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Quantum Effects on Unconventional Pinch Point Singularities
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Fracton phases are a particularly exotic type of quantum spin liquids where the elementary quasiparticles
are intrinsically immobile. These phases may be described by unconventional gauge theories known as
tensor or multipolar gauge theories, characteristic for so-called type-I or type-Il fracton phases,
respectively. Both variants have been associated with distinctive singular patterns in the spin structure
factor, such as multifold pinch points for type-I and quadratic pinch points for type-II fracton phases. Here,
we assess the impact of quantum fluctuations on these patterns by numerically investigating the spin
S = 1/2 quantum version of a classical spin model on the octahedral lattice featuring exact realizations of
multifold and quadratic pinch points, as well as an unusual pinch line singularity. Based on large scale
pseudofermion and pseudo-Majorana functional renormalization group calculations, we take the intactness
of these spectroscopic signatures as a measure for the stability of the corresponding fracton phases. We find
that in all three cases, quantum fluctuations significantly modify the shape of pinch points or lines by
smearing them out and shifting signal away from the singularities in contrast to effects of pure thermal
fluctuations. This indicates possible fragility of these phases and allows us to identify characteristic

fingerprints of their remnants.
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Introduction.—A particularly fascinating physical situa-
tion arises when a system of interacting spins realizes an
emergent gauge theory, which is one of the defining
properties of a quantum spin liquid [1]. Various different
types of gauge theories may be realized in such phases.
For example, quantum spin ice represents a variant of a
quantum spin liquid, where an emergent U(1) gauge theory
on a pyrochlore lattice establishes an astonishing analogy
to three-dimensional electromagnetism including emergent
photons and an effective fine-structure constant [2,3]. The
key ingredient enabling these nontrivial properties is the
gauge constraint that, in the charge-free sector of a U(1)
gauge theory, takes the form of the Gauss law V - E(r) = 0.

Meanwhile, generalizations of the standard U(1) gauge
theories have become a new focus of theoretical inves-
tigations where the vector form of the Gauss law is replaced
by a tensor structure [4-7], e.g., Zm, 9,0,E,,(r) =0,
known as tensor gauge theories describing so-called fracton
spin liquids [8,9]. The most remarkable consequence of this
generalization is that, besides the effective charge of a
quasiparticle, multipole moments of charges become con-
served quantities giving rise to excitations with fraction-
alized mobility [10]. Two cases can be distinguished [11]:
in type-I fracton phases [12—14], described by symmetric
tensor gauge theories, the quasiparticles are either com-
pletely immobile or have a residual mobility along sub-
dimensional manifolds. Otherwise, in type-II fracton
phases [15—-17] all quasiparticles are completely immobile.
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In the associated multipolar gauge theories the Gauss
law contains derivatives of different orders restricting
charge configurations to certain fractal patterns [18-21].
Remarkably, fracton phases also attract interest in fields
such as quantum information [22,23] and high energy
physics [24-27].

Recently, important steps have been undertaken to bring
the rather abstract theoretical research on fracton phases
closer to the established field of quantum magnetism and to
experiments. For example, it has been found that type-I
fracton phases manifest themselves in multifold pinch
points [6] in the spin structure factor [Fig. 2(a)], general-
izing the famous twofold pinch points known from conven-
tional U(1) spin liquids [Fig. 1(c)]. Likewise, type-II
fracton phases have been argued to be associated with
quadratic pinch points [Fig. 3(d)] where contour lines
exhibit a characteristic parabolic shape [28]. On a different
front, a class of simple classical spin models has been
identified [29] that gives straightforward access to classical
spin liquids described by tensor gauge theories and to
unconventional pinch points in the spin structure factor.
However, it is an open but experimentally relevant question
as to how stable these phases are under modification from
the ideal situations in which they are defined, e.g., by
allowing for quantum fluctuations.

In this Letter, we study the effects of quantum fluctua-
tions on the ground state and finite-temperature phases
of the classical spin model in Ref. [29]—the so-called
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octochlore model—whose three dimensional octahedral
lattice is realized in rare-earth antiperovskites [30,31].
This model represents a showcase example for exotic
classical spin liquids: apart from known twofold and
multifold pinch points we identify exact realizations of
quadratic pinch points [28] as well as unconventional pinch
line singularities [32]. We add quantum fluctuations to the
system by promoting it from a classical (S — o) to a
quantum S = 1/2 Heisenberg model that is then numeri-
cally treated via two powerful quantum many-body tech-
niques: the pseudofermion and the pseudo-Majorana
functional renormalization group. Overall, we find that
exotic pinch point features are drastically affected by
quantum fluctuations and appear more fragile compared
to conventional twofold pinch points.

Unconventional gauge theories from an octochlore
model.—The octahedral lattice consists of corner-sharing
octahedra and is defined by simple cubic lattice vectors
a, €{(1,0,0),(0,1,0),(0,0,1)} together with a three
site basis b,, = a,,/2. The Hamiltonian of the octochlore
model [29] is constructed as the sum of squared vectors
M o5 Over all elementary octahedra:

ZZMoctaﬁ’ (1)

oct

where M o5 is the sum of spins in a cluster, weighted by
dimensionless parameters a, f3:

Mooy => Si+ad Si+p> 8. (2

i€oct ie(oct) ieoct))

Here, a reference octahedron “oct” is given by the green
sites in Fig. 1(a), while its closest surrounding sites “(oct)”
and further distant sites “((oct))”” are colored blue and cyan,
respectively. Henceforth, we set the energy scale such that
the maximal Heisenberg coupling between two spins is
equal to one.

For classical spins S;, the system’s extensively degenerate
ground states follow from the constraints M .5 =0
that constitute discrete versions of Gauss’s law. These
constraints can be expressed in reciprocal space as
> o Ln(q)S,.(q) =0 [29], where m =1, 2, 3 label the
sublattices, S,,(g) is the Fourier-transformed spin on sub-
lattice m, and L,,(q) is the mth component of the so-called
constraint vector. Normalized constraint vectors L,,(q) =

(q)//>_,IL,(q)]? can be defined over the entire g space
except at singular points ¢* where L,,(¢*) = 0 for all m. For
isolated points ¢* in momentum space and with L,,(q)
defined on the unit sphere S? one can assign a topological
index to the defect configuration L,,(q) around g* defined
by the second homotopy group of 2, which is the Skyrmion
number Q [33,34]. As demonstrated in Ref. [29] nontrivial
Q # 0 give rise to pinch points at ¢ = ¢* in the equal-time
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FIG. 1. (a) Octochlore model: differently weighted sites in
Eq. (2) are indicated by different colors. (b) Phase diagram of the
model from Ref. [29]. The labels A, B, C [with parameters (a, )
given in the inset] indicate the locations of multifold pinch points,
quadratic pinch points, and pinch lines as shown in Figs. 24,
respectively. (c) Spin structure factor of a twofold pinch point at
a=p =0 for the classical and quantum model. (d) Spin
structure factor S(g) along circular paths indicated in (c) nor-
malized to their maxima.

spin structure factor S(q) = (S(—q) - S(q)), where |Q| =1
is associated with twofold pinch points. Furthermore,
expanding L,,(q) in powers of ¢ around g* reveals the
underlying continuum gauge theory.

The number of such defects and their arrangement in the
Brillouin zone yields a phase diagram spanned by a and f
featuring 10 distinct classical spin liquids; see Fig. 1(b).
In particular, at points along the boundary [i.e., point A in
Fig. 1(b)] multiple defects with Q = £1 merge, leading to
a higher |Q] > 1 associated with a tensor gauge theory and
multifold pinch points; see Ref. [29]. In addition, we have
identified even richer phenomena at crossing points of
several phase boundaries: point B in Fig. 1(b) displays a
pinch point with purely parabolic contours, recently pre-
dicted to be a hallmark signature of type-II fracton phases
[28], while point C features unusual, one-dimensional
manifolds of pinch points, so-called pinch-lines [32].

Methods.—The classical model in Eq. (1) is treated within
a standard large-N approach [35], both at zero and finite
temperatures, previously found to correctly capture the
qualitative behavior for this system [29]. To study the vastly
more complicated quantum S = 1/2 version, we employ
two functional renormalization group (FRG) approaches that
replace spin operators by fermionic pseudoparticles. An
established approach at zero temperature is the so-called
pseudofermion FRG (PF-FRG) [36-42], in which spin § =
1/2 operators are mapped onto two flavors of complex

fermions fiT’fii as Sit = %Za,be{?i} f:'raJbeib' At finite
temperatures, we apply the pseudo-Majorana FRG (PM-
FRG) where we, instead, represent spins by three flavors

=x, y, z of SO(3)-symmetric Majorana fermions

{77” 77}} = 5115uy as S,zl = ( /2) Zu.ﬂ ,umfr]z 771 ’ without
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introducing unphysical states [43—45]. For both approaches,
the resulting interacting model is treated in the thermody-
namic limit [46] using one-loop FRG. Here, ~108 first order
ordinary differential equations are solved numerically as a
function of an artificial Matsubara frequency cutoff A. In the
physical limit A — 0, we obtain renormalized fermionic
vertex functions well beyond mean field, from which we
calculate the equal-time spin structure factor S(q). Despite
the common FRG background, the approximations associ-
ated with a one-loop scheme are different in both approaches
such that one can consider the PF-FRG and PM-FRG as
independent and complementary techniques. Still, we observe
excellent agreement between the equal-time PM-FRG struc-
ture factor for the lowest simulated temperatures with the one
obtained from PF-FRG at T = 0 [46].

Twofold pinch points.—Even though not the focus of this
work, we start with a brief discussion of more conventional
twofold pinch points with |Q| = 1, occurring in the bulk of
every phase of Fig. 1(b). At the pinch point positions
q = q*, the lowest nonvanishing term in an expansion of
L,,(g) is the linear one, and hence, the emergent continuum
Gauss law has the linear form V-E(r) =q-E(q) =0
where E(q) =), S5,(q)9,L,,(q) [47]. Under the influ-
ence of quantum fluctuations at 7 = 0 in the S = 1/2 case
treated with PF-FRG, twofold pinch points show the typical
broadening illustrated in Fig. 1(c) for the case @ = = 0,
while the overall pinch point shape stays rather intact. In
particular, we observe the effects of quantum fluctuations to
be analogous to those at a finite temperature 7~ 1.3. This
broadening indicates violations of the ice rule constraint,

and is expected as the absolute spin magnitudes Mgcw/, of

neighboring octahedra do not mutually commute and thus
fluctuate, i.e., <Mgct’aﬂ> # 0. Importantly, the signal at
q = q* remains strong and no indications for magnetic
long-range order are observed in the full a-f plane [46,48].
We find these observations to be in direct analogy with past
studies of the closely related nearest neighbor pyrochlore
Heisenberg model [41,44,49-56].

Multifold pinch points.—A vanishing linear term in an
expansion of L, (g) around g =g* is associated with
multifold pinch points [6,7,29]. An instructive example
occurs at @« = —11/10, f =9/5, and ¢* = (x, z, 7), with a
topological index Q = —7 and six lobes of large intensity in
the hhl plane; see Fig. 2(a) and Ref. [29]. We identify a
gauge constraint of third rank ). ¢,9,9,E,.-(q) =0

where E,,,(q) = >_,, Sh (q)dqy aqyaqum(q), implying con-
served scalar charge, dipole and quadrupole moments.
Figure 2 shows the impact of both quantum and thermal
fluctuations on this multifold pinch point.

The value of S(g) along circular paths around the pinch
point illustrates the presence of the singularity: for the exact
gauge theory in the classical 7 = 0 model, it retains the
same strong angular dependence for arbitrarily small radii;
see Fig. 2(e). Thermal fluctuations induce a rather feature-
less broadening and the angular dependence of the signal

FIG. 2. (a)—(d) Spin structure factor S(g) in the il plane for a
multifold Q = —7 pinch point found at location A (a = —+5
$ =72 in the phase diagram of Fig. 1. (¢) S(g) for the two paths
indicated in (a), normalized to its maximum value along each path.
(f) As in (e) but comparing classical thermal and quantum
fluctuations along the paths in (b) and (c). The paths are
counterclockwise and the start point ¢ = 0 is indicated by a
marker.

vanishes at small distances from the pinch point; see full
red line in Fig. 2(f). Interestingly, the effects of quantum
fluctuations are very different. In addition to a broadening,
quantum fluctuations add a shift of spectral weight away
from the pinch point origin in favor of soft maxima at
incommensurate positions, effectively tearing apart the
pinch point. We note that this observation stands in stark
contrast to the case of twofold pinch points shown in
Fig. 1(c), for which quantum fluctuations appear to act
similarly to thermal ones.

In order to physically interpret the data in Fig. 2, two
types of quantum effects need to be distinguished. First, the
aforementioned broadening of pinch points rather indicates
the destruction of the underlying gauge theory. However, a
second well-known quantum effect consistent with a gauge
theory is the formation of gapless photon modes with
dispersion w(g), resulting from an emergent conjugate
vector potential A(r). These photon modes give rise to an
extra factor w(q) in the spin structure factor [i.e.,
S(q) — w(q)S(q)] suppressing the signal at the singularity
due to w(g*) =0 [6,28,57]. To test whether the weight
distribution in Fig. 2(c) contains possible signatures of such
a modulation, we note that the mere multiplication of an
exact pinch point with an isotropic factor w(q) ~ |q — ¢* |
[or, for that matter, any function w(|qg — ¢*|)] [58] leaves
the singularity intact such that S(g) along rings around the
pinch point, normalized to its maximum on each path,
would remain unchanged upon decreasing the radius of the
rings. However, the dashed red and blue graphs in Fig. 2(f)
illustrating the normalized signal along the ringlike paths in
Fig. 2(c) are qualitatively very different and, hence, our
results seem incompatible with an emergent photon mode.
While it is possible that the ground state is described by a
different gauge theory (i.e., with an emergent electric field

196601-3



PHYSICAL REVIEW LETTERS 130, 196601 (2023)

given by a more complex function of spin operators), we
deem it questionable whether fractonic phenomena that
have been associated with these spectroscopic features still
occur in the S = 1/2 limit of the Heisenberg model.
Quadratic pinch points.—A further generalization
occurs if the gauge constraint contains derivatives of
different orders as is characteristic for multipolar gauge
theories describing type-II fracton phases. This gives rise to
quadratic pinch points in the spin structure factor where
lobes of strong intensity follow contour lines of the form
q) & ag’ with g) and g, being two perpendicular momen-
tum space directions and a is the lattice constant (which is
set to 1 here). The mixing of derivatives causes the lattice
constant to explicitly appear in these spectroscopic pat-
terns, which is a direct manifestation of the ultraviolet-
infrared mixing described in recent literature [28].
Strikingly, we have identified such quadratic pinch points
in the classical octochlore model at a =0, f= -1,
and ¢* = (0,0, 7). The effective gauge theory in this case
contains first derivatives along the z direction, as
d,.L3(q) # 0, while for the perpendicular x, y directions
0q.Ln(q) =94 L, (q) =0 for m =1, 2, 3 and the lowest

nonvanishing contribution comes from second derivatives.
The resulting quadratic pinch point in classical large N
[Fig. 3(d)] has a shape that is similar to predictions from the
U(1) Haah code [28]. The effect of finite temperatures in
large N only amounts to a broadening near g* while
retaining the quadratic shape and the strong signal around
q*. This is to be contrasted with PM-FRG at the same
temperature where the signal is reduced near ¢* and
quadratic contours are no longer discernible. This trend
continues down to 7 = 0 where the spin-structure factor
appears even more strongly reduced around ¢*. Again

(a) Classical
2T

(b) Quantum T'=1.4 (c) Quantum 7'=0

—27 =
1.5 %
0.57 min
—047 0 047 —047 0 047 —047 0 0.47
(d) a0l (e) [hho] ® [hh0]
FIG. 3. Pinch point with parabolic contours in the hhl plane

found at point B (a« = 0, f = —1). (a) Classical large-N result for
temperatures 7 = 0 (left half) and T = 1.4 (right half). (b) Quan-
tum model at 7 = 1.4 and (c) at T = 0 obtained from PM-FRG
and PF-FRG in the low cutoff limit, respectively. (d)—(f) Magni-
fications of the regions indicated by black squares in the upper
panel together with black contour lines.

however, this result seems incompatible with emergent
photons; see Ref. [46].

As a side remark, the model with ¢ =0, f = —1 also
hosts a fourfold pinch point [7]; see Fig. 3(a) at ¢* =0,
associated with a trace-full rank-2 tensor gauge constraint.
With the observed reduction of S(g) and the formation of a
local minimum at ¢* = 0 in the quantum model as T — 0,
this is another example reflecting the strong impact of
quantum fluctuations on exotic pinch points.

Pinch lines.—Points g* of vanishing constraint vector are
not necessarily isolated in momentum space but can form
one-dimensional manifolds. This situation has previously
been studied in Ref. [32] where the phenomenon has been
dubbed a pinch line. Such patterns exhibit conventional
twofold pinch points in all planar cuts through the pinch
line. For the classical pyrochlore model investigated in
Ref. [32] an underlying gauge constraint linear in the
derivatives but with a tensor structure has been identified
and a possible relevance for the pyrochlore material
Tb,Ti,O; [59] has been pointed out.

We have found an analogous feature in the octochlore
model at @ = —1 and § = 1 where pinch lines run along
[111] and symmetry related directions in momentum space.
The lowest nonvanishing derivatives of L,,(q) at ¢* are first
order derivatives perpendicular to the pinch lines, in
agreement with the pyrochlore model of Ref. [32]. Since
the topological defect is now linelike and observing that the
normalized constraint vector L,,(g) avoids two opposite
points on the unit sphere S [46], the topological index is
given by the integer vortex winding number w. We find
|lw| =1 and consequently, twofold pinch points in planar
cuts through the line defect; see bottom panel of Fig. 4
depicting cuts at g, = 0.57. Thermal fluctuations in the
classical model [Fig. 4(a), right] shift spectral weight
toward the pinch lines such that they become visible in

(a) Classical (b) Quantum 7T=1.4 (c) Quantum7'=0

e

—2m 27— 21

2m— 21

8(q)

[4,7,0.57]

—2r —1.6mr =127 —27 —1.6mr —127 —27 —1.6m — 127
(d)  [ph0] (e) y ® [Rh0)

FIG. 4. (a)—(c) Temperature dependent spin structure factor for
a pinch line at a = —%, p =1 [C in Fig. 1(b)] in the [111]
direction. Panels (d)—(f) show a cut through the pinch line, here
given by ¢, = 0.5z as indicated by the solid dark red line in
panels (a)—(c).
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the hhl plane as well-defined, broadened lines of constant
strong signal.

For the corresponding quantum model, similar observa-
tions to the previous cases can be made, such as a
redistribution of spectral weight away from the pinch line
when temperature is lowered, as shown in the bottom panel
of Fig. 4. It is again worth contrasting this behavior with
conventional twofold pinch points representing isolated
point defects where quantum fluctuations are not seen to
significantly reduce the signal at g = ¢*; see the example in
Fig. 1(c).

Discussion.—We have identified the classical octochlore
model as an exquisite physical platform for studying exotic
spectroscopic features, such as multifold and quadratic
pinch points as well as pinch lines, all associated with
unconventional gauge theories. Numerical studies that
systematically investigate the impact of quantum fluctua-
tions on the corresponding classical spin liquids are,
however, lacking so far. In our endeavor to fill this gap,
we treat the quantum spin S = 1/2 model employing state-
of-the-art PF-FRG and PM-FRG methods. We find a
recurring theme in our results: multifold pinch points,
quadratic pinch points, and pinch lines all undergo a
significantly different modification under quantum fluctu-
ations than conventional twofold pinch points, showing a
reduction of S(g) at g* that is also at variance compared to
the effects of pure thermal fluctuations in the classical case.
This also implies that the absence of unconventional pinch
points in an experimentally measured spin structure factor
does not necessarily exclude the realization of a higher-
rank U(1) gauge theory in the corresponding classical
system.

From a methodological perspective, here, we benefit
from the fact that our octochlore model has SU(2) spin
symmetry that simplifies the application of PF-FRG and
PM-FRG enormously. A (numerically more challenging)
continuation of our present work could be to lift the SU(2)
symmetry by considering an Ising version of the octochlore
model supplemented with small transverse couplings, thus
realizing an analogous situation as in quantum spin ice
models. This will help identifying the fate of exotic pinch
point singularities along a continuous classical-to-quantum
interpolation. Thus, our results strongly motivate new
avenues in the investigations of these exotic pinch points
under quantum fluctuations, which appear to have a more
significant impact compared to twofold pinch points.
Furthermore, our work sets the stage for determining the
microscopic wave functions describing these resulting
quantum phases, and whose correlation functions give rise
to the static structure factors obtained here [60].
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