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Quantum Associative Memory with a Single Driven-Dissipative Nonlinear Oscillator
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Algorithms for associative memory typically rely on a network of many connected units. The
prototypical example is the Hopfield model, whose generalizations to the quantum realm are mainly
based on open quantum Ising models. We propose a realization of associative memory with a single driven-
dissipative quantum oscillator exploiting its infinite degrees of freedom in phase space. The model can
improve the storage capacity of discrete neuron-based systems in a large regime and we prove successful
state discrimination between n coherent states, which represent the stored patterns of the system. These can
be tuned continuously by modifying the driving strength, constituting a modified learning rule. We show
that the associative-memory capability is inherently related to the existence of a spectral separation in the
Liouvillian superoperator, which results in a long timescale separation in the dynamics corresponding to a

metastable phase.
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Artificial neural networks (ANNs) are brain-inspired
computational systems that can solve and model numerous
kinds of tasks, ranging from pattern and speech recog-
nition [1,2] to big data analysis [3]. An important family of
ANNSs is given by attractor networks, whose temporal
evolution settles on stable solutions, exploited in a wide
range of problems [4,5] with the prominent example of
associative memory (AM). In an AM task, a system stores
a set of memory states. Then, it is interrogated using a clue
state similar but not necessarily identical to one of the
memories; a system equipped with AM can identify the
stored pattern most similar to the clue according to a
properly defined distance. AMs are commonly modeled
through the (classical) Hopfield neural network (HNN) [6],
which makes use of a network of binary neurons, and
exhibits stable attractors—the memories—defined through
a proper learning rule written in the weights of the neural
connections [4,5]. One main limitation of the HNN is that
the number of patterns that can be stored is much smaller
than the dimension of the network itself [7,8].

Quantum machine learning aims to find ways to exploit
the features of quantum mechanics for machine learning
purposes [9-12]. In the context of quantum AM, general-
izations of classical models are mainly based on the
quantized version of the HNN [13-21], where binary
systems are replaced by quantum spins, and where the
necessary dissipative dynamics are provided by the inter-
action with some external bath (which can also encode the
learning rule [22,23]). The main findings concern the
existence of dynamical phases, not found in classical
systems, that can be employed in new types of retrieval.
Yet, memories remain strings of classical bits. Still, an open
point is the promise that the richer dynamics of quantum
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systems can improve the storage capacity, that is, the
number of memories over the system size. A general
discussion about the possibility of achieving such a
quantum advantage can be found in [24,25], where the
storage capacity is estimated according to the Gardner
program [26,27]. However, direct application to specific
models does not seem to give conclusive answers [28,29].

In this Letter, we take an alternative route to AM in
quantum systems moving from spin networks to a single
driven-dissipative nonlinear quantum oscillator where one
can exploit its (in principle infinite) number of degrees of
freedom. The main ingredient of our approach lies in the
nonlinearity which determines the form and phase sym-
metry of the steady state, changing from (almost classical)
coherent states to purely quantum states, depending on the
model parameters. Together with a metastable dynamical
phase long enough compared to all timescales relevant to
pattern recognition and memory retrieval. Concerning
AMs, metastability allows systems that converge towards
a unique steady state to span a manifold of relevant
addressable memories [30].

In principle, a quantum oscillator spans an infinite
Hilbert space with potentially unlimited storage capacity
[24]. This can be seen as a (generally complex) network
whose computational nodes can be built using every
orthogonal basis of the Liouville space (a similar approach
was taken in Ref. [31] in the context of quantum reservoir
computing). Nevertheless, we are bounded by the size of
the metastable manifold. Considering the minimum Hilbert
space size needed to correctly describe the system dynam-
ics, we will show that our model can achieve a higher
storage capacity than the (classical and quantum) discrete
neuron models.

© 2023 American Physical Society
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Let us briefly review the concept of metastability, which
emerges whenever disparate timescales are present in the
evolution of a dynamical system [30]. In our case, as we
will see, metastability can be traced back to the presence of
a separation in the Liouvillian spectrum [32,33] and is in
close connection with quantum entrainment and dissipative
phase transitions [34]. It is characterized by the long-lived
occupation of high Liouvillian modes and is normally
observed after a short transient time and before the final
relaxation towards the steady state.

For a system described by the Gorini-Kossakowski-
Sudarshan-Lindblad master equation d,p = Lp [35,36],
the dynamics can be understood in terms of the set of
complex eigenvalues {4, } of the (non-Hermitian) Liouvillian
superoperator £ and of the right ({R;}) and left ({L,})
eigenvectors, obeying, respectively, LR; = A;R; and
ETLj = A;L; with normalization trLijk = 6 [32]. Then,
assuming the presence of at least one steady state p,, (which
is always true in finite dimensions [37,38]), the time
evolution of a state p(0) can be decomposed as

pl1) = ps + Y_tr|Lip(0) ¥R, (1

j>1

where for convenience the eigenvalues are sorted such
that 0 > Red; > Red; ;.

A metastable dynamical phase will emerge before the
final relaxation whenever there is a large separation
between two consecutive eigenvalues, i.e., 7,>> 7,1,
where 7;! = —Rel, [33]. This divides the decay into
different timescales: a fast regime for ¢ < 7, |, a metastable
period where dynamics are apparently frozen for
T,y <t <1, and, finally, the last decay for ¢ > 7,. In
the middle region, the dynamics can be approximated by
p(t) = >0, pi(t)p; [39], where {y,}]_, are the metastable
states spanning the metastable manifold [40] and
{p:(1)}]_, are quasiprobabilities, as they might take neg-
ative values, but satisfy that their sum is 1.

Our quantum model for AM consists of a driven-
dissipative oscillator described by the master equation

P il p + 11 Dlalp + D, (2)
where we have standard terms for linear (single-photon)
and nonlinear (multiphoton) damping [47,48] with rates y;
and y,,, respectively. The Hamiltonian, which contains a
n-order squeezing drive [49,50], in the rotation frame and
after the parametric approximation is

ﬁn = Aata + in[&neién _ (&f)ne—iﬁn]. (3)
Here, A = wg — w, is the detuning between the natural

oscillator frequency and that of the squeezing force, 5
and 6 the magnitude and phase of the driving, respectively.

We observe that the model possesses Z,, symmetry, that is,
the transformation @ — aexp(i2z/n) leaves the master
equation invariant [51].

Although particular solutions have been found for
specific cases [34,52], no general analytical solution exists
for Eq. (2). We can restrict to the case m = n and write it
as [47,53,54]

ap SAATA ~ An n
o —iA[ata.p] + riDlalp + v, D" - B'lp.  (4)

where " = 25e'?" /y,, corresponds to the amplitude of n
symmetrically distributed coherent states or lobes

1B)) = |Be!®HDmim) =1, ....n, (5)
which span the kernel of the nonlinear damping term
in Eq. (4). We notice that f is a function of the ratio
between squeezing strength and nonlinear damping. In
the limit of small detuning and large 3, we observe
numerically that the lobes become almost orthogonal
(F(B) = |{B;|B;+1moan)|* = 0), and thus the steady state
can be well approximated by py, ~ (1/n) > 1 |8;)(B;] 55].
Instead, in the absence of squeezing in Eq. (3), only a single
solution with # = 0 persists. In the following, we fix § = 0
and A = 0.4y,.

By numerically solving the steady state equation
Lp, =0, we show in Fig. 1 its Wigner representation
for four different parameter choices [56]. In the first row,
we can see two different situations for n = m = 3: in panel
(a) we have set n < A, which makes the lobes indistin-
guishable, while for # > A [panel (b)] we can appreciate
three coherent states corresponding to an amplitude f ~ 3.
The separation between these two regimes could also be
observed at the mean-field level, as explicitly discussed
in [40] (Sec. S1). Finally, in Fig. 1(c), we show the steady
state for n = 3 and m = 2. Here, we again see three lobes,
as expected from the symmetry of the system, but now
show signatures of squeezing and quantumness. This also
applies to other values of n # m. In all situations, the
Wigner representation is non-negative as a consequence of
the linear damping which removes the coherences between
states [55,59].

5 -5

5 -5

0 0 0
Re(a) Re(a) Re(a)
FIG. 1. Wigner representation of the steady state for n =3
(normalized). Parameters: (a) y,/y; =0.2, n/y; =0.1;

®) v2/ri = 1.5, n/y1 = 2.7, (©) v2/r1 = 0.2, n/y, = 1.455.
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FIG. 2. Separation between the 4th and 5th low-lying eigen-
values where darker colors indicate longer metastability. Three
contour lines show the decay time of the fourth eigenvalue, the
end of metastability.

To establish the existence of metastability, let us explore
how the separation of the Liouvillian eigenvalues depends on
the system parameters. An example is given in Fig. 2 (for
n =m = 4). There, the separation appears between the
fourth and fifth eigenvalues, which separates slow metastable
dynamics from fast decay modes [33]. During the slow
phase, the dynamics can be approximated by n metastable
phases {y; 1> constructed as extreme superpositions of the
first n eigenmodes [40] (Sec. S3). These, in the regime of
large f3, are approximately equal to the coherent states in
Eq. (5). The larger the separation, the farther apart the lobes
are, increasing the metastable properties [60].

The results above are consistent with particular situations
studied in the literature. Concretely, the case n = m = 2 was
studied in Ref. [34] using linear amplification instead of
linear damping (the presence of both damping and ampli-
fication was analyzed in Ref. [62] in the context of quantum
synchronization). The change, motivated by its experimental
feasibility [47,61,63], leads to a slight increase in metasta-
bility because there is no competition between dissipative
terms. Yet, no other qualitative difference is appreciated.

We now turn our attention to the dynamic properties that
lead to the AM capabilities of the system. Our goal is to
exploit the metastable dynamics to discriminate between
the n metastable phases. This can be seen as a generalized
discrimination problem between n symmetrical coherent
states [64,65] because the initial state does not have to be
any of the lobes. More specifically, within the metastable
transient, an initial state will move towards the closest lobe
(representing one of the stored memories) and remain there
for a long time. Consequently, by measuring the state
within this regime, we can extract information about the
corresponding lobe. Furthermore, the ability to tweak the
target states using the (tunable) Liouvillian parameters can
be interpreted as a modified learning rule, commonly given
in ANN by changing the network weights to select the
desired family of steady states [6].

(a)n=3
S
N Y172 = 100 (b) n =4
. y174 = 10
sl il PRy | F————— T ——
100 10! 102 103

Tt

FIG.3. Time evolution of (&) for three different parameter sets
as shown in Fig. 2. Full master equation evolution in solid lines
(for truncated Hilbert space with dim H = 50) and deterministic
evolution in the metastable manifold in dotted lines. Shaded areas
indicate the metastability regime per color.

In Fig. 3, we compute the time evolution of (a) for three
different values of the parameters (y,,#) corresponding to
Y17, = {2, 10, 100}. The initial state is a coherent state with
amplitude 0.54(y,, n) exp(i2z/9), different from any lobe.
Then, the evolution is evaluated by comparing the full
master equation (solid lines) with the metastable approxi-
mation described in Ref. [39] (dotted lines), which, of
course, is expected to be valid since the metastable transient.

Looking at the upper two lines, for both n, we can
distinguish the different dynamical regimes. First, a fast
decay of the high modes (i.e., R;..,,) occurs, which takes the
state from its initial amplitude to that of the lobes in a time
7,41 Here, as expected, the metastable approximation fails
to describe the dynamics. Then, the solution penetrates into
the metastable transient where a plateau of constant
amplitude is observed. From this point onwards, the two
descriptions coincide with high accuracy, showing that the
state is confined to the metastable manifold. Thus, in this
setting, metastability is completely described by the
Liouvillian spectrum. In contrast, when the separation
between lobes is small (lower red lines), the metastable
transient disappears. We can also appreciate a longer
plateau for n = 4 than for n = 3, even after the metastable
transient, which is a consequence of the slowest eigenval-
ues distribution [40] (Sec. S4).

Next, we assess the AM efficiency by numerically
computing the probability that the system is found in the
target lobe at each time . We use a Monte Carlo simulation
with a coherent state of random amplitude [0, 23] and phase
as initial state. The system is then measured with the
(ambiguous) POVM {P;}/_,, obtained numerically from
the Liouvillian left eigenmodes [39], where each operator
corresponds to a division of the phase space centered
around each lobe (5) [66]. Hence, the success probability is
equal to the click probability of the kth operator assuming
the initial state is most similar to the kth lobe (according
to trace distance) [40] (Sec. S5). We repeat this process
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400 times with different initial states and average the results
to obtain the solid lines in Fig. 4(a).

Focusing on the dim H.; = 40 (solid red) line, the time
evolution can be compared to the metastable evolution in
Fig. 3 with a plateau of high success probability that spans
times even before the metastable regime begins. This is
because any state in the basin of attraction of the lobe will
trigger the associated operator, failing to determine whether
the state has converged to the exact pattern. Thus, we repeat
the calculation with a second (unambiguous) POVM, used
experimentally for m-ary phase-shifted keys [67,68], that
only triggers when the state is inside the metastable
manifold. As a result, looking at the dashed lines in
Fig. 4(a), we note that the success probability is initially
small—the state is not over any lobe—but converges to the
plateau by the start of the metastable transient, thus
showing its ability to optimally discriminate the patterns
in this regime.

A fundamental question in the context of AM concerns
the storage capacity a, of a system. While our model has an
infinitely dimensional Hilbert space, the coherent-state
solutions discussed so far can be described with high
accuracy by truncating above high Fock state occupancy of
the boson mode [50]. This allows us to adapt the definition
of the storage capacity of finite systems. In Fig. 4(a), we
show the effect of truncation on the lobe identification. As
expected, under a certain system size, the dynamical state
cannot be well approximated and metastability is lost,
which leads to a fast decrease in the success probability.
The dimension of the truncated Hilbert space H. repre-
sents the effective system size to be compared with the
number of stored memories. Assuming that n patterns can
be successfully stored, one can define the storage capacity
as a, = n/dim H.g. However, the possibility to distinguish
them can be strongly hindered depending on the parameter
choice [69]. This highlights the importance of accounting
for correlations between patterns [26,29]. Hence, we define
a. = [1 = F(p)]a., with F(j) as specified above, which
vanishes for indistinguishable lobes (f — 0) and large
dimensions (f# — oo0) but is maximal for intermediate
amplitudes. In Fig. 4(b), we plot the storage capacity as
a function of the lobe amplitude for different values of n.
Although contrasting different learning rules is not imme-
diate, we compare it with the standard Hebbian rule which
has been found to limit the capacity in both classical [7] and
quantum [21]. In this way, we can appreciate a wide range
of solutions where such classical limit is exceeded [70].
Further, in Fig. 4(c), we show how the maximal storage
capacity of our model reduces the system size required
to store the same number of patterns in a Hebbian-
based HNN.

In this Letter, we have proposed a different approach to
AM considering a single driven-dissipative quantum non-
linear oscillator. We have shown that it allows for success-
ful state discrimination during the metastable regime.

Success probability

System size

A

Storage capacity

Y L1
2 4
# of patterns

FIG. 4. (a) Probability of identifying the correct lobe with time
using the ambiguous (solid lines) and unambiguous (dashed
lines) strategies for increasing system sizes. Parameters corre-
sponding to the green line in Fig. 2(b). (b) Storage capacity over
lobe amplitude for a different number of patterns: &, (solid lines)
and a, (dashed lines). (c) Points corresponding to the maximal
storage capacity in (b). Compared with Hebbian critical capacity
allebd — (0,138 (dotted line).

Our approach shares some features with the classical
continuum space limit of the Wilson-Cowan model [72],
whose stochastic versions [73,74] account for metastable
neural population activity. In this sense, the Wigner
function plays the role of a neural field whose excitations
represent the stored patterns [40] (Sec. S7). In contrast to
these models where the solutions settle at long times, our
AM is transient, which may provide a speed-up in the
convergence towards the patterns [75].

Even if bosonic models can potentially encode an infinite
number of memories [76], our system is upper-bounded by
two values: the power of the nonlinear term n and the
overlap between the lobes F (). The latter is similar to the
conditions for patterns in HNNs, which require them to be
orthogonal. At the same time, the former determines the
dimension of the metastable manifold, i.e., the number of
metastable solutions. In this respect, we saturate the
maximum number of patterns of the system [24], and
most importantly, 7 is not upper bounded in theory.

We can compare our proposal, where the number of
solutions can be increased with the nonlinearity degree n,
with the standard Hebbian learning strategy, where one
needs to increase the dimension of the Hilbert space
(number of spins). As the former can be well approximated
by truncation, we have found a superior storage capacity
@, > o' Furthermore, truncation saves computational
resources and time, and more importantly, in experimental
realizations, its validity witnesses a bound in the maximum
excited state and thus in the operation energy [Fig. 4(c)]. In
any case, the experimental viability of our system mainly
depends on the capacity to engineer an oscillator with a
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high nonlinear term. Superconducting resonators are a
good candidate when n = m due to their ability to realize
any nonlinearity by modifying only the flux pump fre-
quency [50,63] with three-photon down-conversion
achieved in Ref. [77]. Those systems have been used to
generate catlike states by removing the linear dissipative
term [47]. Consequently, the appearance of the linear term
makes it easier to realize in practice. Aside, experiments
realizing the phase-shifted coherent state discrimination
have been pursued with success [68].

To conclude, we believe this Letter heralds a new way of
pursuing AM beyond typical spin chains. It would be
interesting to see the robustness and scalability of this
proposal when coupling a few nonlinear oscillators. More
complex metastability scenarios where the spectral analysis
is not sufficient could arise, e.g., in the presence of skin and
topological effects [78—80]. Also, in Ref. [34], it was shown
that the onset of metastability relates to an exceptional point
in the Liouvillian spectrum of the van der Pol oscillator. This
and other dynamical aspects need to be further explored. An
additional open question concerns the possibility of storing
quantum memories. While for the sake of clarity in this work
we have focused on the case n = m, which is built around
coherent-state discrimination, Fig. 1(c) shows that in differ-
ent scenarios metastable squeezed states can emerge. This
aspect is left for future work.
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