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Bouncing models of cosmology, as they arise, e.g., in loop quantum cosmology, can be followed by an
inflationary phase and generate close-to-scale-invariant fluctuation spectra as observed in the cosmic
microwave background (CMB). However, they are typically not Gaussian and also generate a bispectrum.
These models can help to mitigate the large-scale anomalies of the CMB by considering substantial non-
Gaussianities on very large scales, which decay exponentially on subhorizon scales. It was therefore
thought that this non-Gaussianity would not be visible in observations, which can only probe subhorizon
scales. We show that bouncing models with parameters such that they can significantly mitigate the large-
scale anomalies of the CMB are excluded by the Planck data with high significance of, depending on the
specific model, 5.4, 6.4, or 14 standard deviations.
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Introduction.—The most commonly accepted idea for
the generation of initial fluctuations in cosmology is
inflation, which was pioneered in Refs. [1–3]. Initially,
inflation was invoked to solve the cosmological horizon
and flatness problems [4,5]. However, since inflation
cannot solve the singularity problem and since the flatness
and horizon solutions are “postdictions” of inflation, it is
usually considered that the nearly scale-invariant and
nearly Gaussian initial fluctuations are the most significant
signatures of inflation. Furthermore, many simple infla-
tionary models also predict a similar amount of tensor
fluctuations with a tensor-to-scalar ratio of r≳ 0.1.
Present data [6], however, constrain this ratio to
r < 0.032, excluding many inflationary models. Even
though there are inflationary models compatible with
present data, e.g., Starobinsky inflation [1] or Higgs
inflation [7], it is always important to study whether
alternatives to inflation can also lead to predictions which
are compatible with observations.
One possibility to solve the singularity problem are

“bouncing models,” where the observed expanding uni-
verse emerges from a collapsing phase. These models have
a long history starting with Tolman [8]. Not always, but in
many cases, they require a violation of the dominant energy
condition to allow an increase of the Hubble parameter.
Bounces can also be nonsingular, see, e.g., Refs. [9–13].
Especially attractive singularity-free bouncing cosmologies
arise in loop quantum cosmology (LQC) [14,15]. A
comparison of inflationary and bouncing cosmologies with
respect to their performance in view of the Planck data is
given in Refs. [16,17]. Bouncing models in general do
predict larger non-Gaussianities than inflationary models.
The non-Gaussianity generated in LQC has been inves-
tigated in Ref. [18].

One of the most debated problems of standard cosmol-
ogy is the large-scale anomalies of the cosmic microwave
background (CMB) data, most importantly, the power
suppression on large scales and the dipolar asymmetry
seen in the preference for odd-parity correlations [19–21].
Even though these anomalies have a statistical significance
around 2σ to 3σ and may be accepted as coincidences, they
would be less “anomalous” in a model with significant non-
Gaussianity on very large scales. And this is exactly what
LQC and the bouncing models investigated in Ref. [22]
predict. In the present Letter, these bouncing models, which
are followed by a phase of slow-roll inflation, are studied
and the amplitude fNL of the non-Gaussianity, where the
subscript NL stands for non-linear, in the model is chosen
such that the large-scale power suppression in the CMB has
a p value of about 20%.
In Ref. [22] it is argued that the exponential decrease of

the non-Gaussianity on subhorizon scales is sufficient to
make it invisible in, e.g., the CMB bispectrum, which gains
most of its signal-to-noise ratio (SNR) from high multi-
poles, which are well inside the horizon. In Ref. [23] some
of us have shown, using simple approximations, that the
SNR of the requested non-Gaussianity is nevertheless
substantial, and the signal should be visible in Planck.
In this Letter, we now investigate these models with the

real Planck data using the binned bispectrum estimator
derived in Refs. [24,25]. We determine the central value
and the error bars of fNL for the bispectrum shapes
proposed in Ref. [22] from the data and find that there
is no detection. Moreover, the values of fNL required in
order to remove the anomalies are excluded by 5.4σ, 6.4σ,
and 14σ for the three models considered.
Bispectrum.—The regular bouncing model described

in Ref. [22] generates the following dimensionless
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power spectrum PRðkÞ of curvature fluctuations in Fourier
space:

PRðkÞ ¼ As
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Here ns ¼ 0.9659 and As ¼ 2.3424 × 10−9 are the ampli-
tude and spectral tilt of the curvature perturbations mea-
sured by Planck [28]. The scale ki, set to ki ¼ 10−6 Mpc−1,
is a very large scale, below which perturbations are
significantly suppressed. Our results are not sensitive to
this scale. The scale kb ¼ 0.002 Mpc−1 is the pivot scale
above which the bispectrum is exponentially suppressed.
Its value is related to fNL. If we reduced kb in order to also
suppress lower k values, we would have to increase fNL in
order to achieve the goal of removing the CMB anomalies.
On the other hand, by making it larger we would obtain a
power spectrum which no longer agrees with the Planck
observations. We therefore choose the largest possible
value for kb which is of the order of the smallest values
of k which are well measured in the CMB power spectrum
observed by Planck. The parameters q, γ, and fNL depend
on the bounce; see Refs. [22,23] for details. Their values for
the models studied in this work are shown in Table I. The
parameters of model 2, with q ¼ −0.7, correspond to LQC
while model 3, with q ¼ −1.24, is a phenomenological
bouncingmodelwhich provides the best fit to the Planck data
in a Markov chain Monte Carlo analysis performed with
Planck TT (temperature) and low-l EE (E-polarization)
power spectra carried out in Ref. [22]. The fit is excellent,

even somewhat better thanΛCDM.This value is also close to
the smallest value of qwhich can still resolve the large-scale
anomalies as we require here. The value of jfNLj needed in
this model is significantly smaller. Finally, we also study a
somewhat larger value than the one of LQC, q ¼ −0.5,
which correspondingly requires a larger value of fNL to
resolve the large-scale anomalies.We call this model 1. In all
three cases we assume the smallest possible values for fNL
such that the large-scale anomalies appear with a probability
of 20%. This requires that the curvature scale of the bounce
is the Planck scale.We also give thevalues offNL for the 10%
and 5% probabilities. Note, however, that in standard
ΛCDM this probability is about 2%, hence not so much
smaller than the last value. The analysis in the next section
is performed for fNL of 20% in Table I; the results for the
other probabilities can be obtained by linear rescaling.
The reduced CMB bispectrum is obtained in terms of the

Fourier space bispectrum via [29]
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where T ðk;lÞ is the CMB transfer function and jl is the
spherical Bessel function of index l. In this expression
the forward Fourier transform has no factors of 2π and the
transfer function is defined such that the CMB temperature
power spectrum is given by

Cl ¼ 4π

Z
dkk2½T ðk;lÞ�2PRðkÞ; ð4Þ

where PR is the dimensionless curvature power spectrum;
see Ref. [29] for more details. Note that the normalization
of the transfer functions depends on the definition. This
transfer function, e.g., differs by a factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ=2p

from the one given in Ref. [30].
Limits from Planck.—In a previous paper [23] some of us

estimated the CMB bispectrum induced by these bouncing
cosmology models via rather crude analytic approxima-
tions. There we found that the models should have a signal-
to-noise ratio in the Planck data of 25–50 and therefore be
well detectable. In this Letter, we compute the CMB
bispectrum exactly using the numerical transfer functions
as determined by CAMB [31] and search for the signal in the
truly observed Planck data. We employ the binned bispec-
trum estimator described in Refs. [24,25] and used in the
Planck analyses [21,32,33]. We analyze the cleaned CMB
temperature and E-polarization maps of the Planck 2018
release, created by the SMICA component separation
method [34], which have an angular resolution of 50. We
mask them using the common masks of the Planck 2018
analysis, which leave a sky fraction of 78%. Error bars and

TABLE I. The values of the parameters considered in this
Letter. The fNL parameters are chosen according to Ref. [22] in
order to alleviate the power suppression anomaly (but note the
factor −2 difference in definition here as compared to Ref. [22];
see Ref. [26]). We also give the values of fNL needed to obtain a
probability of 10% and 5%, respectively, to observe the power
suppression anomaly using the definition of Ref. [22].

Model q γ fNL 20% fNL 10% fNL 5%

1 −0.5 0.588 −2516 −1661 −1283
2 −0.7 0.6468 −1663 −1098 −848
3 −1.24 0.751 −480 −317 −245
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linear correction terms are computed using 300 simula-
tions. For more details about the data, see Ref. [21].
Figure 1 shows the comparison between the bispectrum

fit from Ref. [23] and the exact numerical bispectrum
computed in this Letter. While there are obvious
differences, we see that the fit gives a reasonable approxi-
mation, despite the shortcomings of the analytic approx-
imations on which it was based. These shortcomings are,
for example, the fact that the integrated Sachs-Wolfe effect
was ignored, even though it is important at the lowest
values of l where this template peaks. Also the contribu-
tions from the acoustic peaks are not accounted for in
Ref. [23]. However, we expect these to be negligible due to

the exponential decay of the bispectrum. Furthermore, the
integration routine used in the first paper was different and
computationally much more demanding so that it cannot be
used efficiently with the full numerical transfer functions.
In Ref. [23] simple fits for the bispectra as functions of
the product L≡ l1l2l3 were introduced. While these
capture well the overall shape of the numerical results,
they somewhat overestimate it at high L and also, more
importantly, at the dominant lowest values of L. Here the
analytical fit is just shown for illustration, but it is not used
in our analysis.
The bispectrum amplitude fNL is determined from the

data by template fitting. The theoretical bispectrum
template Eq. (3) determined from Eq. (2) is multiplied
by the observed bispectrum Bl1l2l3 of the CMB and
divided by the expected bispectrum variance (which in
the case of weak non-Gaussianity is just a product of the
three measured power spectra Cl1Cl2Cl3), summing over
all values of l1, l2, l3. This expression must finally be
multiplied by a factor to normalize the inverse-variance
weights, and this factor is exactly the expected variance of
fNL. In the case that polarization data are included as well
as temperature data, the division by the variance becomes a
multiplication with the inverse covariance matrix, and the
sum is also over polarization indices. The whole expression
for fNL can simply be viewed as the normalized inner
product of the bispectrum template with the observed
bispectrum of the CMB:

fNL ¼ hBth; Bobsi
hBth; Bthi : ð5Þ

In the simple case of temperature only and no binning, this
inner product is given by

hBA; BBi ¼
X

l1≤l2≤l3

BA
l1l2l3

BB
l1l2l3

Vl1l2l3

; ð6Þ

where V is the variance of the observed bispectrum, which
depends on the noise and beam characteristics of the
experiment. For the explicit definitions of the inner product
in the case of binning or when polarization is included, as
well as for other expressions and more detailed explan-
ations, see, e.g., Ref. [25].
Computing the observed bispectrum for all values of l1,

l2, l3 is computationally too expensive; hence, estimators
must use approximations. The binned bispectrum estimator
used in this Letter makes the approximation that the
bispectrum templates we are looking for are sufficiently
smooth and slowly changing, that it is enough to only
compute the average value of the bispectrum in each bin of
l values. This is a good approximation for the bouncing
bispectrum under consideration: it was explicitly tested
that the standard binning with 57 bins used for the Planck
2018 analysis [21] gives a negligible increase in variance

FIG. 1. Top: the bouncing bispectrum computed with the
numerical transfer functions (blue dots), fit to the bispectrum
obtained in Ref. [23] (cyan) and the local bispectrum (yellow), for
q ¼ −0.7 (multiplication by fNL included). The bispectrum is
plotted as a function of the product L≡ l1l2l3, which allows
plotting all values of the 3D bispectrum in a 2D plot, at the price
of having multiple ðl1;l2;l3Þ configurations corresponding to
the same value of the product L. Bottom: the same bispectrum for
l1 ¼ 2 fixed as a function of l2 and l3, compared to the local
bispectrum with the same value for fNL. Only values of li which
satisfy the triangle inequality are plotted. The fitting formula is
indicated as a cyan surface.
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compared to the exact nonbinned template. The Planck
binning was determined by minimizing the increase in the
theoretical variance for the local, equilateral, and orthogo-
nal shapes due to the binning, taking into account the noise
and beam characteristics of the Planck experiment for both
temperature and polarization.
The bouncing bispectrum template has the property that

it decreases extremely fast as a function of l because of the
exponential factor in Eq. (2). It was shown that cutting off
the analysis at lmax ¼ 36 does not change the expected
Fisher error bar at all compared to the lmax ¼ 2500 used in
the Planck analysis. However, in the actual data analysis it
is still important to use this much higher lmax in order to
disentangle the bouncing bispectrum from other sources of
non-Gaussianity that are present in the data, like extra-
galactic point sources and the lensing bispectrum. Table II
gives the correlation coefficients of the bouncing template
(for the three different values of q) with the standard
primordial and foreground templates of the Planck analysis
(for temperature only, in order to also show extragalactic
point sources and the cosmic infrared background (CIB).
These correlations coefficients are defined as

CIJ ¼
FIJffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FIIFJJ

p ; ð7Þ

where I and J are indices labeling the templates and F is the
Fisher matrix defined as FIJ ¼ hBI; BJi. We see that, once
the full Planck range is used, the correlation with all the
other templates is very small (although the 3%–5%
correlation with the orthogonal shape is not completely
negligible). Not surprisingly, the correlation between the
three bouncing templates, on the other hand, is very large.
There is also some correlation with the galactic dust
template from Ref. [35], but as the analysis was performed

on the cleaned CMB map from which the dust has been
removed, this has no impact on our final results.
Table III presents the final results for the analysis of the

Planck 2018 SMICA CMB maps with the bouncing tem-
plate. They have been computed using a full temperature
plus E-mode polarization analysis. However, the addition
of polarization does not help at all: one obtains exactly the
same error bars using temperature only. We see that there is
no detection of any of the three templates. Given the size of
the error bars in this table and the predicted values
of fNL (20%) given in Table I, we see that model 1
with q ¼ −0.5 is ruled out at 5.4σ, the LQC model with
q ¼ −0.7 is ruled out at 6.4σ, while model 3 with
q ¼ −1.24 is ruled out at 14σ.
Conclusion.—In this Letter, we have compared the non-

Gaussianities of three bouncing models, which mitigate the
large-scale anomalies in the CMB data. Despite the fact that
the bispectrum of these models decays exponentially below
the pivot scale, for k > kb ¼ 0.002 Mpc−1, these models
are excluded by the Planck data with high significance.
This shows the sensitivity of the Planck data to scales
beyond the pivot scale. This is especially evident when
comparing models 2 and 3. While the LQC model has
much larger fNL and therefore a larger bispectrum on all
scales k > kb, it is less significantly excluded, namely by
6.4σ, than the third model with q ¼ −1.24 which is
excluded at 14σ. The bispectrum of this model is smaller
than the one from LQC for k > kb, but is larger for
k < kb=3.3. These large scales are imprinted in the
CMB since the CMB transfer function is by no means a
Dirac delta and a given l value obtains contributions from a
rather broad band of wave numbers k.
As lowering fNL in these models goes in pair with

rendering q even more negative, this implies that solving
the large-scale anomaly puzzle with these models is
excluded by the Planck data.
If one reduces the probability for the large-scale anoma-

lies to appear from 20% to 10% or even 5%, this reduces
the exclusion by the same factor as fNL, see Table I, leading
to only 3.5σ or 2.7σ exclusion for model 1 but still 9.3σ and
7.2σ for model 3. For the LQC model 2 the corresponding
limits are 4.2σ and 3.3σ, respectively.
It is very likely that our results actually go beyond the

models studied here. If we want the large-scale anomalies

TABLE II. Correlation coefficients of the bouncing template
(for the three different values of q) with the standard primordial
and foreground bispectrum templates of the Planck analysis [21],
as well as with the galactic dust bispectrum template from
Ref. [35].

Bouncing
(q ¼ −0.5)

Bouncing
(q ¼ −0.7)

Bouncing
(q ¼ −1.24)

Local 0.018 0.013 0.006
Equilateral 0.011 0.006 −0.002
Orthogonal −0.046 −0.039 −0.028
Point sources −10−10 −10−10 −10−11
CIB −10−7 −10−7 −10−8
Galactic dust −0.13 −0.11 −0.066
Lensing −0.002 −0.002 −0.001
Bouncing
(q ¼ −0.5)

0.98 0.82

Bouncing
(q ¼ −0.7)

0.91

TABLE III. fNL (with 1σ error bars) of the bouncing template
(for the three different values of q) as determined from the 2018
Planck SMICA CMB temperature and polarization maps using the
binned bispectrum estimator.

Template fNL

Bouncing (q ¼ −0.5) 240� 470
Bouncing (q ¼ −0.7) 160� 260
Bouncing (q ¼ −1.24) 19� 34
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to be less improbable by skewed statistics, this introduces a
bispectrum. Even if this bispectrum is significant only on
very large scales, the Planck data are sufficiently precise to
exclude it. It is of course possible that this might be evaded
by some very exceptional, faster than exponential decay of
the bispectrum; nevertheless, ours does appear to be a quite
solid conclusion.
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