a total bond concentration p of
bidirectional plus unidirectional bonds above pc suffices.
This is in sharp contrast to bond-diluted spin models on
random, directed graphs [20]. This is because, in our
model, the existence or absence of each bond is not
random, but determined by the spin orientations. In the
LRO phase, the system self-organizes such that exactly
those bonds are present that are needed for percolation.
Next, we consider the θ dependence of the transition

temperatures. First, as θ decreases, the transition to DO is
overall shifted toward lower T (Fig. 2). This suits to the fact
that p decreases with θ. Indeed, for the reciprocal bond-
diluted XY model, the BKT transition is known to decrease
with p [36]. Next, the low-temperature transition from LRO
to QLRO or DO depends nonmonotonically on θ. Although
this is a nonequilibrium system, the trend can be ration-
alized by considering the balance of energy and configu-
ration entropy. First, the ground state energy decreases with
decreasing θ, and the transition temperature is thus reduced.
Second, for θ values between two multiples of ð360°=nÞ, p
and thus the energy of the fully ordered ground state are
independent of θ. However, here the EUR increases linearly
with decreasing θ. Assuming that the entropy is a loga-
rithmic function of the number of accessible microstates
(i.e., spin orientations) in the ground state, this implies that
the entropic freedom due to spin rotation is decreasing
logarithmically. Correspondingly, the transition tempera-
ture is lowest close to the θ values, where the EUR is largest
(see Ref. [21] for illustrations).
Time-reversal symmetry breaking.—It was recently

established that NR interactions can induce stable time-
dependent phases, such as traveling waves [1–3]. These
phases emerge in systems that comprise two distinct
species with a “run-and-catch” or “prey-predator” relation,
i.e., one species is attracted or aligning to the other, while
the reverse interaction is repulsive or antialigning. In
contrast, our model comprises only a single species of
constituents who all interact with each other in an identical
manner. We do not observe time-dependent phases, and
all emergent phases have an equilibrium counterpart.
However, we find that the spin dynamics clearly reveals
the far-from-equilibrium character of the system. In par-
ticular, we observe long-lived (yet transient) directional
propagation of local heterogeneous spin structures, e.g.,
defects. To visualize the directional propagation, we start
from a fully ordered configuration in the LRO phase and
introduce two defect lines; see Fig. 4. In marked contrast to
an equilibrium system, where the defects would diffuse in

all spatial directions, the defect lines propagate in a
preferred spatial direction, which is dictated by the spin
orientations. The underlying reason is that the defect is
“visible” only to the spins facing it, meaning that the
information travels only in certain spatial directions.
Despite the spatial symmetry of the initial bands (here,
the parity symmetry y → −y), the response of the system is
strongly asymmetric, and breaks the parity. Because of the
predetermined propagation, the initiated spin dynamics
moreover clearly breaks the time-reversal symmetry. If
the video was played backward, the defect lines would
move in the “wrong” direction. The initiated “traveling
wave” survives a considerable period of time (for Fig. 4, the
defects travel ∼10 times over L before dissolving).
Eventually, the system collectively reorganizes into a
LRO state which lacks global currents.
This mechanism leads to directional spin fluctuations in

all three phases. The resulting time-reversal symmetry
breaking can be quantified by the mean entropy production
rate per spin, which we numerically evaluate using a
formula from stochastic thermodynamics [38–41]:

EPR ¼
�
ln
w½ϕiðtÞ → ϕiðtþ dtÞ�
w½ϕiðtþ dtÞ → ϕiðtÞ�

�
=dt: ð5Þ

We find a strictly positive EPR in all phases (Fig. 5). This
is true for all θ < 360°, even when the EUR vanishes and
the number of bonds is constant [Fig. 5(b)]. Interestingly,

FIG. 4. Illustration of defect propagation. Leftmost panel:
initial configuration with spin orientations ϕ ¼ 30° in the yellow
middle band, and ϕ ¼ 90° else. The two interfaces (defect lines)
propagate downward as shown in the consecutive panels. Here,
L ¼ 32, T ¼ 0.1, θ ¼ 65°, hexagonal lattice.

FIG. 5. Entropy production rate [Eq. (5)] versus T on the
hexagonal lattice with (a) θ ¼ 330° and (b) θ ¼ 240°. L ¼ 192.
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the EPR has a pronounced maximum, which always lies
within and close to the onset of the DO phase. The location
of this maximum for all θ is shown in Figs. 2(a) and 2(g) by
gray dashed lines. The maximum can be explained by the
competition of two effects. In view of the directional
propagation of defects, which we identified as a source
of time-reversal symmetry breaking, it makes sense that the
EPR generally increases with T, simply because the defect
density increases. This also explains why the increase
of EPR is particularly steep around the transitions. On the
other hand, the defect density eventually saturates in the
DO phase, and the orientation of each spin decorrelates
with its local environment. Upon a further raise of T, the
noise then only dominates more over the increasingly
irrelevant alignment interactions and thus overshadows
the propagation mechanism. The result is an ultimately
purely random motion—which is time symmetric. Lastly,
we note that the slope of EPR has a similar behavior
as Cv [21], which was also observed in Refs. [38,40,41].
Discussion.—We provide numerical evidence and ana-

lytical reasoning demonstrating that NR vision cone
interactions can lead to the emergence of a LRO phase
in a two-dimensional model of continuous spins with short-
range coupling. The nonreciprocity alone is not sufficient,
but the orientation-dependent bond dilution is crucial.
Furthermore, the nature of the phase transitions is different
on the square and hexagonal lattice. Interestingly, in a
coarse-grained model with NR coupling and spin inertia,
the theoretical existence of LRO was recently shown on a
hydrodynamic level [42], suggesting an alternative mecha-
nism to introduce LRO in NR systems. We further found
that local heterogeneous spin structures travel with a
preferred direction. Somewhat analogously, NR inter-
actions in (soft) crystals can turn topological defects in
the crystalline structure into motile objects [4,5]. Since the
here described mechanism is specific to the vision cone
interactions, a further investigation of the relation between
both phenomena could yield valuable insights. We have
also studied the time-reversal symmetry breaking of the
spin dynamics by the EPR, and found a maximum
close to the transition to DO. To obtain a more profound
understanding it could be worthwhile to investigate the
formation, annihilation, and motion of vortex-antivortex
pairs. Another interesting research perspective concerns
the relation to motile active matter. The directional propa-
gation of defects and information described here could
have a drastic impact on flock cohesion and collective
turns [8,43].
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[38] T. Tomé and M. J. de Oliveira, Entropy Production in
Nonequilibrium Systems at Stationary States, Phys. Rev.
Lett. 108, 020601 (2012).

[39] J. Schnakenberg, Network theory of microscopic and
macroscopic behavior of master equation systems, Rev.
Mod. Phys. 48, 571 (1976).

[40] C. E. Fernández Noa, P. E. Harunari, M. J. de Oliveira, and
C. E. Fiore, Entropy production as a tool for characterizing
nonequilibrium phase transitions, Phys. Rev. E 100, 012104
(2019).

[41] T. Martynec, S. H. L. Klapp, and S. A. M. Loos, Entropy
production at criticality in a nonequilibrium Potts model,
New J. Phys. 22, 093069 (2020).

[42] L. P. Dadhichi, J. Kethapelli, R. Chajwa, S. Ramaswamy,
and A. Maitra, Nonmutual torques and the unimportance of
motility for long-range order in two-dimensional flocks,
Phys. Rev. E 101, 052601 (2020).

[43] A. Attanasi, A. Cavagna, L. Del Castello, I. Giardina, T. S.
Grigera, A. Jelić, S. Melillo, L. Parisi, O. Pohl, E. Shen
et al., Information transfer and behavioural inertia in starling
flocks, Nat. Phys. 10, 691 (2014).

PHYSICAL REVIEW LETTERS 130, 198301 (2023)

198301-6

https://doi.org/10.1103/PhysRevE.92.052811
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.198301
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.198301
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.198301
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.198301
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.198301
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.198301
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.198301
https://doi.org/10.1103/PhysRevE.80.060101
https://doi.org/10.1007/BF01293604
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/7/6/005
https://doi.org/10.1103/RevModPhys.54.235
https://doi.org/10.1103/RevModPhys.54.235
https://doi.org/10.1103/PhysRevLett.44.837
https://doi.org/10.1103/PhysRevLett.44.837
https://doi.org/10.1007/s00220-016-2759-8
https://doi.org/10.1007/s00220-016-2759-8
https://doi.org/10.1103/PhysRevLett.121.075003
https://doi.org/10.1088/1751-8121/ab226d
https://doi.org/10.1088/1751-8121/ab226d
https://doi.org/10.1140/epjb/e2003-00310-5
https://doi.org/10.1140/epjb/e2003-00310-5
https://doi.org/10.1143/PTPS.157.132
https://doi.org/10.1143/PTPS.157.132
https://doi.org/10.1103/PhysRevE.96.042127
https://doi.org/10.1103/PhysRevE.96.042127
https://doi.org/10.1103/PhysRevB.85.094405
https://doi.org/10.1103/PhysRevB.71.184438
https://doi.org/10.1103/PhysRevB.71.184438
https://doi.org/10.1063/1.1704215
https://doi.org/10.1103/PhysRevLett.108.020601
https://doi.org/10.1103/PhysRevLett.108.020601
https://doi.org/10.1103/RevModPhys.48.571
https://doi.org/10.1103/RevModPhys.48.571
https://doi.org/10.1103/PhysRevE.100.012104
https://doi.org/10.1103/PhysRevE.100.012104
https://doi.org/10.1088/1367-2630/abb5f0
https://doi.org/10.1103/PhysRevE.101.052601
https://doi.org/10.1038/nphys3035

