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We predict a novel metallic state of matter that emerges in aWeyl-semimetal superstructure with spatially
varying Weyl-node positions. In the new state, the Weyl nodes are stretched into extended, anisotropic
Fermi surfaces, which can be understood as being built from Fermi arclike states. This “Fermi-arc metal”
exhibits the chiral anomaly of the parental Weyl semimetal. However, unlike in the parental Weyl
semimetal, in the Fermi-arc metal the “ultraquantum state,” in which the anomalous chiral Landau level is
the only state at the Fermi energy, is already reached for a finite energy window at zero magnetic field.
The dominance of the ultraquantum state implies a universal low-field ballistic magnetoconductance and
the absence of quantum oscillations, making the Fermi surface “invisible” to de Haas–van Alphen and
Shubnikov–de Haas effects, although it signifies its presence in other response properties.
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Introduction.—The characteristic property of Weyl semi-
metals (WSMs) [1–11] is the presence of Weyl nodes,
topologically protected band-degeneracy points with a
diabola-shaped dispersion, near the Fermi energy. The
Weyl nodes may be assigned a chirality χ ¼ �1, which
manifests itself in the chiral anomaly: In an applied
magnetic field, the Weyl nodes turn into Landau levels,
with an anomalous chiral Landau level propagating parallel
(χ ¼ 1) or antiparallel (χ ¼ −1) to the applied magnetic
field [12,13]. In WSMs, Weyl nodes occur in pairs of
opposite chirality, which, on the crystal surface, reconnect
in momentum space via Fermi-arc surface states [7]. The
chiral Landau levels and Fermi arcs are responsible for a
range of characteristic transport effects of WSMs, such as
an anomalous Hall effect and a negative magnetoresistance
in parallel electric and magnetic fields [9,14,15].
Building on the increased availability of high-quality

WSM materials, there is currently a growing interest in the
manipulation of Weyl-node positions in energy-momentum
space [16,17]. Particularly interesting is the proposed
and observed dependence of the Weyl-node positions in
magnetic WSMs on the magnetization direction [18–21].
This opens the possibility of WSM superstructures with
spatially modulated node positions, either based on hetero-
structures, or based on intrinsic node-positionvariations from
a magnetic texture. Helical magnetic order can be favored by
Weyl-Fermion-mediated Ruderman-Kittel-Kasuya-Yosida
interactions between local magnetic moments [22–26]
and has been recently demonstrated experimentally in
NdAlSi [27] and SmAlSi [28]. An ultrathin variant of a
helical magnetic texture is also found in Bloch-type domain
walls of Co3Sn2S2 [29], where the magnetization reverses its
direction via a helical half turn. Theoretically, such WSM
superstructures have remained widely unexplored.

In this Letter, we show that WSMs with a periodic spatial
modulation of the Weyl node positions are in a novel
semimetallic state, which we propose to call a “Fermi-arc
metal,” since its low-energy spectrum can be interpreted as
being entirely built from Fermi arcs, as we explain below.
The Fermi-arc metals constitute a realization of the chiral
anomaly, but with essential differences compared to the
WSMs: The Weyl nodes are replaced by two cylindrical
Fermi surfaces, defined in the reduced Brillouin zone
corresponding to the spatial modulation of the Weyl node
position. The Fermi surfaces have a well-defined chirality
and they give rise to characteristic anomalous response
properties.
Heterostructure model.—Before giving a generic for-

mulation in the subsequent sections, we will first provide
basic insight into the Fermi-arc metal from a specific
construction consisting of a stack of WSMs, illustrated
in Fig. 1(a). To keep the discussion simple, each layer is
taken to consist of a minimal WSM with a single pair of
Weyl nodes at momenta �K, so that for momenta k in the
vicinity of the Weyl nodes, the low-energy Hamiltonian is

H ¼ �σ · ðk ∓ KÞ: ð1Þ

(Here � denotes the chirality and σ is the vector of
Pauli matrices.) We use the coordinate z for the stacking
direction and take the width of each layer to be dz. We
assume that the component �K⊥ of the node positions
perpendicular to the stacking (z) direction is nonzero and
that the node positions are rotated by an angle dθ between
adjacent layers, such that they form a double helix with
radius K⊥ and the period length (pitch) 2π=Q ¼ 2πdz=dθ,
see Fig. 1(a). We will further assume that Q ≪ K⊥, i.e.,
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the pitch is much larger than the inverse momentum-space
separation of the Weyl nodes.
We now argue that, at low energies, bulk states in this

WSM stack are built from Fermi-arc states residing at the
interfaces between layers, whereas states associated with
the bulk Weyl nodes in the layers are gapped out. We first
consider the Fermi-arc interface states. Hereto, we note that
an interface between two WSMs with displaced Weyl node
positions hosts Fermi arcs that connect projections of Weyl
nodes of the same chirality on the two opposing sides of the
interface [30–35], which follows from the requirement that
the Fermi arcs should vanish in the limit dθ → 0 of a
homogeneous Weyl semimetal. For generic momenta,
Fermi arcs are exponentially localized at the interface.
For momenta near the (projected) Weyl node of one of the
adjacent layers, the Fermi arc states extend into that layer,
but not farther, because of the shifted Weyl node position in
the next layer. The smallest (real-space) distance between
two Fermi arcs of different chirality at the same momentum
is of the order of half the pitch π=Q. Hence, sinceQ ≪ K⊥,
the heterostructure preserves chirality up to the exponen-
tially small (in K⊥=Q) overlap of interface arcs. Now
turning to the bulk Weyl nodes we note that these, too, have

a finite extension Δz, because the Fermi pockets do not
overlap for layers that are sufficiently far apart. At energy E
one has Δz ∼ E=QK⊥, so that the finite-size gap ∼1=Δz
removes the bulk Weyl Fermions at energies E2 ≲QK⊥.
We thus find that for E2 ≲QK⊥ the stack of WSMs with
modulated Weyl node positions has a Fermi surface that is
built entirely from the chiral Fermi arcs. This is the Fermi-
arc metal. In the presence of a magnetic field perpendicular
to the interfaces, the gapping only applies to higher Landau
levels, while the anomalous lowest Landau level remains to
reconnect the Fermi arcs, as illustrated in Fig. 1(b).
This simple model of a Fermi-arc metal allows us to

identify two key features of its Fermi surface: The Fermi
surface consists of two approximately cylindrical sheets,
which are holelike and electronlike depending on the
chirality, as illustrated in Fig. 1(c). The approximately
cylindrical shape follows from the localization to interfaces
in the stacking direction and the rotational symmetry
around it. The electronlike and holelike character of the
Fermi surfaces can be identified by considering the particle
flow through the heterostructure in the presence of a
magnetic field in the stacking direction, illustrated in
Fig. 1(b). In a more general setting, to be discussed below,
the rotation symmetry may be lifted, but the other two
properties (flat dispersion in the modulation direction, well-
defined chirality for each Fermi surface) remain.
From the topological point of view, the persistence of

Fermi arcs despite the removal of the Weyl nodes is
possible and even necessary because according to the
WSM topology, band touchings can only disappear pair-
wise, via coupling of opposite chiralities. In standard
WSMs, the breaking of translation invariance couples
chiralities, so that Weyl fermions and their chirality dis-
appear simultaneously, as it happens at the WSM surface.
The layer construction breaks translation invariance (on the
scale of the unit cell of the individual layers) in a chirality-
preserving way, allowing to eliminate Weyl nodes while
preserving the chirality, which is transferred to the Fermi
arcs. The persistence of chirality is signified by the
persistence of the chiral anomaly [see Fig. 1(b) and, for
a general setting, below].
Weyl-node stretching.—We now consider a generic

chirality-preserving deformation of a Weyl node into a
Fermi arclike state. We first consider the Hamiltonian of a
single Weyl fermion with positive chirality,

H ¼ σzkz þ σ⊥ · ½k⊥ − K⊥ðzÞ�; ð2Þ

where the node-position K⊥ðzÞ varies along the z direction
and we abbreviated σ⊥ ¼ ðσx; σyÞ, k⊥ ¼ ðkx; kyÞ. To keep
the discussion simple, we do not consider variations of
the longitudinal node position Kz, which would only
modify the phase of the wave function, a possible velocity
anisotropy of the Weyl node (here velocity is set to one),
which would effectively rescale the momenta, and any

FIG. 1. (a) Fermi-arc metal from a stack of WSMs with Weyl-
node positions (dotted red or blue lines for Weyl-node of chirality
þ or −) rotating discretely in form of a double helix, shown in a
mixed real (z) and momentum (kx, ky) space. Interfaces host
Fermi arcs (red and blue lines) that connect Weyl nodes of the
same chirality at opposite sides of the interface. (b) An applied
magnetic field Bext along the stacking direction leading to particle
flow along Fermi arcs on the interface and via anomalous chiral
Landau levels of Weyl Fermions between interfaces. The propa-
gation direction (parallel or antiparallel to Bext) depends on the
chirality of the Weyl node. Higher Landau levels are finite-size-
gapped due to reflections at interfaces. (c) Reduced bulk Brillouin
zone with cylindrical chiral Fermi surfaces (red or blue for
chirality þ or −).
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momentum-dependent (pseudo-) scalar potentials, which
would tilt the Weyl cone but otherwise do not modify the
results in a qualitative manner.
For a smooth node-position variation (precise condition

to be specified below) low-energy states at a transverse
momentum k⊥ will be near those z for which k⊥ is close to
the node position K⊥ðzÞ. Let zk⊥;n, n ∈ Z denote all
local minima of jK⊥ðzÞ − k⊥j. Since K⊥ðzÞ enters the
Hamiltonian (2) as a vector field, expanding to first order in
z around a minimum zk⊥;n, the Hamiltonian becomes that of
a Weyl Fermion in an effective (pseudo) transverse mag-
netic field Bðzk⊥;nÞ ¼ ∇ × K⊥ðzk⊥;nÞ [36]. The energy
levels of a Weyl Fermion in such a magnetic field are
well known: The lowest energy level Ek⊥;n is the corre-
sponding anomalous Landau level, which is linear in the
momentum component along the field direction,

Ek⊥;n ¼ ½k⊥ − K⊥ðzk⊥;nÞ� · B̂ðzk⊥;nÞ; ð3Þ

where B̂ðzÞ ¼ BðzÞ=jBðzÞj is the unit vector pointing in
the direction of BðzÞ. The wave function reads

ψk⊥;nðzÞ ¼ ηk⊥;ne
−jBðzk⊥ ;nÞjðz−zk⊥ ;nÞ2=2; ð4Þ

with ηk⊥;n the eigenvalue-one eigenspinor of σ · B̂ðzk⊥;nÞ.
The eigenfunctions defined this way form an orthonormal
basis if the wave functions at different n don’t overlap, i.e.,
if minm≠njBðzk⊥;nÞjðzk⊥;m − zk⊥;nÞ2 ≫ 1. Consistent with
the localization of wave functions, the dispersion is flat
(kz independent) in the longitudinal direction. The gap to
higher energy levels is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2jBðzk⊥;nÞj
p

. What turns the WSM
into a Fermi-arc metal can thus be interpreted as an
effective momentum-dependent magnetic field Bðzk⊥;nÞ,
which stretches the Weyl node into the chiral Landau level,
the latter being the known equivalent of the Fermi arc [36].
For the specific example of a helical node-position

variation, K⊥ðzÞ ¼ K⊥ðcosQz; sinQzÞ, the requirements
for a Fermi-arc metal are met for Q ≪ K⊥ and we obtain
Ek⊥;n ¼ −ðjk⊥j − K⊥Þ and BðzÞ ¼ −QK⊥ðzÞ. This gives a
cylindrical, holelike Fermi surface, separated from higher
bands by

ffiffiffiffiffiffiffiffiffiffiffiffiffi

2QK⊥
p

.
The full Hamiltonian must also contain the Weyl node of

the opposite (negative) chirality, as well as possible other
states. The spatial localization in the z direction allows a
spatial separation of different degrees of freedom. In the
minimal model of a helical magnetic order in the magnetic
WSM with two Weyl nodes discussed above, the opposite-
chirality node is naturally placed at the momentum
−K⊥ðzÞ ¼ K⊥ðzþ π=QÞ, so that the two chiral nodes
form a double helix. The wave function centers then are at

zk⊥;n;χ ¼
θk⊥ þ πδχ;− þ 2πn

Q
; ð5Þ

where χ ¼ �1 is the chirality and θk⊥ the angle indicating
the direction of k⊥. Because of the spatial separation,
the coupling between chiralities is exponentially small
in K⊥=Q. Since the anomalous Landau level of the
opposite chirality moves in the opposite direction, the full
dispersion is

Ek⊥;n;χ ¼ −χðjk⊥j − K⊥Þ; ð6Þ

which gives an additional electronlike cylindrical Fermi
surface for χ ¼ −1. There is a cylindrical surface of
degeneracy at zero energy, protected (up to corrections
exponentially small in QK⊥) by the spatial separation of
states of opposite chirality. The results for the continuous
helical node-separation variation are in full quantitative
agreement with what we found for the discrete hetero-
structure model in the limit dθ ≪ 1.
Figure 2(a) shows the results of a numerical calculation

of the dispersion of a Fermi-arc metal based on a tight-
binding model of a magnetically doped topological insu-
lator [37–41], in the presence of a helical magnetization
rotation (for details see Supplemental Material [42]). The
numerics confirms the analytically calculated dispersion

FIG. 2. Dispersion from numerical diagonalization of a lattice
model, which at low energy corresponds to the continuum model
with nodes at �K⊥ðzÞ ¼ �½cosðQzÞŷ − sinðQzÞx̂�, Q ¼ 2π=31
[42] (a) as a function of kx at ky ¼ 0 ¼ kz (left) and as a function
of kz at ky ¼ 0, kx ¼ 1. Color encodes the expectation value of
the chirality. The inset shows a close-up at the crossing at zero
energy, where chirality conservation is violated for energies
exponentially small in K⊥=Q. The dispersion is rotation sym-
metric around kz. (b) Same as (a) but with an applied magnetic
field Bext ¼ x̂2π=ð10 × 31Þ (left) and Bext ¼ ẑ2π=30 (right).
(Normalization of the applied field is chosen such, that jBextj
is the inverse square of the magnetic length in units of the lattice
constant.) Note that the right panel shows a single Landau
level per chirality, backfolded into the reduced Brillouin zone
(kz ∈ ½−Q=2; Q=2�).
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and the exponentially suppressed coupling of chiralities at
the degeneracy points.
Chiral anomaly and surface states.—The elimination of

Weyl nodes, while preserving chirality of Weyl Fermions,
opens the question, whether and how the Fermi-arc metal
shows the chiral anomaly, i.e., the nonconservation of
chiral charge. In the heterostructure model, the persistence
of the chiral anomaly follows from the persistence of chiral
Landau levels between the interfaces, cf. Fig. 1(b). More
generally, it can be understood by considering a WSM with
two Weyl nodes, of which only one has a z-dependent node
position. In this case, the momentum-space position of
the other Weyl node is constant, so that this node hosts a
conventional Weyl Fermion, which is subject to the
standard chiral anomaly. Then the non-conservation of
chiral charge in the Fermi-arc metal corresponding to the
node with z-dependent momentum-space position follows
from the conservation of total charge and the nonconser-
vation of charge by the conventional Weyl fermion.
The lattice simulation confirms the presence of the chiral

anomaly in the Fermi-arc metal. Figure 2(b) shows that for
any field direction, parallel and perpendicular to z, each
chirality has one unbalanced Landau level, which moves
parallel or antiparallel to the field direction, depending on
the chirality.
The presence of the chiral anomaly implies the presence

of Fermi-arc surface states, because these surface states
must mediate particle transport between chiralities in a
magnetic field normal to the surface. A numerical simu-
lation is given in the Supplemental Material [42].
Ultraquantum state.—While the nonconservation of

chiral charge is thus inherited from the parental WSM,
there is a sense in which the manifestation of the chiral
anomaly is even stronger in a Fermi-arc metal than in a
standard WSM: Whereas in standard Weyl semimetals the
so-called “ultra-quantum state” [43,44], in which the
anomalous chiral Landau levels are the only levels at the
Fermi energy EF, requires a threshold value Bext > E2

F=2
for the applied magnetic field, in a Fermi-arc metal there is
a range of Fermi energies jEFj <

ffiffiffiffiffiffiffiffiffi

2jBjp

for which the
ultraquantum state already appears at zero magnetic field.
This is illustrated in the left panel of Fig. 2(a) and the
right panel of Fig. 2(b). [Note that the dispersion at low
fields in the x (or similarly y) direction is equivalent to that
in the left panel of Fig. 2(a) due to the vanishing kz
dispersion, see Supplemental Material [42] for details.]
Within the analytical approach, the effect of an applied field
Bext ¼ Bextẑ can be easily understood by adding Bext to the
effective field χ∇ × K⊥ used for the derivation of (3). With
B ¼ χ∇ × K⊥ þ eBext, the derivative of the dispersion (3)
with respect to kz gives the velocity along the field,
vz ¼ χBext=K⊥Q, which is equal for all states and opposite
for opposite chiralities [45].
As a characteristic signature of the extended ultraquan-

tum state, the longitudinal magnetoconductance assumes a

universal linear dependence on Bext, G ¼ ðe2=hÞNB, where
NB is the number of flux quanta through the system, which
is also the degeneracy of the anomalous chiral Landau
level. This linear dependence holds down to Bext ¼ 0,
because the chiral Landau level is the only level at the
Fermi energy. In contrast, in a conventional WSM, the
transport is dominated by the zeroth Landau level only
above a nonuniversal threshold field, which depends on
the diffusion constant and the density of states [9,46]. The
maximal system length for this effect to occur is set by the
scattering length for scattering across the Weyl-node
separation [46], which in Fermi-arc metal can be expected
to be extended, due to the spatial separation of wave
functions (see disorder effects below).
Quantum oscillations.—A Fermi-arc metal has a well-

defined Fermi surface, which is closed in the plane
perpendicular to the node-variation direction, as discussed
above. In all conventional metals (including Weyl semi-
metals) such Fermi surfaces are detectable via quantum-
oscillation experiments, such as the de Haas–van Alphen
and Shubnikov–de Haas effects [47–51]. The oscillations
stem from Landau levels passing through the Fermi energy
and the semiclassical quantization rule [52–54], based on
self-interference assumption of a wave function on a closed
orbit, relates the oscillation frequency with the Fermi-
surface shape [55].
For the Fermi surface of a Fermi-arc metal one would

expect oscillations for Bext ¼ Bextẑ, as the momentum-
space intersection of the Fermi surface and a plane at
constant kz is a closed orbit (a circle with area πK2⊥ for the
helical case). Yet, no Landau levels pass through the Fermi
energy if Bext is varied, because the Fermi-arc metal is in
the ultraquantum state, as discussed above. The failure of
the semiclassical quantization rule for Fermi-arc metals can
also be understood semiclassically from the anomalous
motion of the wave function: Taking again the helical case
as an example, the Lorentz force, dk⊥ ¼ −χk̂⊥ × Bextdt,
moves a particle around the cylinder at a fixed kz in the time
Δt ¼ 2πK⊥=Bext. (Here k̂⊥ ¼ k⊥=jk⊥j is the unit vector in
the direction of k⊥.) During this time, the wave function
localization center moves the distance Δz ¼ χ2π=Q along
the applied field, see Eq. (5). (The same result follows from
the anomalous velocity vz ¼ χBext=K⊥Q derived above
based on the full quantum-mechanical model). This anoma-
lous shift prohibits the self-interference and thus invalidates
the application of the semiclassical quantization rule.
In a slab of width L in the z direction, the wave function

motion becomes closed by the Fermi-arc surface states into
an orbit going through the whole slab, similar to the Weyl
orbit of a conventional WSM [56,57]. However, unlike the
Weyl orbit, each z shift of 2π=Q is associated with an
enclosed momentum-space area of the cylindrical Fermi
surface, as discussed above, and the oscillation frequency is
thus proportional to L. In samples with nonparallel surfaces
or a large width, L ≫ Q, the oscillations stemming from
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this orbit will average out or will be strongly suppressed by
decoherence effects, owing to the large orbit length.
The absence of quantum oscillations (in bulk materials)

becomes a striking signature of a clean Fermi-arc metal in
connection with other measurements signifying the pres-
ence of the Fermi surface and the purity of the sample, such
as angle-resolved photoemission spectroscopy and various
transport measurements. We are not aware of the existence
of another metal with this property.
Disorder and interaction effects.—The spatial localiza-

tion of wave functions in Fermi-arc metals poses a number
of intriguing questions with regard to the effects of disorder
and electron-electron interactions, a complete discussion
of which goes beyond the scope of this work. In diffusive
transport regimes one can expect an enhancement of the
conductivity along the dispersive (transverse) directions, as
the spatial separation of counterpropagating states prohibits
disorder-induced backscattering. In particular, the scatter-
ing angle for a helical node-position variation is limited by
the wave function overlap to Δθ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

Q=K⊥
p

and the
relaxation must go via multiple scattering events, even
when the disorder potential is short ranged. On the other
hand, the vanishing spatial overlap of wave functions does
not hinder Coulomb interaction. In particular, the possibil-
ity of an overlap of chiralities in the energy-momentum
space can favor interaction-driven spontaneous breaking
of chiral symmetry. This is known to lead to the sought-
after condensed-matter realization of axions [58–60],
which, among other things, could play a crucial role in
the detection of dark matter [61–65]. The appearance of
Weyl-Fermion chirality in the new form of a Fermi-arc
metal opens new routes in this direction.
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