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Quantum liquid, in the form of a self-bound droplet, is stabilized by a subtle balance between the mean-
field contribution and quantum fluctuations. While a liquid-gas transition is expected when such a balance
is broken, it remains elusive whether liquid-gas critical points exist in the quantum regime. Here, we study
the quantum criticality in a binary Bose mixture undergoing the liquid-gas transition. We show that, beyond
a narrow stability window of the self-bound liquid, a liquid-gas coexistence persists, which eventually
transits into a homogeneous mixture. Importantly, we identify two distinct critical points where the liquid-
gas coexistence terminates. These critical points are characterized by rich critical behaviors in their vicinity,
including divergent susceptibility, unique phonon-mode softening, and enhanced density correlations. The
liquid-gas transition and the critical points can be readily explored in ultracold atoms confined to a box
potential. Our work highlights the thermodynamic approach as a powerful tool in revealing the quantum
liquid-gas criticality, and paves the way for further studies of critical phenomena in quantum liquids.
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Introduction.—Liquid-gas transition is ubiquitous in
nature, and serves as a paradigm of classical phase tran-
sitions. A well-known feature therein is the presence of
critical points that mark the onset (or termination) of the
liquid-gas coexistence [1]. In the quantum regime, exotic
self-bound liquid states (dubbed quantum droplets) have
recently been discovered in dipolar or binary Bose-Einstein
condensates [2—12], and experimental observations consis-
tent with the liquid-gas coexistence have been reported in
imbalanced mixtures [9-12]. The discovery has stimulated
extensive interest [13-52], culminating in the latest obser-
vation of dipolar supersolids in droplet crystals [53-58].
However, little is known about the transition between the
inhomogeneous liquid-gas coexistence and the homo-
geneous liquid or gas phases, particularly in the thermo-
dynamic limit. A further important question is whether there
exists a quantum analog of the critical point in experimen-
tally relevant systems. Since quantum fluctuations play a
key role in the formation of self-bound droplets [2,15-18],
they could lead to yet unexplored many-body phenomena
at the critical points. A systematic investigation of such
quantum criticality would therefore offer further insight into
quantum liquids and enrich our understanding of quantum
phase transitions in general.

In this Letter, we address the questions above by
studying the liquid-gas transition in a three dimensional
binary Bose mixture using a general thermodynamic
approach. We find that, besides the self-bound state which
is stable within a narrow window of densities [2], two
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types of liquid-gas coexistence generally exist, each with a
distinct and fully polarized gas component (see Fig. 1).
Upon further tuning the densities, the system undergoes a
transition from a liquid-gas separated state to a homo-
geneous phase. Starting from the equation of state (EOS)
with beyond-mean-field corrections, we quantitatively
characterize the phase diagram in the thermodynamic
limit, and, crucially, reveal two critical points where the
liquid-gas coexistence terminates. Driven by density fluc-
tuations, critical phenomena arise near the critical points,
exemplified by the divergent susceptibility, the phonon-
mode softening, and a dramatic enhancement of the
correlation length. Given the recent progress in trapping
and probing cold atoms, both the transition and quantum
criticality reported here can be readily investigated in a box
potential [59].

Liquid-gas coexistence.—We consider a three dimen-
sional Bose mixture of cold atoms at zero temperature. The
system features short-range interactions, with the interac-
tion strengths g;; (i, j = 1, 2 labeling the atomic species).
Here, we consider interspecies attraction and intraspecies
repulsion, with g;, < 0 and g;;, g»» > 0. On the mean-field
level, the system would collapse when g, < —g, with
9= /911922 Such instability, however, can be dramati-
cally modified once the quantum fluctuations are taken into
account [2]. We focus on the regime where 6§ =1+ ¢;,/9¢
is very small. It follows that, for a homonuclear mixture
with equal masses (m; = m, = m), the energy per volume
can be written as [2]
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FIG. 1. Left: Ground-state phase diagram of a binary Bose

mixture in the mean-field-unstable regime. The liquid-gas sepa-
rated states PS-1 and PS-2 terminate at the critical points denoted by
shaded star. Blue solid lines: phase boundaries obtained by
numerically solving the balance conditions. Dashed lines: analyti-
cal boundaries given by Eq. (7) and its counterpart with an
exchange of species index. The dash-dotted (dotted) line is the
diffusive (mechanical) spinodal. Inset: enlarged view in the vicinity
of (ngo), néo)). Leftward triangle (rightward triangle) denotes the
point where the self-bound liquid reaches the evaporation threshold
11 =0 (4, = 0). Right: illustrations of various inhomogeneous
states with either zero or positive pressure. For all figures
throughout this Letter, 6§ = —0.08, and 1 = 0.68, which are
relevant for spin mixtures of *K atoms [8-10].
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where n; and n, are the densities of the two species,
respectively, 7 is the reduced Planck constant, and the second
term represents the Lee-Huang-Yang corrections [60].

The EOS (1) is based on the presumption that the ground
state is homogeneous. Yet, this is not true in the low-density
limit under the mean-field instability. For a concentration

n;/n, fixed at A=+/9»/g;;, the attractive and the
repulsive mean-field contributions are mostly canceled
out, and the energy per particle reaches its minimum at

the density [2]
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with a = \/ay ay, (a;; = (mg;;/47h*) the s-wave scatter-
ing length). As a result, when the total atom density fulfills
n<n®, a self-bound liquid state is formed. Here,
n® = ngo) +n§0). Such a state, referred to as PS-0 in
Fig. 1, is stable even if the container of the system is
removed, typical of the quantum droplet [8,9].

The realization of the quantum droplet is not restricted to
the exact density ratio 4. Thermodynamically, a stable self-
bound liquid can be achieved under the conditions [23,41]
P(nlvn2>:0’ /’tl(nl’nZ)s()’ MZ(nl7n2)S07 (3)
where P is the pressure, and y; is the chemical potential of
species i. These conditions can be fulfilled within a narrow
window of concentration, where the density of the self-
bound liquid remains unchanged up to the order 6% [2].

If the population of species 1 increases further, such that
the inequality y; < 0 no longer holds, the PS-0 state will
evolve into an inhomogeneous state with liquid-gas co-
existence (PS-1 in Fig. 1). The balance conditions for the
phase separation are

P(nf,nk) = P(nf,0), (4)
iy (nf,ng) = py (nf,0), (5)
a(nf. nk) < pp(n§,0), (6)

where n} and n% denote the densities of different species in
the mixed liquid, and n¢ is the density of the coexisting gas
of species 1. While such liquid-gas coexistence has been
numerically investigated in finite-size systems [33,50,52],
the phase transition between the phase-separated state and a
homogeneous one is not yet well understood.

Indeed, the PS-1 state appears only at sufficiently low
densities, and the ground state becomes a homogeneous
liquid under the conditions n; =nt. The coexistence
boundary, in terms of nl and n%, can then be derived
from Egs. (4) and (5) by eliminating n{'. Keeping densities
to the leading order in 63, we obtain the analytical form of
the phase boundary [61]

[ =52 =0, (7)
where it = nt /n'”). As shown in Fig. 1, for small 87, the
prediction of (7) is in good agreement with numerical
calculations using Egs. (4)—(6).

By tuning the density ratio, one can also realize another
kind of liquid-gas coexistence, the PS-2 state, where the gas
phase consists only of atoms of species 2. Its phase
boundary can be readily obtained by enforcing il < it}
and A — 47! in Eq. (7).

To shed more light on the phase-separated states, we
introduce n, and n_ to discern what we call the hard and soft
degrees of freedom in response to the density variation [2]

<n+>_<cos6 —sin9><n1> (8)
n_.) \sin@ cosé n,)’
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with § = arctan 4. A geometric interpretation of Eq. (8) can
be clearly seen from the inset of Fig. 2. For a given n,,
the allowed values of n_ must be greater than the physical
bound n™", where the system becomes a single-species gas.
In the low-density regime, since |du;/dn | > |ou;/on_|, the
thermodynamic balance requires the hard-mode variable n
to be almost invariant in the coexisting phase (hence the
name hard mode), enabling a single-mode approximation.
As shown in Fig. 2, when 2, lies within an appropriate range
(expression given later), £(n_) changes from concave to
convex in the starting segment, meaning the energy of the
phase-separated state (dashed lines) is lower than that of the
homogenous state. Under the tangent Maxwell construction,
the coexistence condition is thus

o

L _ . min
(nt—n )0n

= &(ny,nt) = E(ny, n™n).  (9)

It

For positive (negative) n, Eq. (9) gives the boundary of the
PS-1 (PS-2) state, consistent with Eq. (7); for n, =0, it
recovers the zero-pressure condition for the self-bound
liquid.

Using Egs. (4) and (5), we have checked that the
variation of n, in the coexisting liquid and gas phases
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FIG. 2. EOS with the density variable n, fixed at different
values. The dashed segments correspond to the energy of the
inhomogeneous states. Orange square and orange triangle denote
the coexisting liquid and gas phase, respectively. The filled
symbols highlight the case of n, = 0, where the liquid is self-
bound. The gray bold line represents the EOS of a pure gas of
species 1. For a better view, £ is shifted by § (g, + gao)n3.
E0 =1(g+ glz)n(lo)n(zo) is energy density of the self-bound
liquid. The density variable n_ is measured in the unit of
n0 = ngo) sin @ + ngo) cos 6. Inset: phase diagram obtained in
the single-mode approximation. Shaded star denotes the critical
points.

vanishes at the order 537, which represents the accuracy of
the single-mode approximation [61]. For a relatively larger
|69|, the terms neglected in the Lee-Huang-Yang contribu-
tion in Eq. (1) would result in a higher-order shift of the
phase boundary.

Quantum criticality.—In part of the coexistence region,
the homogeneous phase appears as a metastable state,
similar to the superheated liquid in the classical liquid-gas
transition [1]. When densities fall below the diffusive
spinodal line fixed by y,7, =73, (v; = (du;/on;) and
Y12 = (0u;/0n,)), a homogeneous mixture becomes unsta-
ble against local density fluctuations. Note that the
mechanical spinodal line, along which the compressibility
diverges, lies inside the unstable region (see Fig. 1).

The diffusive spinodal line can be derived using the EOS
(1), and corresponds to a straight line in the n;-n, plane,
satisfying n,/n$ 4+ n,/n$ =1 [61]. Since the spinodal
must be enveloped by the coexistence boundaries, the
difference between the separated phases vanishes at the
densities (n£,0) or (0, nS). In other words, the liquid-gas
transitions terminate at these critical points. To the order
657, we find

16
n€ — (1 +i) n. (10)

' _g Jii

In the representation of (n_, n_), the liquid-gas coexistence
only occurs within the interval —sin0n§ < n, < cos6n§,
while the homogeneous ground state evolves smoothly at
either larger or smaller n,, reminiscent of the supercritical
regime of a classical liquid-gas transition.

Importantly, in the vicinity of these critical points, density
fluctuations dominate and give rise to abundant critical
behaviors. Thermodynamically, the quantum criticality is
manifested in the singular behavior of the susceptibilities
;(?j = (0n;/ou;) 4+ Which characterize the static response

to density perturbations. With some algebra, ;(?j can be
rewritten as

0 _ V3—i 0o _ .0 _ 712
A N =rh’ A2 A Nr2 =i (1)
which become divergent at either critical point.

Another related critical phenomenon is the softening of
the phonon excitations. Specifically, we derive the sound
velocities of the phonon modes using the standard hydro-
dynamic approach [61]

1
Cy = \/% {71”1 +yany = \/(}’1"1 —ram)? +4y%2n1n2},
(12)

where c_ vanishes at either critical point. At first glance,
this seems quite natural, since only one phonon mode can
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survive as the density of the minority species approaches
zero. However, it is only at the critical points that c_ exhibits
a unique linear dependence on the vanishing minority
density. For instance, in the low-concentration limit with

n, = n¢, the sound velocity c_ = (5v/2/2v/2)cQ i, where

i, = nz/ngo), and ¢ = 4\/gn(0)\/ na3/5\/wm is the
sound velocity of the self-bound liquid [61]. In contrast,
we find c_ o /7, in the low-concentration limit with a fixed
n; > n,c Such distinction [see Fig. 3(a)] provides a clear
signature for detecting the critical points. Note that, for
ny < n§, c_ becomes imaginary in the spinodal region,
indicating a dynamic instability.

The quantum criticality is also manifested in the dra-
matic changes in the correlation length. The relative
probability of finding two particles of a given species at
distance r is measured by the pair-distribution function
D;;(r), which at large separation takes the form
D;j(r - o) = 1= (&;//2nn;z*r*), with &; the corre-
lation length [67,68]. Thus, the combined length scale
(&;//mm;)'/* represents a characteristic distance, over
which D;; deviates considerably from unity. To determine
¢ij» we employ the hydrodynamic approach to derive the
dynamic density response function, which is connected to
the Fourier transform of D;; through the fluctuation-
dissipation theorem. &;; is then extracted from the asymp-
totic expansion of D;; [61].

At a critical point, for instance n; = n{ and n, — 0, & j
behaves like [61]

n,/n; n,/n;
T 10° T T T
10 n=10n{ — m=10ny
L.1n{ — L.1ny
1.2nf 10? — 1.2n{

s s
e 14nf W — l4n{
= =
Wi E 4 w5
\\
10k N

(© (d)
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FIG. 3. (a) Sound velocity c_ and (b—d) correlation lengths &;;

as functions of the minority concentration n,/n,, for different n,.

N single 1 1 ) 13
St 1 < +—\/@ ; (13)

5(0) 5(0)
&y~ = 00, (14)
ny ny

where & = h/\/2Zmny, l,,—0 is the healing length
of a single-species Bose gas [67,69], £© = [v/3A(,/g1] +

V922)/91/2m|6Gn?] is the typical surface thickness of a

self-bound droplet [2]. By contrast, for the case with any
given n; > n§ (and n, — 0), we have [61]

& (15)
522 \/—ﬁ_z 0,

with the coefficient A given in Supplemental Material [61].
The distinction between these two situations, as illustrated
in Figs. 3(b)-3(d), reflects the significant enhancement of
density correlations at the quantum criticality, and can be
tested experimentally using the Bragg spectroscopy. Note
that the discussions above apply to the other critical point
by exchanging the species labels.

It is worth noting that the structures of the PS-1 and PS-2
states resemble that of the partially miscible states recently
predicted for g, > g [70], where the Lee-Huang-Yang
correction also plays a crucial role in establishing the
coexistence equilibrium. The key difference is that, under
the repulsive interspecies interactions in Ref. [70], the
phase separation occurs between gaseous phases and the
dynamic instability is due to the out-of-phase fluctuations
of two species; whereas in our case (g, < —g), the
underlying quantum criticality originates from the in-phase
fluctuations.

Density profiles.—The predicted phase diagram can be
experimentally verified with ultracold atoms confined in a
box potential [59]. We numerically simulate the atomic
density profiles by solving the extended Gross-Pitaevskii
equation [2]

S — ?inglea 512—>A5(0)7

+——Elny(x), na(x)] = @ |yri(r) = 0. (16)

2m  on;

[_ nv: o

where y; is the condensate wave function satisfying the
boundary condition y; = 0 at hard walls of the box, and ji?°*
is the global chemical potential fixed by the normalization
condition [ drly;(r)|*> = N,. For simplicity, we consider a
spherical box trap of radius R, and introduce dimension-
less variables N; = N;/ n§0)§<o>3 and Vo = (Rpoy/ED)3.
The ground state of the system is numerically determined
through imaginary-time evolutions under the split-step
method [71].
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FIG. 4. Left: atomic density profiles in a box trap of different
sizes with (N, N,) = (5000, 1000). Right: trajectory of the
central density during an adiabatic expansion with various atom
numbers. For comparison, the result for the case with 6§ = 0 and
N, =3000 is also shown (circle). All the simulations are
performed with the concentration N, /N, = 5.

As illustrated in the left column of Fig. 4, for sufficiently
small V., the atomic densities are almost uniform, except
for a thin layer close to the boundary. When V,,, increases
beyond a certain threshold, the liquid-gas coexistence
appears, and the density profile exhibits a shell structure,
with a liquid core immersed in a single-component gas of
the majority species. Here, the densities of the two co-

existing phases roughly obey the relation A = il — ik
with ¢ =nS/n'”, consistent with results from the

single-mode approximation. As V. further increases,
the gas in the outer shell becomes extremely dilute, and

the liquid core is essentially self-bound with the densities

approaching the saturated values (ngo), néo)). These results

imply that, under the liquid-gas coexistence, a clear
distinction between the gas and the liquid phases can be
observed during an adiabatic expansion—while the outer
gas shell diffuses throughout the box, the liquid core retains
a finite volume.

Further, the phase diagram can be readily extracted from
the flattop density profile. The right panel of Fig. 4 shows
the evolution of the central density when V. gradually
increases at a fixed concentration N, /N, = 5. As the phase
separation sets in, the density trajectory turns upward
abruptly and follows the phase boundary of the PS-1 state.
Such a behavior is in stark contrast to the case without a
liquid-gas transition (empty circles). By choosing a con-
centration N, /N, < 1, the boundary of PS-2 state can also
be obtained.

Because of the finite-size effect, the phase boundary
constructed in this way shows some deviations from that in
the thermodynamic limit. The deviation becomes less
pronounced when N; > 1000 (see Fig. 4). Under our choice
of parameters (see Fig. 1), the condition (N, N,) = (1, 1)
corresponds to (N, N,) = (1.16,1.71) x 10%, which means

that experiments with atom numbers of the order 10°
should suffice.

Discussion.—Adopting a thermodynamic approach, we
quantitatively characterize the liquid-gas coexistence in a
mean-field-unstable Bose mixture, and reveal the under-
lying quantum criticality. The liquid-gas transition consid-
ered here also occurs in heteronuclear mixtures such as
4IK-37Rb [11] and **Na-¥’Rb [12], where similar phase
diagrams can be established using the analytical EOS
therein [61,70].

For future studies, it is desirable to explore the
quantum liquid-gas criticality in lower dimensions
[14,25,26,30,35,42], with three-body [72,73] or dipolar
[3-7,15-17,20,43,44,53-58] interactions, or at finite tem-
peratures [39,40,46—48]. At finite temperatures in particu-
lar, the interplay between quantum and thermal fluctuations
may affect the nature of the condensation [39,48,74],
giving rise to intriguing critical behaviors.

We thank Lan Yin and Shizhong Zhang for helpful
discussions. This research is supported by NSFC under
Grants No. 12174230 and No. 12147215 (Z.-Q. Y.), Grant
No. 12104275 (L. H.), and Grant No. 11974331 (W. Y.);
and partially by the Fund for Shanxi 1331 Project of Key
Subjects Construction.

Note added.—Recently, we became aware of a related work
[75], where the liquid-gas transition and the associated
critical behavior are discussed in a different setup.
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