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Competition between Energy and Dynamics in Memory Formation
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Bistable objects that are pushed between states by an external field are often used as a simple model to
study memory formation in disordered materials. Such systems, called hysterons, are typically treated
quasistatically. Here, we generalize hysterons to explore the effect of dynamics in a simple spring system
with tunable bistability and study how the system chooses a minimum. Changing the timescale of the
forcing allows the system to transition between a situation where its fate is determined by following the
local energy minimum to one where it is trapped in a shallow well determined by the path taken through
configuration space. Oscillatory forcing can lead to transients lasting many cycles, a behavior not possible

for a single quasistatic hysteron.

DOI: 10.1103/PhysRevLett.130.197201

The ability of a physical system to store information
about how it was prepared—memory—is now recognized
as being crucial for the behavior of a large variety of
disordered materials [1]. Jammed packings of soft spheres
subjected to repeated cycles of shear, cyclically crumpled
sheets of paper, and interacting spins in an oscillating
magnetic field all form memories of how they were trained
[2-12]. Memory in such systems hinges on the ability to
learn a pathway between metastable states of the energy
landscape. It has been compared to the memory seen in a
collection of bistable elements, called hysterons, that flip
between states when an external field is varied above or
below a critical value [13-16]. Although an enormous
simplification, ensembles of independent hysterons capture
surprisingly well some features of the memory formation
seen in complex systems [1,15,17,18].

However, independent hysterons fail to capture other
features that are often seen [15,19-21]. For example, the
configuration produced at the end of the first cycle is
guaranteed to be the same as that found after subsequent
cycles of the same amplitude. This is the case because each
hysteron separately has this property. By contrast, cycli-
cally sheared packings can take many cycles to train and
can exhibit a multiperiod response [22] in which the
periodicity of the response is an integer multiple of the
driving period as first demonstrated in systems with friction
[23]. Recent work has shown that generalizing the simple
idea of a hysteron as an independent two-state object by
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adding interactions can result in long training times and
multiperiod responses [16,19,20].

Here, we generalize the behavior of hysterons in a
different way: by studying the effect of dynamics.
Starting from a two-spring configuration that gives rise
to a symmetric double-well potential, we add features one
at a time to uncover the criteria for landing in one basin or
the other. When a symmetry-breaking third spring is added,
the behavior is determined by a competition between the
timescale of applied forcing and the timescale of inherent
system dynamics that relaxes the system to lower energy.
There is a crossover, depending on deformation velocity,
between energy-dominated and path-dominated selection
criteria. Following from this, for oscillatory driving we find
a critical frequency that separates the two regimes. Finally,
we characterize the effect of allowing the system to age by
slowly evolving the spring stiffnesses.

Bistable systems such as the ones we analyze here have
previously been studied in the context of spin systems in an
external field [24,25], in optical switches [26,27], and in
bistable electronic circuits [27,28], and the importance of
dynamics in hysteresis has been applied to systems as
complex as allosteric proteins [29]. In many cases, the goal
was to compute dissipation in the system undergoing
oscillatory forcing [24-26,30,31]. Other studies have char-
acterized the response of systems to a forcing that varies in
time [32,33], often focusing on the effects of stochastic
noise. Here, we approach this hysteretic behavior from a
memory-formation perspective.

In two dimensions, two identical harmonic springs with
rest lengths 7, and stiffnesses k, connected by a single
node produce a bistable system as shown in Figs. 1(a) and
1(b). € is the distance of each outer node from its “rest-
length” position where the two outer nodes are exactly a
distance 27 apart. The central-node location is the only
variable since the positions of the two outer nodes are
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explicitly controlled. We study the behavior of this system

with overdamped dynamics, where the total force f7 from

all springs on the middle node is proportional to its velocity

V. fr = Pv,,- We choose the units of length, force, and

time to be 7y, koZy, and f/ky, respectively. With these

units, the relation between velocity and force is v,, = fr.
The energy is the sum of the spring energies,

E::< x2+(1—@2—1){

which, to first order in ¢ and fourth order in x, is
E~—x*—ex?. (1)

As in a Landau expansion, the sign of e determines whether
one or two minima exist. As seen in Fig. 1(a), when € > 0,
corresponding to a bistable, buckled configuration, the
quartic and quadratic terms have opposite signs, and the
energy is a double well. For € < 0, the springs are stretched,
and there is only one minimum.

We drive the dynamics by forcing the outer nodes to
move with some velocity v,. We restrict the motion of those
nodes to be symmetric about the x axis so that the middle-
node trajectory is one dimensional (in x) and any v,, ,, enters
the equations only as a time-dependent ¢. We can account
for the remaining motion of the outer nodes v, by
choosing a reference frame in which the outer nodes are
stationary in the x direction. The effect of using a moving
frame is that the middle node moves with respect to x = 0
with an additional velocity: Av,, = —v, . This movement
is in addition to the velocity caused by the springs
themselves. With overdamped dynamics, this can be treated
as an additional force, —v,,, in the x direction. The
resulting effective energy can then be written as

E, ~ (A—ltx“ - €x2> + VX (2)

The symmetry of the two-spring system can also be
broken by attaching a third, weak spring to the middle node
so that it applies an additional force along the x axis, as
shown in Fig. 1(c). If the other end of the third spring is
pinned such that the equilibrium position is far away, the
force will be approximately independent of the position,
and the modified energy will be given by

1
Ex <ZX4 - ex2> — fux, (3)

where f, is the small force due to the weak spring. The
form of this equation is identical to that of Eq. (2), so we
can include any outer-node motion in the x direction to
produce an effective force: fer = f1, — Vp -
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FIG. 1. (a) Schematic of the two-spring system. Outer nodes are
shown as black dots. Middle node is shown as a green circle.
(b) Energy versus position of the middle node. For large ¢, the
two wells are deep and well separated. As € decreases, the wells
become smaller and the minima move closer together; they
coalesce as € — 0. For ¢ <0, there is only one minimum.
(c) Three-spring system with f,, # 0 showing energy versus
middle-node position. In the energy diagram, the force is pulling
to the left (in the negative x direction).

This model of a hysteron thus has two distinct mech-
anisms that compete to determine fo. If fo is dominated
by the weak spring, then the behavior will be “energy
dominated,” with the true landscape changing slowly
enough that the energetics determine which well is chosen.
If, on the other hand, the velocity of the outer nodes
dominates, then the behavior will be “path dominated”: the
energy landscape will change too quickly for the system to
keep up with the local minimum and so it will become
trapped in a state determined by the path of the boundaries
(and hence the effective energy).

We probe the transition from one to two minima by
starting the middle node at x = 0 and bringing the two
outer nodes together at a constant velocity ¥,,. Starting from
the stretched state with one minimum, e changes from
negative to positive as the two nodes approach one another,
causing the initial minimum to separate into two. If v, , =
0 and f, =0, the energy landscape remains perfectly
symmetric and the system chooses a minimum randomly
(if there is any noise) or remains stuck in the unstable
equilibrium position x = 0. For nonzero v, , and f,,, we
can find the critical v, , that leads to f.¢ = f,, — v, = 0.
For v, , < f,, the system is energy-dominated and ends up
in the global minimum; for v, , > f,,. the system is path-
dominated and becomes trapped in the shallower (less-
favorable) minimum.
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We connect this three-spring system to conventional
hysteron models by fixing the two outer nodes and
oscillating the free end of the weak spring at frequency,
w, to modulate the weak force:

fu(t) = fo + Asin(wt). (4)

Regardless of the oscillation frequency, @, the system
will be trapped forever if both wells are stable at all times;
likewise, it will fall to the global minimum if one well is
never stable. We therefore focus on an intermediate case
where the time-averaged landscape (f,, = f,) is stable but
one well disappears for a fraction of each cycle.

We study the dynamics numerically by starting the
middle node in the less-favorable well and calculating
the net force on (and hence the velocity of) the middle node
and updating its position accordingly. For low @, the system
finds the lower well quickly; for high w, the system never
finds the lower well. At intermediate frequencies, there is a
regime where the system displays surprising complexity.
As shown in Fig. 2(a), the middle node can appear to be
trapped for some time in the less-favorable well but
continue to creep toward, and finally fall into, the global
minimum. As @ increases, the escape time to reach the
lower well, 7, increases until the system becomes perma-
nently trapped in the local minimum. As shown in the inset
to Fig. 2(a), the time for the node to escape to the global
minimum diverges as 7, « (0, — »)™"/2.

Similar behavior was studied numerically and experi-
mentally in optical bistable devices [27]. It was shown there
that the critical frequency w, scales as A, the amplitude of
forcing. We find the scaling of @, around the critical
behavior for all system variables analytically using an
argument quite different from the calculations in [27]. Even
during times in the cycle when one minimum has dis-
appeared, the motion will be limited by the bottleneck
where the force, and hence velocity, is smallest. There is a
“saddle-node remnant,” where two zeros of the force
(corresponding to the less-favorable well and energy
maximum) merge and disappear; this dominates the
dynamics [34]. Getting through this region is therefore
the limiting factor in escaping to the global minimum. At
any frequency, the net motion over one cycle will be exactly
zero in the infinite-time limit when the system has reached
a periodic orbit. For a system near the critical frequency,
this net motion is centered on the bottleneck. We find w, by
calculating the frequency at which the motion in one half of
the cycle is exactly undone by the motion in the other half:

Ale! /4
D~ | |g 3/2\1/2 (5)
(f 0 + 2(3 6) )
See [35] for detailed calculation.
Existence of a critical frequency indicates that the
behavior of a dynamic hysteron is determined by a
competition between the timescale of external driving,
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FIG. 2. (a) Position versus time for a single dynamical hyste-
ron driven at different frequencies. We have used e¢ = 0.01,
A =—10"* and f, = —0.00108, and have set the initial middle-
node position to be x = 0.12. The black and blue curves take
multiple cycles before falling into the global minimum; the red
curve is above the critical frequency, o, ~ 0.0103, at which the
escape time diverges and the system thus remains in the less-
favorable (upper) well. (b) Trajectories of the same system driven
with similar fixed amplitude and values of the driving frequencies
after the system has been aged. Now only the black curve falls
into the global minimum because the critical frequency has
decreased to @, ~ 0.0088. Both insets indicate the divergence of
escape time, 7,, with slope = —0.50 as @ approaches w...

set by w, and the time it takes to travel a given distance,
set by the net force from the springs at any given moment.
Any process that alters one of these timescales can there-
fore change the behavior of the system.

One example of such a process is “directed aging” in
which local properties of a spring network, such as the
spring constants or bond lengths, evolve in response to the
stresses imposed on each bond [36-38]. This leads to
changes in the global elastic response of the system.

In these dynamic hysterons, each spring, i, undergoes a
strain 67; when the system is driven. We evolve the spring
constants, k;, at a rate proportional to the energy stored in
each bond with proportionality constant g:

dki(1)
dt

— —qki(1)5¢>. (6)
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low E

FIG. 3.

(a) Energy landscape for a four-spring, three-well system. Black dots indicate the controlled boundary nodes L (left), R (right),

T (top), and center; orange dots mark the resulting energy minima. Manipulating the boundary nodes forces some minima to disappear.
(b) Moving T and R away from the center causes wells B and C to disappear and flow into A. (¢) Moving T toward the center while
moving R azimuthally causes well A to disappear and flow into B. (d) Moving L and R away from the center causes wells A and B to

disappear and flow into C.

Figure 2(b) shows the trajectories for the same systems and
frequencies depicted in Fig. 2(a) after the system is aged.
Starting with k,, = 1 in the strong springs and k,,, = 1073
in the weak spring, we update the stiffness values according
to Eq. (6) with ¢ = 5 x 107>, During aging, each individual
spring is held at the fixed value of strain it undergoes when
x = 0.12. For the weak spring, the aging strain is fixed at
6¢,, = |fo+Al|/k, where &, > ¢, for the strong
springs, which leads to much faster aging in the weak
spring. After aging the system for r = 50, we fix the spring
constants at their aged values and drive the system as in
Fig. 2(a). Because the critical frequency is shifted to a lower
value, the middle node can only fall into the global
minimum for the lowest frequency shown. It is also
possible to increase the critical frequency by aging the
system in ways that slow down the dynamics.

Hysterons with more than two wells can also be con-
structed in a network of springs as shown, for example, in
the three-well system in Fig. 3. The presence of a third well
allows for behavior not possible in a bistable system. For
example, if the three wells are designated A, B, and C, by
prescribing the motion of the outer nodes T, L, and R, one
can create a reversible boundary motion that causes the
middle node to transition from A - B — C — A over the
course of a single full cycle. This can be achieved using two
types of outer node motion: one in which two nodes are
pulled away from the center, causing the two opposite wells
to disappear, and one in which one node is brought toward
the center and another is moved azimuthally so that one
well (e.g., C) remains unaffected and the others flow (e.g.,
A — B). See [35] for cycle details and a video of the
corresponding energy landscape. The node’s trajectory is
topologically nontrivial, a feature that may be important in
systems like jammed packings that are sheared cyclically
but where the phase-space trajectory typically forms com-
plex loops.

Systems with three rearrangements per cycle are not
new: this behavior is possible with pairs of quasistatic
hysterons and is typically associated with an avalanche

(see [35]). However, just as our generalization of hysterons
from quasistatic to dynamic allowed us to see multi-
cycle transient behavior previously found in hysteron
systems only when interactions were present, generalizing
from two to three wells has allowed us to see three
rearrangements arising from a different, geometric mecha-
nism. It is an interesting question whether there is a
fundamental, measurable difference between an avalanche-
driven three-rearrangement cycle and one which is geo-
metrically created.

We have introduced a model that generalizes the notion
of hysterons to a dynamical unit that exhibits a variety of
distinct behaviors in response to driving. Starting with two
springs connected to an overdamped node, we show that
the system’s path is the only factor that determines which
well it will choose. Adding a weak spring breaks the
symmetry and brings in the energy landscape as another
way to determine which minimum is chosen. Thus there is a
competition between energy and path for choosing the
minimum. For cyclic driving, the system can require
multiple cycles to reach its global minimum.

The model presented is suitable for studying the effect of
dynamics in cyclically driven experimental systems where a
frequency-dependent behavior is observed. In addition, the
sensitivity of the model to directed aging shows its
versatility and opens the door to a large variety of training
possibilities, for example, in mechanical preconditioning of
soft tissues [39,40]. One natural generalization of this model
would be to include interactions between pairs of dynamical
hysterons. In the case of ordinary (quasistatic) hysterons,
the presence of interactions leads to memories that include
multiple cycles [16,19,20]. It would be interesting to see if
unexpected behavior emerges by allowing interactions
between pairs of dynamical hysterons.

The system presented here is simple enough to be
studied analytically, yet has dynamics that are rich with
complexity. The examples above illustrate that it is easily
adaptable to a variety of systems, i.e., where interactions
between hysterons play a role, or more complex scenarios
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as in the case of a three-well system. This dynamical
hysteron model can thus provide insight into the effect of
new timescales on a wide variety of complex systems.
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