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We predict heavy quark production cross sections in deep inelastic scattering at high energy by applying
the color glass condensate effective theory. We demonstrate that, when the calculation is performed
consistently at next-to-leading order accuracy with massive quarks, it becomes possible, for the first time in
the dipole picture with perturbatively calculated center-of-mass energy evolution, to simultaneously
describe both the light and heavy quark production data at small xBj. Furthermore, we show how the heavy
quark cross section data provides additional strong constraints on the extracted nonperturbative initial
condition for the small-xBj evolution equations.
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Introduction.—Probing the properties of the nonlinearly
behaving gluonic matter in protons and nuclei at high
energies is a major science goal of the future Electron-Ion
Collider (EIC) [1–3]. Measuring the total and heavy quark
production cross sections in deep inelastic scattering (DIS)
off nuclei is especially intriguing, as nonlinear saturation
effects are enhanced in heavy nuclei [4]. The EIC will be
able to perform very precise total cross section measure-
ments over a relatively wide kinematical domain charac-
terized by the gluon longitudinal momentum fraction xBj
and the photon virtuality Q2.
Nonlinear gluon saturation effects are expected to have a

modest effect on structure functions in the EIC kinematics
(see, e.g., [5–7]). To unambiguously determine the exist-
ence of nonlinear QCD dynamics at collider energies and to
quantify its role on the small-xBj structure of protons and
nuclei, it is likely necessary to perform a global analysis of
the future proton and nuclear DIS data at small xBj. In
particular, it will be important to include both the inclusive
and heavy quark production data that have different
sensitivities on saturation effects in order to extract in
detail the properties of the QCD matter at extremely large
parton densities. Charm production is an especially power-
ful process as the charm mass is large enough to suppress
nonperturbative effects, but simultaneously light enough to
allow one to access QCD dynamics in the nonlinear regime.

To describe QCD dynamics at high energies, where
parton densities are very large and emergent nonlinear
phenomena dominate, it is convenient to use the color glass
condensate (CGC) [8,9] effective field theory framework.
The DIS process is then naturally described in the dipole
picture [10,11], where the photon splits into a quark-
antiquark pair long before the interaction with the target.
The interaction of the quark dipole with the target is then
taken to be eikonal, i.e., the transverse coordinates of the
partons do not change when they traverse through the target
color field. In this picture, leading-order (LO) calculations
including a resummation of the high-energy logarithms
αs ln 1=x to all orders (where αs is the strong coupling)
within the CGC framework have been successful in
describing the precise proton structure function data from
HERA [12–14]. This suggests that the HERA data is
compatible with the hypothesis that gluon saturation is
manifest at HERA energies. In addition, calculations based
on collinear factorization have also found the resummation
of the high-energy logarithms to be important in order to
describe the details of the HERA data [15].
The structure function data is used to constrain the

nonperturbative initial condition for the small-xBj evolution
equations. Therefore, a good description of the total cross
section data is crucial when applying the CGC framework
to describe any other scattering process (e.g., proton-
nucleus collisions at the LHC [13,16–20]). Compatibility
with the available cross section data is also required when
developing a realistic description for the early stages of
heavy-ion collisions [21], needed to extract the fundamen-
tal properties of the quark-gluon plasma.
In this Letter, we present predictions for heavy quark

production cross sections in DIS using the nonperturbative
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initial condition for the perturbative Balitsky-Kovchegov
(BK) small-xBj evolution equation [22,23], determined
from the fits to total DIS cross section data in [24]. The
predicted heavy quark cross sections are shown to be in
excellent agreement with the HERA data [25]. This is the
first time in the CGC framework that a simultaneous
description of total and heavy quark production data is
achieved in calculations where the energy dependence is
obtained by solving the small-xBj evolution equation. A
crucial ingredient, here, is the next-to-leading order (NLO)
accuracy in αs recently achieved for the massive impact
factors from first-principle light-cone perturbation theory
calculations [26–28]. We also demonstrate how the heavy
quark production data can provide additional constraints
for the extracted nonperturbative initial condition of the BK
evolution.
The results presented here are from the first-ever

numerical calculation of the heavy quark structure func-
tions in the dipole picture at NLO. The successful descrip-
tion of the HERA data demonstrates that future global
analyses are feasible and can be applied to probe in detail
gluon saturation at the LHC and future EIC, where nuclear
targets with larger saturation scales are available.
Structure functions at high energy.—Using the optical

theorem, the total virtual photon ðγ�Þ—proton (p) cross
section can be obtained from the forward elastic γ� þ p →
γ� þ p scattering amplitude. In the dipole picture, the
γ� þ p scattering is described in terms of eikonal inter-
actions between the partonic Fock states of the photon and
the target color field, and perturbatively calculable impact
factors describing the photon fluctuations to the given
partonic states. Eikonal interactions with the target are
encoded in the Wilson lines, which are the scattering matrix
elements for bare partons propagating through the target
color field.
At NLO, the contributing photon Fock states are the

quark-antiquark jqq̄i and quark-antiquark-gluon jqq̄gi
states. Therefore, at NLO, the total virtual photon cross
section can be schematically decomposed into two parts.
The first contribution [illustrated in Fig. 1(a)] corresponds
to the case where the qq̄g system crosses the shockwave

σγ
�
qq̄g ¼ Kqq̄g ⊗ N012: ð1Þ

The second contribution [illustrated in Fig. 1(b)], which
includes the lowest-order part (interaction with an une-
volved target) and the one-gluon-loop QCD corrections to
it, reads

σγ
�
qq̄ ¼ Kqq̄ ⊗ N01: ð2Þ

Here, Kqq̄ and Kqq̄g refer to the perturbatively computed
NLO impact factors obtained with massive quarks in [26–
28] and in the massless quark limit in [29–31]. In addition,
the notation ⊗ refers to an integral over the parton trans-
verse coordinates xi and longitudinal momentum fractions
in the mixed space. Additionally, N01 and N012 are
correlators of two or three Wilson lines, where the sub-
scripts 0,1,2 refer to the transverse coordinates of the quark,
antiquark, and the gluon. In terms of the Wilson lines, VðxÞ
in the fundamental representation, these correlators read

S01 ¼
1

Nc
hTrfVðx0ÞV†ðx1Þgi; ð3Þ

S012 ¼
Nc

2CF

�
S02S21 −

1

N2
c
S01

�
: ð4Þ

Here, h� � �i refers to the average over the target color charge
configurations, Nc is the number of colors, CF¼ðN2

c−1Þ=
ð2NcÞ, Sij ¼ 1 − Nij, and Sijk ¼ 1 − Nijk. In addition, we
have used the mean-field limit (which is a precise approxi-
mation [32]) to factorize the expectation value of the
product to a product of expectation values.
The Wilson lines and their correlators satisfy small-xBj

evolution equations describing their dependency on the
center-of-mass energy (see Ref. [33] for a detailed dis-
cussion of the evolution variable). The dipole amplitude
N01 satisfies the BK equation [22,23] and via Eq. (4) N012

also depends on the center-of-mass energy. The evolution
rapidity depends on the lower limit of the emitted gluon
longitudinal momentum fraction [24,34]. The integration
over the emitted gluon phase space in Eq. (1) contributes a
large logarithm of energy that modifies the scattering
amplitude of the original dipole N01. These logarithms
are resummed into the BK equation [34]. The BK equation
and a numerical solution to it are known at NLO [35–37].
We use the initial condition fitted to the HERA data in [24]
including only massless quarks, where the full (numerically
heavy) NLO BK equation has been approximated by
evolution equations that use different schemes to resum
the most important higher-order corrections. The same
evolution equations, ResumBK [38,39], KCBK [40], and
TBK [33], referring to different resummation schemes, are
used in this Letter as in [24].
The structure functions are written in terms of the total

virtual photon-target cross sections as F2 ¼ ðQ2=4π2αemÞ×
ðσγ�T þ σγ

�
L Þ, and FL ¼ ðQ2=4π2αemÞσγ

�
L . Here, the sub-

scripts T and L refer to the transverse and longitudinal

(a) (b)

FIG. 1. Example diagrams contributing to the elastic γ�p
amplitude at NLO. The blue band represents the dipole–
shockwave interaction.
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virtual photon polarization, respectively, and σγ
�
T;L corre-

spond to a sum of qq̄ and qq̄g contributions. The exper-
imental data is reported in terms of the reduced cross
section

σrðy; x;Q2Þ ¼ F2ðx;Q2Þ − y2

1þ ð1 − yÞ2 FLðx;Q2Þ; ð5Þ

where y ¼ Q2=ðsxÞ is the inelasticity and ffiffiffi
s

p
is the lepton-

nucleon center-of-mass energy.
Results.—We calculate the proton reduced cross section

σr and the charm and bottom contributions to it (σr;c and
σr;b). We use the NLO dipole-proton scattering amplitudes
determined in [24], available at [41]. In particular, we use
the “light quark” fits of [24] where only the massless u, d,
and s quarks are included and the nonperturbative initial
condition is fitted to the light quark contribution of the
reduced cross section data measured at HERA [42]. This
contribution is determined in [24] by subtracting interpo-
lated charm and bottom quark contributions from the total
cross section data. We do not include the fits to the
inclusive HERA data as they use the massless quark cross
sections to fit the inclusive data containing a substantial
heavy quark contribution.
In [24], multiple different fits are reported, correspond-

ing to different choices for the initial evolution rapidity
Y0;BK and different schemes for the coordinate space
running coupling and resummations of particular higher-
order corrections. In total, there are 12 fits reported for
massless quarks. All different fits result in an approxi-
mately equally good description of the light quark con-
tribution to the HERA structure function data.
We calculate predictions for the charm production cross

section in the region xBj<0.01;2.5GeV2≤Q2<50GeV2

using all the different fits from [24], and compare the result
to the HERA data from [25] in order to find which fits (if
any) are allowed by the heavy quark production data. The
charm mass (in the pole mass scheme used in the calcu-
lation of [27]) is allowed to vary within 1.1 GeV < mc <
1.6 GeV. We consider a fit to be compatible with the
HERA charm production data if one obtains χ2c=N ≲ 2.5
with the optimal charm mass. We find that predictions
calculated by using three of the 12 fits are in excellent
agreement with the charm production data. This is illus-
trated in Fig. 2, where a comparison to the HERA reduced
cross section data in a few selected Q2 bins is shown. The
H1 and ZEUS collaborations have also measured inclusive
b quark production [25], but due to the larger uncertainties
and more limited kinematical coverage, we do not use this
dataset to determine which NLO fits from [24] are allowed.
However, we note that, using each of the three fits
discussed above, an excellent description of the b quark
production data is obtained. In each case, we find χ2b=N ≲
1.6 when the b quark mass is also fitted to this data.
The excellent agreement with the predicted heavy quark

production cross sections and the HERA measurements

shows that, at NLO, it is possible to simultaneously
describe all small-xBj proton structure function data. The
results also demonstrate that the inclusion of the heavy
quark production data to the extraction of the nonpertur-
bative initial condition for the high-energy evolution
equation provides additional tight constraints. Similar
conclusions have also been made in calculations of exclu-
sive heavy quarkonium production [43,44]. The advantage
of the charm reduced cross section studied in this Letter is
that one does not need to introduce an additional model
uncertainty related to the nonperturbative vector meson
structure.
The fits that are found to be compatible with the charm

quark production data are summarized in Table I along with
the determined optimal heavy quark masses. The fact that
the heavy quark data provides additional strong constraints
for the determination of the initial condition for the BK
evolution is expected. The heavy quark cross section is
sensitive to much smaller dipoles than the inclusive one
which can not discriminate fits that differ only at small
dipole sizes. We note that the heavy quark production data

FIG. 2. Charm reduced cross section predictions calculated
using the different NLO fits from [24] for the dipole amplitude
that result in a good description of the charm data. The results are
compared to the combined HERA data from [25].

TABLE I. Fitted initial conditions for the small-xBj evolution at
NLO from [24] that are compatible with the heavy quark
production data from HERA. The corresponding charm and
bottom masses are also shown. The terminology used to specify
the resummation scheme and the running coupling prescription
follows that of [24], and the abbreviation PD refers to parent
dipole and BSD to Balitskyþ smallest dipole [45] running
coupling.

#
Resummation

scheme αs Y0;BK

mc

(GeV) χ2c=N
mb

(GeV) χ2b=N χ2tot=N

1 ResumBK PD 0 1.42 1.86 4.83 1.37 1.25
2 KCBK PD 0 1.49 2.55 4.96 1.58 1.23
3 TBK BSD 0 1.29 1.02 5.04 1.12 1.83
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only allows fits where the BK evolution is started at initial
rapidity Y0;BK ¼ 0. In the second class of fits considered
in [24], the dipole is frozen in the low-energy region
0 < Y < Y0;BK ¼ lnð1=0.01Þ where Y is the evolution rapi-
dity. This is not completely consistent as the qq̄g produc-
tion cross section (1) in the soft gluon limit results in a
(leading order) BK evolution for the dipole. Additionally,
we note that (in the case of ResumBK and KCBK
evolutions formulated in terms of the projectile rapidity)
the parent dipole prescription for the running coupling is
preferred. We interpret that these physical constraints from
the heavy-quark production data are because charm and
bottom production probe dipole amplitudes in the pertur-
bative region, and contribution from large dipoles domi-
nating in light quark production with N ∼ 1, is suppressed,
see, e.g., [6]. Based on the observations above, we argue
that the fits summarized in Table I are the ones that should
be used in all NLO CGC calculations. The potential
deviation between the predictions is then a measure of
the model uncertainty after the nonperturbative input is
constrained by all HERA structure function data.
To more clearly illustrate the compatibility of the NLO

CGC calculation with the most recent precise HERA data
from [46], we show, in Fig. 3, the total reduced cross
sections computed using the dipole amplitude fits allowed
by the charm data. We emphasize that this is the first time in
the CGC framework that a simultaneous description of both
the total and heavy quark production cross section is
obtained when a perturbative small-xBj evolution equation
is used to describe the center-of-mass energy dependence.
Previous LO analyses have found it impossible to

perform such a global fit to the HERA data without
introducing, for example, additional parameters that render
the proton probed by a charm quark dipole different from
the proton probed by a light quark dipole [12]. A similar
approximative NLO evolution equation as in this Letter

was used in [14] but coupled to the LO impact factor. In that
case, it was also found impossible to simultaneously
describe the inclusive and heavy quark production data.
When the computation is promoted to full NLO accu-

racy, the mass dependence is modified for two reasons.
First, after including higher-order corrections to the BK
equation (in projectile rapidity), the dipole amplitude no
longer evolves toward an asymptotic shape with an anoma-
lous dimension γ < 1 (at small dipole sizes r, the amplitude
behaves as N ∼ r2γ) [47]. Instead, the anomalous dimen-
sion (which is γ ≳ 1 in the fits reported in [24]) remains
approximatively constant suppressing the dipole ampli-
tudes at small dipoles [24,37]. Hence, the heavy quark
production cross section is suppressed relative to light
quark production. Second, adding the NLO corrections to
the massive impact factor enhances the heavy quark
production. With TBK evolution, we have opposite sys-
tematics: a small γ is developed and the impact factor
suppresses heavy quark production. The net effect of these
two competing NLO corrections is such that the mass
dependence of the cross section matches that of the HERA
data when the three fits identified in this Letter are used.
Finally, we illustrate the remaining theory uncertainty

when performing NLO CGC calculations. We calculate
predictions for the proton longitudinal structure function
FL, and for the charm and bottom quark contributions to it,
in the EIC kinematics. We take xBj ¼ 2 × 10−3, and show,
in Fig. 4, the structure functions as a function of Q2

calculated using the three fits determined above. For the
bottom structure function, the different fits result in almost
identical predictions for the EIC, whereas for charm pro-
duction, the predictions begin to differ at Q2 ≳ 20 GeV2.
On the other hand, in the total longitudinal cross section a
significant difference up to 20% is seen at allQ2. Therefore,
an inclusion of the future FL data in the global analysis will

FIG. 3. Total reduced cross section calculated using the dipole
amplitude fits allowed by the heavy quark production data. Note
that, as the σr depends on inelasticity y, the theory curves
connecting the calculated points are not smooth.

FIG. 4. Total (solid lines), charm (dashed lines), and bottom
(dotted lines) longitudinal structure functions as a function of
photon virtuality in the EIC kinematics calculated using the three
dipole amplitude fits compatible with the heavy quark data.
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provide further constraints for the initial condition of the
small-xBj evolution. The currently available FL data from
HERA [48] is not able to distinguish between the differ-
ent fits.
Discussion.—We have calculated heavy quark produc-

tion cross sections in DIS at NLO in the CGC framework.
The Bjorken-xBj dependence is obtained by solving the BK
evolution equation with an initial condition extracted by
fitting the total DIS cross section data in [24]. We identify a
small subset of the fits reported in [24] that result in
predictions for the charm and bottom structure functions
which are in excellent agreement with the HERA data [25].
These three fits, constrained by both the total and heavy
quark cross section data summarized in Table I, should be
used in all future phenomenological applications at NLO
accuracy.
This is the first time in the CGC framework with

perturbative energy evolution when a simultaneous descrip-
tion of all small-xBj proton structure function data is
obtained. A good agreement with the HERAmeasurements
is a crucial test for the gluon saturation physics incorpo-
rated in the CGC framework and enables rigorous studies
of nonlinear QCD dynamics in DIS and other scattering
processes. In particular, we demonstrate that global analy-
ses including all small-xBj structure function data are
feasible at NLO and that the heavy quark production data
can provide additional constraints in such analyses.
As an application, we have calculated predictions for the

proton longitudinal structure function FL, which will be
measured accurately at the future Electron-Ion Collider. We
reported predictions separately for the inclusive and heavy
quark production cross section and showed that the
remaining model uncertainty is moderate. Including the
FL data to the global analysis will further constrain the
nonperturbative initial condition for the small-xBj evolution
equations.
To fully explore the model uncertainties, one should

perform a global analysis to the HERA inclusive and heavy
quark production data, taking into account the correlated
experimental uncertainties, and extract the nonperturbative
model parameters with their uncertainties directly from
such an analysis. Additional constraints and more detailed
probes of nonlinear dynamics can be obtained by including
other observables such as diffractive structure functions and
exclusive cross sections. Such studies are becoming fea-
sible thanks to the extensive progress toward NLO accuracy
in the CGC framework, see, e.g., Refs. [43,44,49–58]. In
the future, we plan to perform a full Bayesian analysis to
determine the likelihood distribution for all the model
parameters, which will also enable one to fully take into
account the propagation of model uncertainties.
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