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We extend the application of lattice QCD to the two-photon-mediated, order α2 rare decay π0 → eþe−.
By combining Minkowski- and Euclidean-space methods we are able to calculate the complex amplitude
describing this decay directly from the underlying theories (QCD and QED) which predict this decay. The
leading connected and disconnected diagrams are considered; a continuum limit is evaluated and the
systematic errors are estimated. We find ReA ¼ 18.60ð1.19Þð1.05Þ eV, ImA ¼ 32.59ð1.50Þð1.65Þ eV, a
more accurate value for the ratio ðReA=ImAÞ ¼ 0.571ð10Þð4Þ, and a result for the partial width
Γðπ0 → γγÞ ¼ 6.60ð0.61Þð0.67Þ eV. Here the first errors are statistical and the second systematic. This
calculation is the first step in determining the more challenging, two-photon-mediated decay amplitude that
contributes to the rare decay K → μþμ−.
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Introduction.—The rare decay π0 → eþe− involves a
combination of the strong and electromagnetic interactions
and is significantly suppressed by a factor of ðme=MπÞ2 that
results from the kinematics of the decay and the chiral
symmetry of the electromagnetic coupling of the electron.
This large suppression increases the sensitivity of this
process to new chirally asymmetric interactions of the
quarks and leptons and is an interesting target for a high-
precision comparison between experiment and the predic-
tions of the standard model.
The π0 → eþe− branching ratio has been measured to 4%

accuracy in the KTeVexperiment [1], givingBðπ0→eþe−Þ¼
6.86ð27Þstatð23Þsyst×10−8 after radiative corrections dis-
cussed below have been performed. This can be compared
with the recent precise standard model prediction [2] of
6.25ð3Þ × 10−8. Reference [2] provides extensive references
to earlier theoretical results, which also typically lie below the
experimental value. This 1.7σ discrepancy adds to the interest
in this process and provides motivation to pursue indepen-
dent theoretical techniques such as those of lattice QCD.
Recent advances in the methods of lattice QCD allow

the calculation of increasingly complex processes which
involve both QCD and QED. While initially motivated by
the calculation of the light-by-light scattering process

which contributes to the anomalous magnetic moment,
gμ − 2, of the muon [3,4], these methods can be applied to
other processes where an ab initio lattice QCD result would
be of value. In contrast with light-by-light scattering
entering gμ − 2 which can be computed using Euclidean-
space methods, π0 → eþe− is inherently a Minkowski
process with a complex amplitude resulting from physical
time evolution. Here we develop a method that allows us to
deal with such a process using lattice QCD. We note that
this method may also allow a lattice QCD calculation of the
two-photon-exchange amplitude needed for a test of the
standard model predictions in the rare flavor-changing
neutral current decay KL → μþμ−.
To leading order the π0 → eþe− decay is mediated by a

two-photon intermediate state as shown in Fig. 1. The
decay amplitude A is complex with an imaginary part
determined by the optical theorem, giving the well-known
unitary bound for the π0 → eþe− branching ratio [5]. We
will use lattice QCD to compute both the real and
imaginary parts of A using a treatment of QED without
power-law finite-volume errors. Thus, our result for the
imaginary part provides an improved calculation of the
partial width π0 → γγ with finite volume errors that vanish
exponentially with increasing volume, without the con-
straint to use photon momenta that obey quantization
conditions related to the volume used in the lattice QCD
calculation [6]. (Preliminary results from these methods
appear in Refs. [7–10].)
As is conventional, a comparison between theory and

experiment for the π0 → eþe− decay is made after the
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conventional OðαÞ radiative corrections have been per-
formed. These corrections [11,12] require a two-loop
calculation in which the zeroth-order π0 → eþe− decay is
not approximated as pointlike. We follow Refs. [11,12] to
remove these radiative effects from the experimental results,
obtaining Bðπ0 → eþe−Þ ¼ 6.86ð27Þstatð23Þsyst × 10−8.
This corrected experimental result can be compared
with our lattice calculation which also does not include
these effects. These corrections depend on the low-energy

constant χðrÞ ¼ 4.5ð3Þ (defined at the scale μ ¼ 770 MeV)
which was determined recursively from the experimental
result with these corrections removed.
Computational strategy.—We start with the Minkowski-

space expression for the decay amplitude:

A ¼ e4
Z
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where w ¼ u − v is the relative space-time position of the
two electromagnetic currents, P ¼ ð0⃗;MπÞ is the four-
momentum of initial pion, and h ¼ � 1

2
is the helicity of

the electron on which A does not depend. Note that we
have integrated out their average position ðuþ vÞ=2 and
removed the resulting δ function that imposes total energy
and momentum conservation. The Minkowski metric
tensor gμμ0 ¼ diagð−1; 1; 1; 1Þ.
A direct Euclidean-space calculation of the hadronic

matrix element in Eq. (1) using lattice methods is feasible if
weWick rotate the w0 contour by replacing the real variable
w0 with the product e−iϕw0 and increase ϕ from 0 to π=2
while keepingw0 real, thereby making w0 a Euclidean time.
At the same time, the p0 contour must also be rotated so
that the exponent ip0w0 in Eq. (1) remains purely imagi-
nary as jp0j → ∞. Because of the existence of the two-
photon intermediate state whose energy may be lower than
the energy of initial pion state, the rotated p0 contour
cannot simply follow the imaginary axis. Instead the p0

contour must be distorted as in Fig. 2 to avoid the poles
which cross the imaginary axis when the energy of the two-
photon intermediate state is lower than the pion mass,
2jp⃗j < Mπ .
This choice of contour guarantees that the p0 integral

will converge. However, once the variable w0 has become
imaginary, the factor e−ip·w will grow exponentially with
jw0j for the real values of p0 that appear for the contour of
Fig. 2. Fortunately, the Euclidean-space hadronic matrix
element HμνðwÞ will compensate for this behavior, so
that both the p0 and w0 integrations are convergent. The
dependence of the hadronic matrix element on w0 can be
determined by inserting a complete set of intermediate
states between the two electromagnetic currents in the
hadronic matrix element h0jTfJμðw=2ÞJν½−ðw=2Þ�gjπ0iE:

X
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FIG. 2. The deformed p0 integration contour. The six crosses
locate the six poles of the integrand in Eq. (1).

FIG. 1. The leading order Feynman diagram for π0 → eþe−
decay. Here we do not show the quark structure of the QCD
portion of the amplitude which is represented by the heavy line.
However, the two hadronic electromagnetic currents are distin-
guished and their time ordering suggested.
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The lightest intermediate state is the two-pion state with
En ¼ 2Mπ . Thus, this Euclidean-space hadronic matrix
element will decay as expð−3Mπjw0j=2Þ for large jw0j.
This large-jw0j falloff is sufficient to overcome the
exp ðjw0jMπ=2Þ growth due to the p0 contour in Fig. 2.
We can write the analytic expression for the decay

amplitude after contour deformation as follows:

A ¼
Z
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ū

�
k−;

1

2

�
γμ0

×



γ · ðpþ P

2
− kþÞ þme

ðpþ P
2
− kþÞ2 þm2

e − iϵ

�
γν0v

�
kþ;

1

2

�
;

ð4Þ

HμνðwÞ ¼h0jT
�
Jμ

�
w
2

�
Jν

�
−
w
2

��
jπ0iE; ð5Þ

where g̃μμ0 ¼ diagði; 1; 1; 1Þ is introduced to connect the
Minkowski conventions for the electromagnetic currents in
Lμν with the Euclidean conventions used in the hadronic
matrix element. Note that the amplitude A is not altered by
these changes of contour and remains complex with real
and imaginary parts which can be computed from the
Euclidean-space amplitude in Eq. (5).
The leptonic factor Lμν is evaluated by performing the

p0 integral using Cauchy’s theorem, resulting in a three-
dimensional integral over p⃗. When integrated over jp⃗j
the singular factor ½1=ðjp⃗j −Mπ=2 − iϵÞ� gives both real
and imaginary parts. Recognizing that the integral is
independent of the direction of the outgoing positron
momentum k⃗þ allows us to average over this direction.
Here we present the result for the spatial components,
writing LijðwÞ ¼ Lðw0; jw⃗jÞϵijkwk=jw⃗j2, with
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p
. We then

evaluate the leptonic factor Lμν as a two-dimensional
numerical integral, requiring that the integration error lies
below 0.001%. The result is tabulated as a function of w0

and jw⃗j. We evaluate the four-dimensional integral over w
in Eq. (3) as a sum over lattice points with the values of
LμνðwÞ obtained from this table by linear interpolation. We
specify the normalization conventions for the amplitude A
by the relation Γπ0→eþe− ¼ βjAj2=ð8πMπÞ.
Hadronic matrix element.—The hadronic matrix element

Hμν in Eq. (5) can be calculated from the three-point
function:

h0jTfJμðxÞJνð0Þgjπi

¼ Z2
V

Nπ
lim

tπ→−∞
eMπ jtπ jhJμðxÞJνð0Þπ0ðtπÞilat; ð8Þ

which can be computed using lattice QCD. It is only in this
evaluation of Hμν that a finite volume is introduced. Since
this Euclidean-space amplitude involves no massless

particles, all finite-volume errors will decrease exponen-
tially in the linear size of the volume.
The factor ZV renormalizes the nonconserved, local

current used in the lattice calculation of the right-hand
side of Eq. (8). The factor Nπ is obtained from the π0 two-
point function and compensates for the normalization of the
pion interpolating operator π0ðtπÞ. We use a Coulomb-
gauge-fixed wall source for this operator.
The two diagrams needed to evaluate this three-point

function are shown in Fig. 3. The first is connected and can
be constructed from two wall-source propagators and one
point-source propagator. The two electromagnetic currents
must be located sufficiently far from the pion interpolating
operator so that contamination from states more energetic
than the pion can be neglected. We require the pion source
at tπ to be separated from the closer current by a fixed time
Δtπ . We view our lattice as a one-dimensional torus in time
with extent T and identify a direction of increasing time.
We define the time locations of current operators as t> and
t<, where the t> is later than t< by a time shorter than T=2.
We average the case where tπ is Δtπ earlier than t< and the
case where tπ is Δtπ time later than t>.
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The second diagram is quark-line disconnected. Such
disconnected diagrams typically involve large statistical
noise and are difficult to calculate. In our calculation, we
use for the quark loop shown in Fig. 3(b) the results for
Tr½D−1ðx; xÞγμ� computed using all-to-all propagators com-
puted with randomly displaced, 34 grid sources from the
RBC and UKQCD Collaborations’ calculation of the
disconnected contribution to the hadronic vacuum polari-
zation component of gμ − 2 [13]. As shown in Table III, we
determine this disconnected amplitude with a statistical
error of 60%.
The hadronic matrix element is calculated on four

ensembles, whose parameters are listed in Table I. All
ensembles use Möbius domain wall fermions, which achieve
good chiral symmetry with a much smaller size in the fifth
dimension than required by the conventional domain wall
fermion action. All ensembles use the Iwasaki gauge action.
The 24ID, 32ID, and 32IDF ensembles use the dislocation
suppressing determinant ratio action to reduce chiral sym-
metry breaking effects. For every configuration, we have
1024 or 2048 point-source propagators with randomly
distributed sources and Coulomb-gauge-fixed wall-source
propagators with sources on every time slice.
Results.—The calculated real and imaginary parts of

the amplitude are listed in Table II and plotted in Fig. 4.

In Table II the experimental value for the imaginary part is
evaluated using the optical theorem and the experimental
pion lifetime; the experimental real part is obtained by
subtracting the imaginary part contribution from the exper-
imental decay rate, with radiative corrections. In the table

(a)

(b)

FIG. 4. The amplitude A plotted as a function of tmax < T=2.
Here we shift and/or reflect the time coordinate so that tπ ¼ 0 and
the earliest current is at Δtπ . We then sum over the time of the
later current between the times Δtπ and tmax. (a) Imaginary part.
(b) Real part.

(a) (b)

FIG. 3. The quark propagator contractions needed for the
hadronic three-point function given in Eq. (8). The dashed line
locates the wall-source pion interpolating operator. (a) Connected.
(b) Disconnected.

TABLE I. Table of gauge-field ensembles, generated by the
RBC and UKQCD Collaborations [14]. Here Δconfigs, Nconfigs,
and Npt srcs are the separation in molecular dynamics time
between measurements, the number of configurations, and the
number of point sources per configuration used, respectively.

24ID 32ID 32IDF 48I 64I

a−1 (GeV) 0.98 0.98 1.37 1.73 2.36
Mπ (MeV) 137 137 141 139 139
ZV 0.7267(4) 0.7260(2) 0.683(1) 0.7108(3) 0.7429(1)
Δconfigs 10 10 10 10 20
Nconfigs 47 47 61 32 49
Npt srcs 1024 2048 1024 1024 1024
Δtπ 10 10 14 16 22

TABLE II. The lattice and experimental results for the real and
imaginary parts of the decay amplitude in eVand their ratios. The
error in parenthesis is statistical or experimental.

Source ImA (eV) ReA (eV) ReA=ImA

24ID 38.58(54) 23.06(40) 0.5976(24)
32ID 39.80(36) 23.88(29) 0.6000(20)
32IDF 36.17(47) 21.48(33) 0.5939(22)
48I 35.19(81) 20.70(66) 0.5881(52)
64I 33.99(54) 19.73(42) 0.5803(35)

Experiment 35.45(27) 24.1(2.0) 0.68(6)
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and plot only the contribution from the connected diagram
is included. The contribution from the disconnected
diagram is treated as a source of systematic error. The
disconnected diagram is calculated for the 24ID ensemble
and the result shown in Table III.
We use the continuum limit extrapolated from the 48I

and the 64I ensembles as shown in Fig. 5 as our final result.
Estimates of the dominant systematic errors are given in
Table IV. The finite-volume error is estimated from the
difference between the 24ID and 32ID results, assuming
that it behaves as e−MπL, where L is the linear lattice size.
The error from omitting disconnected diagrams is estimated

by comparing the connected and disconnected contribu-
tions for the 24ID ensemble listed in Table III. The
discretization error remaining after our linear a2 → 0
extrapolation is estimated by introducing a hypothetical
a4 term which is parametrized as ðmaÞ2 times the a2 term
found in our linear fit. We interpret the massm as giving the
scale that is responsible for these errors. We choose
m ¼ 770 MeV, the ρ mass, subtract this hypothesized a4

contribution from the data, and take the change in the
resulting a2 → 0 limit as the error. The 48I and 64I light
valence quark masses are physical but the light sea quarks
are heavier than physical giving an error estimated in chiral
perturbation theory.
Our final results are ImA ¼ 32.59ð1.50Þstatð1.65Þsyst eV,

ReA ¼ 18.60ð1.19Þstatð1.05Þsyst eV, and

ReA
ImA

¼ 0.571ð10Þstatð4Þsyst: ð9Þ

The smaller error on this ratio results from statistical
correlations and our method of estimating the systematic
errors. We can combine our more accurate result for this
ratio with the experimental result for the decay width
Γðπ0 → γγÞ to obtain more accurate values for the real part
of the decay amplitude and the branching ratio [15]:

ReA¼ 20.2ð0.4Þstatð0.1Þsystð0.2Þexpt eV;
Bðπ0 → eþe−Þ ¼ 6.22ð0.05Þstatð0.02Þsystð0.002Þexpt × 10−8:

ð10Þ

The error labeled “expt” arises from the error on the
measured π0 → γγ decay. This result for the branching
ratio is 1.8σ below the experimental value [1]
Bðπ0→eþe−Þexpt¼6.86ð27Þstatð23Þsyst ×10−8, from which
radiative corrections have been removed.
Finally, we can use our result for the imaginary part of

A to determine a lattice QCD prediction for the decay
width Γðπ0 → γγÞ ¼ 6.60ð0.61Þstatð0.67Þsyst eV to be com-
pared with the experimental result [16] Γðπ0 → γγÞ ¼
7.802ð0.052Þstatð0.105Þsyst eV. This new lattice QCD result
is computed with physical quark masses, contains finite-
volume errors which are suppressed exponentially in the

TABLE IV. Systematic error estimates.

Sources ImA (eV) ReA (eV) ReA=ImA

Finite volume 1.33 0.89 0.0026
Disconnected diagram 0.94 0.50 0.0029
Continuum extrapolation 0.28 0.22 0.0018
Unphysical light msea 0.06 0.03 0.0

Total systematic error 1.65 1.05 0.0043

TABLE III. The contribution to amplitude from connected and
disconnected diagrams for the 24ID ensemble. The errors in
parentheses are statistical.

Diagram ImA (eV) ReA (eV) ReA=ImA

Connected 38.58(54) 23.06(40) 0.5976(24)
Disconnected −1.1ð54Þ −0.62ð40Þ þ0.0012ð30Þ

(a)

(b)

FIG. 5. Continuum extrapolation showing statistical errors.
(a) Imaginary part. (b) Real part.
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linear extent of the lattice, and can be viewed as a
refinement of earlier lattice results [17,18].
Conclusion and outlook.—We have applied a combina-

tion of covariant Feynman perturbation theory and lattice
QCD to calculate the complex amplitude describing the
decay π0 → eþe−. Our result for this decay branching ratio
(which depends on the well-determined ratio ReA=ImA) is
accurate at the percent level and follows the pattern of
previous theoretical results lying below the experimental
value. Our method for combining lattice QCD with photon
and lepton propagators extends techniques developed to
calculate the hadronic light-by-light scattering contribution
to gμ − 2 and holds promise for the eventual calculation of
the two-photon-exchange contribution to the rare decay
KL → μþμ−.
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