
Saturation of Vortex Rings Ejected from Shock-Accelerated Interfaces

Michael J. Wadas ,* Loc H. Khieu, Griffin S. Cearley , Heath J. LeFevre , Carolyn C. Kuranz , and Eric Johnsen
University of Michigan, Ann Arbor, Michigan 48109, USA

(Received 11 August 2022; revised 1 March 2023; accepted 12 April 2023; published 12 May 2023)

Structures evoking vortex rings can be discerned in shock-accelerated flows ranging from astrophysics
to inertial confinement fusion. By constructing an analogy between vortex rings produced in conventional
propulsion systems and rings generated by a shock impinging upon a high-aspect-ratio protrusion along a
material interface, we extend classical, constant-density vortex-ring theory to compressible multifluid
flows. We further demonstrate saturation of such vortex rings as the protrusion aspect ratio is increased,
thus explaining morphological differences observed in practice.
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The mixing induced by the interaction of shocks with
interfaces separating different fluids has implications for
problems ranging from inertial confinement fusion (ICF) to
astrophysics. In ICF, laser-generated shocks pass through
layers of a capsule containing fusion fuel, compressing and
heating it to extreme conditions at which self-sustained
nuclear fusion may occur [1–4]. The mixing of the capsule
material with fuel in the hot spot due to imperfections on
the capsule surface and from the gas fill tube is a primary
source of decreased performance [5–11]. In core-collapse
supernovae, shocks generated from rapid energy release
propagate outward through the layers of the collapsing
stars, causing heavy core elements to jet into outer layers
[12–16]. An understanding of these turbulent, shock-driven
mixing phenomena is crucial for the success of ICF and
may help elucidate the mechanisms by which heavy and
light elements mix in the universe. While efforts are
underway to develop models describing these turbulent
phenomena [17,18], their initialization is problematic given
the lack of understanding of the transition to turbulence in
these shock-accelerated flows.
As it traverses a perturbed material interface, a shock

deposits baroclinic vorticity due to the misalignment of the
density and pressure gradients, driving interfacial perturba-
tion growth via the Richtmyer-Meshkov instability (RMI)
[19,20]. Perturbations initially grow linearly in time before
saturating and rolling up into a mushroomlike shape as
nonlinear effects dominate [21,22]. Theoretical studies have
long described early-time RMI dynamics in terms of point
vortices or vortex sheets [23–26]. In complex situations
(e.g., multimode, reshock, late times, etc.), the multimaterial
mixing region may evolve to turbulence [27–31], which
spreads as eddies entrain adjacent fluid parcels of different
densities [32,33]. Although linear and, to some extent, early
nonlinear theory describing perturbation growth are well
established [22,34–36], turbulence transition and late-time
mixing are poorly understood due to the inhomogeneity and
intermittency of the flow. There is no doubt, however, that

vorticity dynamics play a role in transition and mixing
[26,37,38].
Advances in diagnostics, in particular, micron-scale

x-ray imaging with Fresnel zone plates and lithium fluoride
detectors [39–42], and numerical methods have enabled
high-resolution visualizations of shock-induced mixing
regions. In recent studies [10,29,43–49], flow structures
intermittently ejected from the mixing region can be
discerned, in some cases to distances many times their
characteristic length, as illustrated in Fig. 1. Though
explicitly connected to vortex rings [30,48,50,51], these
structures cannot be described by (nonlinear) RMI theory
or existing models [34,35,47,52–54]. A criterion for vortex
dipole ejection based on the initial interface geometry was
developed [47], though this study fell short of quantita-
tively describing the ejection mechanism. Predicting this
shock-induced ejection of vortex rings is critical to deter-
mine the growth of the mixing region because these
structures transport kinetic energy and circulation from
the mixing region and therefore affect its size and intensity.

FIG. 1. Left: evolution of a multimode shocked fluid layer
experiment [44]. Middle: experimental (top) and simulated
(bottom) x-ray self-emission during an ICF capsule implosion
[45]. Right: volume fraction from RMI simulations [43]. Red
arrows indicate likely vortex rings and dipoles. All images are
reproduced with permission.
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Furthermore, such rings may perturb other flow structures
away from the mixing region (e.g., other nearby interfaces).
While vortex rings generated by drawing a piston in an
open-ended cylinder have received significant attention in a
completely different context [55,56], the mechanism
explaining the formation and ejection of vortex rings
and dipoles from shock-induced mixing regions has yet
to be established.
In this Letter, we outline a theory quantitatively

describing the formation, ejection, and evolution of vortex
rings from shock-accelerated interfaces. Drawing from
classical studies [55], we develop a setup enabling us to
systematically investigate the formation and ejection of
vortex rings from mixing regions generated by the
interaction of a shock with an interface. Our analysis,
verified by direct simulations of the Euler equations, fully
describes the vortex ring dynamics, thereby extending
classical theory for piston-cylinder systems to more
general geometries and vorticity sources, including com-
pressible multifluid flows. This theory allows us to
calculate the kinetic energy and circulation leaving the
confines of the mixing region, which are key quantities
in turbulence modeling, and identify situations when
vortex ring saturation occurs. Furthermore, our theory
may elucidate flows dominated by shock-induced jets
at interfaces, such as those observed in ICF due to the
fill tube and capsule defects [10,45,46], astrophysics
[16,57–59], and possibly ejecta physics [60,61].
We first revisit the basic attributes of classical vortex

rings in propulsion systems, in which an impulsively
started jet is generated by forcing a piston through a
hollow cylinder. The vortex sheet produced along the inner
edge of the orifice separates and rolls up to form a ring
[62–64]. As long as the ring is attached to the jet, it
accumulates circulation as it convects downstream.
However, beyond a critical stroke-to-diameter ratio, the
ring detaches from the jet, and no additional circulation can
be imparted to it. Over a wide range of experiments and
simulations [65–71], this saturation occurs at a stroke-to-
diameter ratio of approximately 4, deemed the formation
number, which equivalently represents the timescale over
which vortex rings form by expressing the stroke length as
the time-integrated piston velocity [55,56].
Given morphological similarities between classical vor-

tex rings and rings ejected from shock-accelerated inter-
faces (see Supplemental Material [72]), we postulate that
the vorticity deposited by a shock interacting with a high-
aspect-ratio protrusion along a material interface serves the
same purpose as that produced along the cylinder wall.
If this hypothesis is correct, vortex rings ejected from
shock-accelerated interfaces would exhibit behavior similar
to classical rings, e.g., in terms of their circulation and
formation number (including saturation), as well as their
energy and impulse. We therefore expect that an initial
interfacial geometry analogous to the cylinder may lead to

similar vorticity dynamics. As illustrated in Fig. 2, we set
up our problem with heavy fluid of density ρH adjacent to
light fluid of density ρL, with a heavy-fluid protrusion of
diameter D and depth L in the light fluid. The shock
propagates from right to left. The compression ratio across
the shock ρH0=ρH characterizes the shock strength (equiv-
alently, a Mach number, M, could be defined), where ρH0

is the density of the shocked heavy fluid. The shock is
transmitted through the interface, compressing the light
fluid to density ρL�, and a rarefaction is reflected from
the interface, decompressing the shocked heavy fluid to
density ρH�. These densities are obtained by solving the
Riemann problem initialized between the unshocked light
fluid and the shocked heavy fluid. The protrusion,
modeled as decompressed shocked heavy fluid of depth
L0 ¼ ðρH=ρH� ÞL, starts inverting due to the sign of the
vorticity. During inversion, the fluid in the protrusion is
ejected into the heavy fluid at speed Ui relative to the
interface, analogous to the piston speed in the classical
system, entraining the light fluid and forming a vortex ring
of density ρR. As in past studies [56], we model the ring as
belonging to the Norbury [73] family, but must account
for compressibility and multiple fluids. For an unsaturated
ring, the circulation, impulse, and energy of the fluid slug
ejected from the protrusion equal those corresponding
to the ring. Extending the analysis to the present multi-
material system yields

Γslug ¼
1

2
L0Ui ¼

1

2

ρH
ρH�

LUi ¼ ðΩαlÞlΓN ¼ ΓVR; ð1aÞ

Islug ¼
1

4
ρHπD2LUi ¼ ρRðΩαlÞl3IN ¼ IVR; ð1bÞ

Eslug ¼
1

8
ρHπD2LU2

i ¼ ρRðΩαlÞ2l3EN ¼ EVR; ð1cÞ

where Ω is the vorticity density (i.e., vorticity divided
by distance from the ring centerline [73]), α is the
nondimensional mean vortex core radius, l is the ring

FIG. 2. Schematic showing the problem setup. Top: a shock
approaches an interface separating heavy and light fluids with a
heavy-fluid protrusion. Middle: the shock is transmitted through
the interface, compressing the protrusion and setting the interface
into motion, while a rarefaction is reflected. Bottom: the
protrusion inverts and ejects a vortex ring into the heavy fluid.
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radius, and the subscript N denotes nondimensional
quantities that are functions only of α. Equations (1)
can be rearranged to yield the formation number

L
D

¼ σ

ffiffiffi
π

2

r
I1=2N Γ3=2

N

EN
¼ σ

ffiffiffi
π

2

r
Γ3=2
N

UNI
1=2
N

; ð2Þ

where L0 ¼ ðρH=ρH�ÞL, Ui ¼ 2ðΩαlÞUN [56], and

σ ¼
ffiffiffiffiffiffiffi
ρH�

ρR

r
ρH�

ρH
: ð3Þ

As with classical vortex rings, the formation number
depends on the circulation, impulse, and energy, but
now also depends on the shock strength and interface
density ratio. Equation (2) states that maximal circulation,
impulse, and energy generated by the inverting protrusion
is contained within the resulting ring. The parameter σ is a
formation number multiplier generalizing the classical
formation number [compare Eq. (2) in the present Letter
to Eqs. (12) and (13) in [56]] to rings generated from
shocked interfaces, i.e.,

ðL=DÞsat;shock ¼ σðL=DÞsat;classical: ð4Þ
The formation number multiplier accounts for both the

interface density ratio and shock strength. The multifluid
factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρH�=ρR

p
is the square root of the relative density of

the protrusion with respect to the ring after shock interaction.
We approximate the ring density as the average of the
postshock fluid densities, ρR ≈ ðρH� þ ρL� Þ=2, which is
consistent with both simulations and the entrainment proper-
ties of saturated Norbury rings [73], though other mixing
models could be used. As the density ratio is increased, the
relative density of the vortex ring decreases. The resulting
decrease in the ring’s impulse and energy allows it to support
additional impulse and energy from the inverting protrusion,
which can be increased by increasing the protrusion depth
[Eqs. (1b) and (1c)], thereby producing a larger formation
number. The compression factor ρH�=ρH describes shock
compression of the protrusion. Because the circulation
supplied by the inverting protrusion is proportional to
protrusion depth and thus inversely proportional to shock
strength [Eq. (1a)], the unshocked depth, and therefore
formation number, must increase as the shock strength is
increased to supply the same amount of circulation. If a
vortex ring is produced with no compression (ρH0 → ρH) and
no density difference (ρH → ρL), the classical limit σ ¼ 1 is
recovered. The classical formation number is generally
accepted to be 3.0 ≤ ðL=DÞsat ≤ 4.6 [56], and therefore it
is expected that in the present shock-accelerated case the
formation number falls within the range

3.0σ ≤ ðL=DÞsat;shock ≤ 4.6σ: ð5Þ
To verify these theoretical results, we use an in-house

code [74–76] (see Supplemental Material [72]) to solve the
three-dimensional Euler equations for the setup in Fig. 2.

Sets of simulations, detailed in Table I, are performed for
different density ratios and shock strengths similar to those
in [21,28,29,31,47]. In cases 1–4, L is varied from 1 to 8
while keeping D constant. Cases 5 and 6 explore stronger
shocks and larger interface density ratios. The simulations
evolve in time long enough for pinch-off to occur, leading
to a steady, self-propagating vortex ring identified by the
λ2 ¼ 0 criterion, a standard method for identifying vortices
based on eigenvalues, λ1 < λ2 < λ3, related to the velocity
gradient tensor [77]. To illustrate the dynamics, Fig. 3
shows out-of-plane vorticity ω and density contours along
the centerplane, as well as the three-dimensional surface of
λ2 ¼ 0, for a shock of strength ρH0=ρH ¼ 1.34 with inter-
face density ratio ρH=ρL ¼ 2 and protrusions of aspect
ratios L=D ¼ 1 and 5. For the L=D ¼ 1 case, the pro-
trusion inversion ejects a vortex ring that quickly pinches
off and steadily separates from the original interface.
Although some vorticity is confined to the interface, most
of the vorticity is concentrated within the ring; there are
no vortices between the ring and the interface. For the
L=D ¼ 5 case, which is near the formation number

FIG. 3. Evolution of the vorticity (top) and density (bottom)
following the interaction of a shock of strength ρH0=ρH ¼ 1.34
with heavy-fluid protrusions with aspect ratios L=D ¼ 1 (left)
and L=D ¼ 5 (right) along an interface with ρH=ρL ¼ 2. Orange
surfaces enclose vortex rings, as identified by the λ2 ¼ 0
criterion [77].

TABLE I. Simulation parameters and expected formation
numbers and ranges predicted by our theory.

Case ρH0=ρH M ρH=ρL 3.0σ 4.6σ ðL=DÞsat;shock
1 1.17 1.1 2 3.94 6.05 5.16
2 1.17 1.1 5 4.27 6.54 5.52
3 1.34 1.2 2 4.42 6.78 5.47
4 1.34 1.2 5 4.65 7.13 6.03
5 1.86 1.5 8 5.54 8.50 6.79
6 2.67 2.0 11 6.33 9.70 7.59
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predicted by our theory, a pinched-off ring still steadily
propagates away from the interface, but a trailing jet with
vortices is evident. A known signature of exceeding the
formation number, this jet forms because the saturated ring
cannot support additional circulation from the vortex ring
generator, which accumulates in the trailing jet [55].
These results suggest that the ring circulation saturates at

sufficiently large protrusion aspect ratios, consistent with
the classical case. To confirm that the formation number
has been reached, Fig. 4 shows the circulation of the
pinched-off rings for different protrusion aspect ratios
L=D. At low aspect ratios, the circulation of the ejected
rings increases as the protrusion aspect ratio is increased.
As L=D is further increased, however, the circulation
saturates; at this point, no further circulation can be
imparted to the ring. We take the formation number to
be the value of L=D at the intersection of a line fit to points
with L=D ≤ 3, where the ring circulation appears to be
growing linearly, and the average circulation of points with
L=D ≥ 7, where the circulation plateaus. The formation
number for each set of simulations differs from classical
theory but falls near the center of the range predicted by our
extended theory, summarized in Table I and the upper-left
inset of Fig. 4.
As an example application, we estimate the formation

number for the fill-tube jet for experiment N210808 at the
National Ignition Facility [4,78] as

ðL=DÞsat;shock ¼ 3.8σ ¼ 3.8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρe�

ρa� þ ρe�

s
ρe�

ρe
≈ 7; ð6Þ

where ρe� and ρa� are the densities of the epoxy and ablator,
respectively, after a strong shock releases off the ablator-ice
interface and ρe is the unshocked epoxy density. Although a
2 μm fill tube was utilized, the diameter of the epoxy-filled
bore hole was D ¼ 8.4 μm [78], making epoxy the appro-
priate material to model the protrusion. In this experiment,
the ablator thickness was L ¼ 79 μm, and therefore L=D ¼
9.4. Because L=D > ðL=DÞsat;shock, a saturated vortex ring
and a trailing jet are expected, consistent with Fig. 1. The
circulation, impulse, and energy injected into the hot spot
by the ring can then be calculated from Eq. (1) with
L=D ¼ ðL=DÞsat;shock. Furthermore, by replacing L with
an integrated protrusion, or jet, velocity, our theory provides
the timescale on which the ring forms. Although the
calculated formation number appears to agree with obser-
vations of fill-tube jetting, the authors advise caution for
direct applications to ICF, which involves fill-tube configu-
rations that differ from our canonical setup, intense radiation,
and convergent geometries. These and other effects would
likely need to be considered for a precise determination of
the fill-tube formation number.
The lack of a trailing jet for rings generated from smaller

defects, and in the late nonlinear phase of the RMI,
suggests that these rings are unsaturated. Both saturated
and unsaturated rings transport kinetic energy, thus giving
rise to a reduction in the kinetic energy of the mixing region
the ring originates from. Ejected rings could also interact
with other flow structures away from the mixing region.
While the effects of viscosity and magnetic fields are
not presently considered based on the Reynolds number
and plasma beta, Re and β, respectively, in ICF, where
Re ∼ 104 [79] and β ∼ 105 [80], and for many supernovae,
where Re ∼ 1010 and β ∼ 104 [81], the conservation argu-
ments central to our theory support a path to explore
diffusive effects and magnetic fields. Because such mech-
anisms would tend to inhibit the conversion of circulation,
impulse, and energy from the inverting protrusion to the
vortex ring, a greater protrusion aspect ratio would likely be
required to form a saturated ring. These and other effects,
including molecular diffusion and radiation, may be quan-
tifiable with appropriate source terms in Eq. (1).
In this Letter, we demonstrate that vortex rings gen-

erated following the interaction of a shock with a
cylindrical protrusion originate due to the baroclinic
torque deposited along the interface, which ejects the
fluid initially in the protrusion as it inverts. The resulting
dynamics are consistent with classical piston-cylinder
systems, exhibiting ring saturation coincident with the
emergence of a trailing jet. However, the formation number
is augmented by a factor accounting for the different fluid
densities and shock compression. Our analysis thus general-
izes the classical theory to compressible multifluid flows and

FIG. 4. Ring circulation vs protrusion aspect ratio for cases 1–6
(yellow circles, green pentagrams, teal squares, dark blue
hexagrams, grey diamonds, and orange triangles, respectively)
in Table I. The right inset is a close-up of cases 1–3. The
horizontal location of each red star identifies the formation
number. The upper-left inset shows the formation number from
simulations vs our theory. The dotted line indicates where
ðL=DÞsat;shock ¼ 3.8σ, and the dashed lines bound the shaded
region where 3.0σ ≤ ðL=DÞsat;shock ≤ 4.6σ.
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explains morphological differences observed in practice.
While the computations presented support the theory,
simulations exploring a wider range of parameters may help
elucidate certain details, including late-time shock-induced
turbulent mixing, as ejected vortex rings may affect mixing
layer development and turbulent transition.
The present findings may have implications in ICF and

astrophysics. In ICF, the fill tube may generate a vortex ring
that impinges on the hot spot. Our theory also describes a
mechanism that may affect mixing following supernovae
and explain the presence of stellar core elements in the
outer layers of expanding remnants. Furthermore, the
results of our analysis could be used to deduce quantities
of interest for shock-induced ejecta or jets.
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