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With a levitodynamics experiment in the strong and coherent quantum optomechanical coupling regime,
we demonstrate that the oscillator acts as a broadband quantum spectrum analyzer. The asymmetry between
positive and negative frequency branches in the displacement spectrum traces out the spectral features of
the quantum fluctuations in the cavity field, which are thus explored over a wide spectral range. Moreover,
in our two-dimensional mechanical system the quantum backaction, generated by such vacuum
fluctuations, is strongly suppressed in a narrow spectral region due to a destructive interference in the
overall susceptibility.
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A classical observable, described by a real function of
time, always manifests a frequency-symmetric spectrum.
This requirement does not hold for quantum observables,
which can exhibit asymmetric spectra originated by non-
commuting operators. An important example is given by the
vacuum noise in the photon number of the electromagnetic
field in a driven cavity [1]. This quantum feature can be
shown by parametrically coupling the field to the position of
a mechanical oscillator, in optomechanics experiments [2,3].
In the weak coupling regime (g < κ=4, where g is the
optomechanical coupling rate and κ is the optical decay
rate), the interaction between electromagnetic field and
mechanical motion can be understood in the framework of
a Raman scattering picture [4,5]. As a result of this process,
twomotional sidebandpeaks are imprinted in the spectrumof
the cavity field, tracing out the displacement spectrum of
the oscillator. Because of the asymmetry in the field vacuum
fluctuations, the two sidebands are unbalanced,with the anti-
Stokes (Stokes) Lorentzian peak amplitude proportional to n̄
(n̄þ 1). Here, n̄ is the resulting phononic occupancy of the
mechanical oscillator [6,7] which, for suitable detuning Δ
between the driving field and the cavity mode, is deeply
cooled thanks to the different probabilities of the two
processes. The sideband asymmetry can be appreciated in
a heterodyne detection of the field exiting the cavity [8,9].
The amplitude imbalance between the anti-Stokes and
Stokes peaks is a signature of both the spectral asymmetry
of the backaction provided by the field vacuum fluctuations,
and the nonclassical motion of the oscillator approaching its
ground state [10,11].
We argue that the analysis of the frequency asymmetry in

the full spectrum, extended beyond a mere quantification of
the amplitude ratio between similar Lorentzian peaks, is a

potentially powerful tool for exploring the quantum behav-
ior of optomechanical systems. Already in the weak
coupling regime, different shapes of the two sidebands
have been observed in a parametric squeezing experiment
[12,13]. More generally, the full spectral analysis is
particularly efficient outside the regime of single-mode
and weak optomechanical coupling, where the scattering
picture is no more sufficient to explain the displacement
spectrum and, consequently, the spectrum of the output
field.
In this Letter we exploit the quantum-coherent strong

coupling regime [14–18] and show that the oscillator fully
unfolds its potentialities as quantum spectrometer [1]. The
difference between the positive and negative frequency
branches in the displacement spectrum is traced back to
the characteristics of the quantum fluctuations in the cavity
field, in particular their spectral shape dictated by the cavity
filtering. Moreover, in a two-dimensional mechanical
system we demonstrate that the quantum backaction,
generated by the vacuum field fluctuations, is canceled
in a narrow spectral region, due to the structure of the
overall susceptibility characterized by modal interferences.
Such cancellation does not occur for the thermal noise,
since different modes couple to uncorrelated baths [19]. As
a consequence, the spectral asymmetry, which singles out
the quantum component of the backaction, exhibits a sharp
characteristic dip that provides the clearest experimental
signature of the field vacuum fluctuations. Furthermore,
for strong enough two-dimensional cooling, the Stokes
sideband, dominated by the quantum backaction, presents a
peculiar hole.
Our experimental system [Fig. 1(a)] is based on a silica

nanosphere (diameter 125 nm) levitated in the optical
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potential created by a strongly focused laser beam, gen-
erated by a Nd:YAG source (optical tweezer [20]) inside a
vacuum chamber [21,22]. Labeling with Z the tweezer axis
and Y the axis of the linear polarization [see Fig. 1(c) for a
scheme], the oscillation frequencies are ðΩx;Ωy;ΩzÞ=2π ¼
ð131; 120; 30Þ kHz. The loading procedure is described in
Ref. [23]. Because of its much lower frequency, the motion
along Z is completely decoupled from the one on the
orthogonal plane, and we will neglect it in this Letter.
On the other hand, the motion on the XY plane is described
by a fully two-dimensional system, as ðΩx −ΩyÞ is
comparable to the optomechanical shifts and broadenings.
The nanosphere is accurately positioned on the axis of a
Fabry-Perot cavity (linewidth κ=2π ¼ 57 kHz), which is
almost orthogonal to the tweezer axis. The light of the
tweezer has an accurately controlled detuning Δ from a
cavity resonance, and the nanosphere is placed in corre-
spondence of a node of the corresponding cavity standing
wave. The motion along the cavity axis is coupled to the
cavity mode by coherent scattering [24–26]. This technique
provides a large optomechanical coupling, which recently
allowed cooling the nanosphere oscillations down to
phononic occupancy below unity [27–29]. The tweezer
light scattered into the cavity mode and transmitted by the
end mirror is analyzed in a balanced heterodyne detection.

Further details on the experimental setup are given in
Refs. [18,28].
The linearized evolution equations for the motion in

the plane orthogonal to the tweezer axis, expressed in
the frame rotating at the laser frequency ωL, can be
written as

_̂ac ¼
�
iΔ −

κ

2

�
âc þ igxðb̂x þ b̂†xÞ þ igyðb̂y þ b̂†yÞ þ

ffiffiffi
κ

p
âin

ð1Þ

_̂bj ¼
�
−iΩj −

γj
2

�
b̂j þ igjðâc þ â†cÞ þ

ffiffiffiffiffi
Γj

p
b̂n;j ð2Þ

where the operators âc and b̂j describe, respectively, the
intracavity field and the two mechanical modes (j ¼ x, y), γj
are the gas damping rates, and gj are the optomechanical

coupling rates. The ladder operators b̂j are linked to the
operators describing the displacements (x̂, ŷ) by the relations
x̂ ¼ xzpfðb̂x þ b̂†xÞ and ŷ ¼ yzpfðb̂y þ b̂†yÞ, where xzpf ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2mΩx

p
and yzpf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2mΩy

p
are the zero-point

position fluctuations of the free oscillators, and m is the
mass of the nanosphere. The input noise operators
are characterized by the correlation functions
hâinðtÞâ†inðt0Þi ¼ δðt − t0ÞhâinðtÞâ†inðt0Þi ¼ δðt − t0Þ, hâ†inðtÞ
âinðt0Þi¼0, hb̂†n;jðtÞb̂n;jðt0Þi ¼ hb̂n;jðtÞb̂†n;jðt0Þi ¼ δðt − t0Þ.
The total decoherence rates Γj are due to collisions with
the background gasmolecules [30], and to the shot noise in the
dipole scattering [31]. For both processes we are using a
classical description, justified by the oscillation frequencies
and the operation at room temperature.
We note that the optomechanical coupling rates can be

written as gx¼gmaxsin2θ and gy¼gmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðΩx=ΩyÞ
p

sinθcosθ
[26], where θ is the angle between the cavity axis Xc and
the tweezer polarization axis [see Fig. 1(c)]. The opto-
mechanical coupling with the motion perpendicular to the
cavity axis is null and indeed in our model this coupling
is proportional to ∝ ðsin θgy=yzpf − cos θgx=xzpfÞ ¼ 0.
Whenever the effective width of the mechanical resonan-
ces, increased by the optomechanical coupling, is compa-
rable to or larger than the frequency splitting ðΩx − ΩyÞ, it
is useful to describe the planar motion using the axis Xc and
Yc (cavity frame). The motions along these directions
define respectively the so-called geometrical bright and
dark modes [32], with frequencies given, respectively, by
Ω2

b ¼ sin2 θΩ2
x þ cos2 θΩ2

y and Ω2
d ¼ cos2 θΩ2

x þ sin2 θΩ2
y.

The optomechanical coupling to the bright mode is

gb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg2xΩx þ g2yΩyÞ=Ωb

q
¼ gmax sin θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωx=Ωb

p
. In the

strong coupling regime, the spectrum of the bright mode
exhibits two broad peaks corresponding to the polaritonic
resonances [see Fig. 1(b)]. Since the x and y frequencies

FIG. 1. (a) Simplified scheme of the experimental setup.
Acousto-optic modulator (AOM), balanced heterodyne detection
(HBD). (b) Power spectral density (PSD) of the heterodyne signal
(anti-Stokes sideband), normalized to shot noise. A narrow peak
due to the coupling between bright and dark modes is visible
between two broad polaritonic resonances [18]. To emphasize
this structure, we show with dashed lines three Lorentzian shapes
with centers and widths determined by the system eigenvalues,
and amplitudes adapted to fit the experimental spectrum. The red
solid line is the fit with the full model of Eqs. (3) and (5). The
parameters are the same as in Fig. 2, with a detuning Δ=2π ¼
−130 kHz and a polarization angle θ ¼ 81°. (c) Schematic of the
plane orthogonal to the tweezer axis. In the tweezer frame, Y
denotes the tweezer polarization axis and X its orthogonal
direction. In the cavity frame, Xc denotes the cavity axis, and
Yc its orthogonal direction.
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are not degenerate, the bright and dark directions do not
correspond to eigenstates of the total Hamiltonian, there-
fore the spectrum of the bright mode also shows a
third peak, corresponding to the third eigenstate of the
three-dimensional optomechanical system. In the cavity
frame it can be ascribed to the coupling between bright and
dark modes and, in loose terms, it is called the dark mode
peak.
The total cavity output field is given by the input-output

relation â ¼ ffiffiffi
κ

p
âc − âin. The heterodyne spectrum nor-

malized to shot noise can be written as

SoutðΩLO þ ωÞ ¼ 1þ ηg2bκjχcðωÞj2SxbxbðωÞ; ð3Þ

where ΩLO is the angular frequency of the local oscillator,
and η is the overall detection efficiency. The displacement
spectrum Sxbxb of the bright mode appears, filtered by the
optical susceptibility χc ¼ ½−iðΔþ ωÞ þ ðκ=2Þ�−1. To re-
cover the main system features from the measured output
spectrum, we thus calculate a corrected asymmetry defined
for ω > 0 as

AðωÞ ¼ SoutðΩLO − ωÞ − 1

SoutðΩLO þ ωÞ − 1

ðω − ΔÞ2 þ ðκ=2Þ2
ðωþ ΔÞ2 þ ðκ=2Þ2 : ð4Þ

According to Eq. (3), it provides the imbalance between the
negative and frequency branches of the displacement
spectrum, i.e., AðωÞ≡ Sxbxbð−ωÞ=SxbxbðωÞ.
From the system equations, we can obtain the stationary

power spectrum Sxbxb , which reads [33]:

SxbxbðωÞ ¼
1

g2b

1

j1þ χ−c ðg2xχ−x þ g2yχ−y Þj2
× ½g2xΓxðjχxðωÞj2 þ jχxð−ωÞj2Þ
þ g2yΓyðjχyðωÞj2 þ jχyð−ωÞj2Þ
þ jg2xχ−x þ g2yχ−y j2κjχcð−ωÞj2�; ð5Þ

where χ−c ¼ χcðωÞ − χ�cð−ωÞ, χ−j ¼ χjðωÞ − χ�jð−ωÞ, and
χjðωÞ ¼ ½iðΩj − ωÞ þ ðγj=2Þ�−1 are the mechanical sus-
ceptibilities. In Eq. (5) we can distinguish the contribution
of the spectrally flat noise forces quantified by the
decoherence rates Γj, from that generated by the optical
vacuum noise, filtered by the cavity and therefore propor-
tional to κjχcð−ωÞj2.
The nanosphere is levitated in high vacuum, where its

dynamics is dominated by the strong coupling with the
cavity field and markedly nonclassical effects can be
unveiled. The quantum features are highlighted in the
spectral asymmetry reported in Fig. 2 for different values
of the detuning. The ratio between the sidebands strongly
departs from the classical unit value on a broad spectral
region. The maximal asymmetry occurs for frequencies
around ω ∼ −Δ, where it ranges between ∼5 and ∼8,
denoting a strong nonclassical behavior.
For the interpretation of these spectral features it is

instructive to start from the one-dimensional limit of
Eq. (5), obtained for θ ¼ π=2 and therefore gy ¼ 0, which
gives the spectrum

SxxðωÞ ≃ jχeffm ðωÞj2½Γþ κg2jχcð−ωÞj2� ð6Þ
where, for the seek of clarity, we have set xb → x, Γx → Γ,
gx → g, and where χeffm is the effective mechanical

FIG. 2. Spectral asymmetry AðωÞ for a tweezer light detuning (shown by vertical dashed lines) ranging from −Δ=2π ¼ 100 (a) to
−Δ=2π ¼ 150 kHz (f) in steps of 10 kHz, at a background pressure of 4 × 10−6 Pa. The dark blue solid lines are produced by the
theoretical model, fitted to the experimental data. The fits give mean values of the maximum optomechanical coupling rate
gmax=2π ¼ 23.5 kHz, of the decoherence rates Γx=2π ¼ 6.2 and Γy=2π ¼ 5.6 kHz, and polarization angles
θ ¼ ð71; 81; 84; 67; 84; 71Þ°. Red dots display the eigenfrequencies of the system extracted from the drift matrix.
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susceptibility, with jχeffm ð−ωÞj2 ¼ jχeffm ðωÞj2. The spectral
asymmetry is determined by the term proportional to
jχcð−ωÞj2, and it is particularly relevant at detuning −Δ≃
Ωx, for large quantum cooperativity CQ ¼ ð4g2=κΓÞ ≫ 1.
This is also the requirement for achieving ground state
cooling. In the weak coupling regime, χeffm ðωÞ gives a couple
of Lorentzian peaks much narrower than κ, centered at
frequencies �Ωeff shifted with respect to �Ωx, due to the
optical spring effect. In Eq. (6) we can therefore approximate
χcð−ωÞ with its values at∓ Ωeff , obtaining different scaling
factors for the Lorentzian Stokes and anti-Stokes peaks.
In the strong coupling regime, the effective mechanical

susceptibility gets broader and is composed of the two
polaritonic peaks of width ∼κ=2 [14,18]. The mechanical
transfer function probes the noise bath on a bandwidth of
the order of ∼2gþ κ=2 > κ around the mechanical bare
frequency on both the positive and negative frequency
branches. In this case, the spectral asymmetry can be
experimentally investigated over a wide range and reads

Sxxð−ωÞ
SxxðωÞ

¼ SFFð−ωÞ
SFFðωÞ

¼ Γþ κg2jχcðωÞj2
Γþ κg2jχcð−ωÞj2

: ð7Þ

The oscillator acts as a broadband quantum spectrum
analyzer of the external force, expressed in Eq. (7) in
terms of the power spectral density SFFðωÞ [1]. As shown
in Fig. 2, thanks to the strong coupling and the high
quantum cooperativity we can indeed appreciate the full
shape of AðωÞ, that is dictated by the optical susceptibility
and, as suggested by the right-hand side of Eq. (7), reaches
its maximum for ω ≃ −Δ.
Returning to the two-dimensional system, a particular

feature of the asymmetries, well visible in Fig. 2, is a dip
occurring at ∼119 kHz, regardless of the detuning. Here
the two sidebands have almost equal amplitudes and their
ratio falls very close to unity. This peculiarity derives from
the presence of the two mechanical susceptibilities in the
full system model. The prefactor g2yχ−y þ g2xχ−x in the last
term of Eq. (5) describes the superposition of the linear
responses of the two bare oscillators to the common mode
optical radiation pressure force. The two susceptibilities
are weighted with their respective coupling rates. In the
spectral region between the mechanical frequencies, the
two oscillators react to the fluctuating optical force with
opposite phase, leading to a destructive interference effect.
Remarkably, here the quantum back action is inhibited
from entering the mechanical system. With high mechani-
cal quality oscillators, the asymmetry falls to ∼1 because of
the mechanical coupling to the flat, classical noise forces
that here dominate. We note that the antiresonance fre-
quency matches the bare geometrical dark mode frequency
Ωd. The expected width of the dip is weakly dependent on
the detuning, but it is sensitive to the balance between the
two optomechanical coupling rates, achieving its maximum
for gx ≃ gy. In the spectra shown in Fig. 2 the polarization
angle θ fluctuates due to slow drifts in the fiber, and this
explains the observed variations of the dip width.

We further analyze the broadband, cavity mediated back
action noise in the experimental configuration with optimal
detuning Δ=2π ¼ −130 kHz and gx ≃ gy (i.e., θ ≃ π=4).
The Stokes and anti-Stokes sidebands, converted to dis-
placement spectrum according to Eq. (3), are shown in
Fig. 3(b) with the corresponding fitting functions. In the
previous configuration, Stokes and anti-Stokes sidebands
had similar shapes [see Fig. 3(a)], and the dip in the

FIG. 3. (a) Stokes (light blue) and anti-Stokes (light green)
sidebands, corrected for the cavity filtering, with the respective
fitting functions (dark solid lines). The data are the same as in
Fig. 2(d). In the following panels, the polarization angle is
decreased to θ ¼ 52°. (b) The quantum back action contribution
to the Stokes sideband is plotted in light red, with the theoretical
curve superimposed (dark red solid line). At the resonance
frequency of the geometrical dark mode (vertical dashed line)
the quantum noise term is dynamically canceled and the two
spectral branches, here both driven only by the classical flat
noise, overlap. On broad frequency regions at the sides of the
antiresonance, the Stokes sideband is mostly determined by the
quantum fluctuations. The system parameters extracted from
the fit are gx=2π ¼ 14, gy=2π ¼ 11, Γx=2π ¼ 5.8, and Γy=2π ¼
5.6 kHz. (c) Asymmetry between the Stokes and anti-Stokes
sidebands, for the spectra reported in panel (b). The system
eigenfrequencies, extracted from the drift matrix, are displayed
with red dots. (d) Spectral dependence of the interference term
I ¼ jg2xχ−x þ g2yχ−y j2, which exhibits a sharp dip at the frequency
of the dark mode.
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asymmetry was produced by a different balance between
the amplitude of the dark mode peak (which, dominated by
thermal noise, is similar in the two sidebands) and those of
the polaritonic peaks (which, dominated by quantum noise,
are much larger in the Stokes sideband). Here, on the
contrary, the two spectra have markedly different patterns,
with the Stokes one showing a dip in the region of the dark
mode resonance. This further, peculiar effect is obtained
thanks to the strong two-dimensional cooling [33].
The quantum noise cancellation is here effective on a

broad frequency range, allowing a deeper analysis. While
the classical flat noise gives the same spectral contribution
on the two sidebands, the back action noise is highly
suppressed in the anti-Stokes branch, because of the strong
cavity filtering, with jχcðΔÞ=χcð−ΔÞj2 ∼ 0.01. The differ-
ence between the negative and positive branches of the
heterodyne spectrum, corrected for the cavity filtering,
provides the contribution to the motional spectrum origi-
nated by the cavity quantum back action noise. We plot it
with a light red line in Fig. 3(b) and compare it with the
model (solid dark line). We see that the quantum force
exceeds the classical noise on a wide spectral range around
the polaritonic resonance frequencies, displayed by the two
external red dots in Fig. 3(c). On the other hand, close to
the dark mode eigenfrequency [central red dot in Fig. 3(c)],
the optical quantum noise is highly suppressed and just the
residual classical noise drives the motion. The cancellation
of the backaction noise had previously been explored for
optomechanical systems with classical laser noise [19].
The solid curve in Fig. 3(d) reports the frequency

dependence of the interference term I ¼ jg2xχ−x þ g2yχ−y j2.
The antiresonance occurs at the bare geometrical dark
mode frequency, which differs from the corresponding
eigenfrequency because of the nondegeneracy of the x and
ymodes [32]. Starting from∼1 atΩd, the asymmetry grows
and reaches its maximum around the polaritonic eigenfre-
quencies [Fig. 3(c)].
In conclusion, we demonstrate that, in the quantum-

coherent strong coupling regime, a mechanical oscillator
acts as a spectrum analyzer of the intracavity field quantum
fluctuations over a wide frequency range. We also show
that, owing to the two-dimensional motion, the quantum
backaction generated by vacuum field fluctuations is
canceled in a narrow spectral region due to destructive
interference between the two bare mechanical resonances,
with meaningful implications in quantum-limited sensing
of weak forces [34].
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